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Unlocking the dual healing 
powers of plant-based metallic 
nanoparticles: managing 
diabetes and tackling male 
infertility challenges 
Ayesha Siddiqa1, Rahmatullah Qureshi1*, Ghazala Yasmin2, 
Shaista Rafique1, Noor-Ul-Ain Zafar1, Chudary Sadam Hussain1, 
Sana ur Rehman3 and Neelum Naheed1 

1Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan, 
2Department of Botany, Government Graduate College for Women, Jhelum, Pakistan, 3National 
Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 
Diabetes mellitus (DM) is a severe metabolic disorder characterized by an 
increase in blood glucose level due to insufficient insulin production or failure 
of insulin action on targeted tissues or both. DM impacts male reproductive 
health across four aspects: ejaculation, erectile dysfunction, structural alterations 
in reproductive organs, and alterations in semen quality. The population of male 
individuals with diabetes is steadily rising, paralleled by an increase in fertility 
issues among men. A WHO report states that diabetes mellitus affects about 171 
million (2.8%) persons worldwide. Anti-diabetic medications that are now on the 
market are expensive and have several negative effects, including cardiac, 
hepatic, and renal failure in diabetic patients. Keeping in view, this review 
emphasizes the limitations of currently used synthetic anti-diabetic drugs and 
provides the progress in the development of phytogenic metallic NPs (NP)in the 
treatment of diabetes and associated male infertility. To collect data, various 
databases were examined, including Springer Link, Google Scholar, PubMed, 
Wiley Online Library, and Science Direct. Several studies and research reports 
based on nanotechnological approaches in the formulation of anti-diabetic 
drugs have pointed out the fact that research in the formulation of nanodrugs 
has improved strategies for combating diabetes and associated male infertility 
based on the plausible molecular mechanism of action of the drugs. These 
nanodrugs have been observed to significantly influence regulatory mechanisms 
through their effects on pancreatic a-amylase, intestinal a-glucosidase, insulin 
action, and glucose uptake across various in vivo and in vitro systems. Moreover, 
integrating nanotechnological methodologies with the exploration of herbal 
compounds further enhances the understanding of their chemical potential. 
This synergistic approach may pave the way for identifying novel drug candidates 
with exceptional therapeutic efficacy, offering significant advantages in the 
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management of diabetes and associated male infertility for the betterment of 
humanity. Furthermore, the personalized design of plant-based metallic NPs has 
the potential to significantly advance precision medicine techniques for the 
treatment of male infertility and diabetes. 
KEYWORDS 

diabetes  mellitus,  male  infertility,  nanotechnology,  anti-diabetic  drugs,  
phyto-nanoparticles 
 

1 Introduction 

Diabetes  mellitus (DM) is a serious metabolic  disorder
characterized by elevated blood glucose levels resulting from 
insufficient insulin production, impaired insulin action on target 
tissues, or a combination of both. It is a major risk factor for 
cardiovascular diseases, which account for approximately 50% of 
deaths among individuals with diabetes (1, 2). The prevalence of 
diabetes is increasing worldwide due to an increase in obesity and a 
sedentary lifestyle. In a report released by (World Health 
Organization in 2000, it was estimated that over 171 million 
(2.8%) people are living with diabetes mellitus throughout the 
world (3, 4). This number is expected to increase to 366 million 
(4.4%) by 2030. According to the International Diabetes Federation, 
the incidence of diabetes in Pakistan in 2016 (5, 6), 2018 (1, 7) and 
2019 (8, 9) It was 11.77%, 16.98%, and 17.1%, respectively, and in 
2022, the prevalence rate of adults was 26.7% in Pakistan (9, 10). 

There are two primary forms of diabetes mellitus. Type 1 
diabetes mellitus (T1DM), also known as insulin-dependent 
diabetes, is characterized by the autoimmune destruction of 
pancreatic beta cells, leading to a complete deficiency of insulin 
and resulting in chronic hyperglycemia (see Figure 1). Type 2 
diabetes mellitus (T2DM), or non-insulin-dependent diabetes, is a 
metabolic disorder arising from either inadequate insulin 
production or the body’s inability to effectively utilize insulin, also 
culminating in elevated blood glucose levels (11). Dietary 
carbohydrates are broken down during digestion into glucose, 
which is subsequently absorbed through the walls of the small 
intestine into the bloodstream. Insulin, a hormone secreted by the 
pancreas, plays a critical role in facilitating the uptake of glucose 
into cells throughout the body, where it serves as a primary 
energy source. 

In individuals with insulin resistance, however, cellular 
responsiveness to insulin is impaired, hindering glucose uptake 
and leading to elevated blood sugar levels. Initially, the pancreas 
compensates for insulin resistance by increasing insulin production; 
however, over time, this compensatory mechanism fails, leading to 
sustained hyperglycemia, which is a hallmark of type 2 diabetes (12) 
(Figure 1). This condition has become a significant public health 
concern, particularly in developing countries, where rapid 
urbanization and lifestyle changes, most notably the rising 
02 
consumption of Western-style diets high in fats, have contributed 
to the growing prevalence of the disease. It is characterized by 
hyperglycemia, insulin resistance, and obesity. Obesity results in an 
imbalance between energy intake and energy expenditure. Besides 
obesity, it has a strong connection with dyslipidemia and 
hypertension. The interconnection between these conditions is a 
major risk factor for cardiovascular diseases (13, 14). 
2 Diabetes associated male infertility 
and its underlying causes 

The World Health Organization currently defines infertility as 
the inability of a sexually active couple (at least three times per 
month), not using contraception, to achieve pregnancy within one 
year. About 15% of sexually active couples are infertile (15, 16). And 
male factor infertility contributes to about 50% of the infertility 
cases (17). Research suggests that nearly half of male patients with 
diabetes experience decreased semen quality and impaired 
reproductive function. Diabetes-induced metabolic disorders can 
indeed have significant effects on male fertility and reproductive 
health (18). In recent years, increasing attention has been directed 
towards its effects on male reproductive health. Diabetes induces 
metabolic disturbances that contribute to oxidative stress, abnormal 
zinc metabolism, and insulin resistance (IR). These factors 
collectively impact male fertility and reproductive health. 

Multiple studies conducted using animal models have 
demonstrated that DM significantly reduces fertility (19–21). This 
reduction is attributed to decreased sperm concentration and 
motility, increased seminal plasma abnormalities, and alterations 
in the normal morphology of sperm cells (22, 23). Additionally, 
patients with DM may experience other disturbances such as 
retrograde ejaculation, premature ejaculation, decreased libido, 
delayed sexual maturation, and impotence (15, 24–26) (Figure 2). 

Some reproductive issues associated with diabetes are as follows 
2.1 Erectile dysfunction 

Among the various reproductive issues associated with diabetes, 
erectile dysfunction (ED) is a prominent concern. Studies indicate 
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that 59% of diabetic men experience ED. The underlying cause 
often involves penile nerve thickening or beaded neuropathy. 
Additionally, decreased serum testosterone levels due to diabetes 
can negatively affect vascular endothelial function, further 
contributing to ED (27–32). 
2.2 Testicular glucose metabolism and 
infertility 

Hyperglycemia in diabetes alters testicular glucose metabolism. 
Glycogen, a key regulator of testicular development and 
spermatogenesis, plays a critical role by mobilizing glucose 
necessary for germ cell development. Disturbances in testicular 
carbohydrate metabolism, as observed in diabetes, can significantly 
contribute to testicular dysfunction and potentially lead to male 
infertility (33–35). 
2.3 Structural and functional changes in 
reproductive organs 

Diabetes induces structural and functional alterations in male 
reproductive organs. Notably, testicular blood flow velocity 
decreases, possibly attributed to reduced vascular endothelial 
growth factor (VEGF) expression (36, 37). Microcirculation 
Frontiers in Endocrinology 03 
disturbances result in testicular morphological and structural 
changes. In immature rats, diabetes can delay gonadal 
development, decrease sexual behavior, testosterone synthesis, 
and promote gonadal atrophy (36, 38). Seminiferous tubules 
(STs) may show signs of atrophy, thinning of the spermatogenic 
epithelium, and an increased presence of empty tubules. Some STs 
may contain multinucleated cells with two or three nuclei, along 
with evidence of enhanced vascular degeneration and germ cell 
apoptosis. Sertoli cells, located near the lumen of the STs, may 
accumulate cytoplasmic debris, and their ultrastructure often 
reveals irregular basement membranes and a reduced cell 
population. Structural alterations are also observed in Leydig cells, 
including irregularly shaped nuclei, abundant heterochromatin, 
lipid droplets, as well as damaged mitochondria and changes in 
the endoplasmic reticulum (39). 
2.4 Histopathological changes in the testis 

Studies investigating male reproductive dysfunction in the 
context of diabetes primarily focus on changes in testicular 
morphology. Data from various studies show reductions in the 
mass of different regions of the testis and a diminished sperm count 
in testicular tubules. Additionally, hyperglycemia can lead to 
histological alterations in the epididymal duct, including 
decreased germ cell populations, reduced stereocilia, clustering of 
FIGURE 1 

Illustration of differences in insulin production and glucose uptake among normal individuals, Type I diabetics (complete insulin deficiency), and Type II 
diabetics (insulin resistance and impaired uptake), leading to chronic hyperglycemia. 
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epithelial cells, lipid vacuolization, and inflammation (40). Other 
histological changes observed in the testis tissue due to diabetes 
include wrinkled secretory epithelial cells in the prostate, testicular 
stromal hypertrophy, inflamed cells, prostatic intraepithelial 
neoplasia, and expanded secretory organelles. Reports in diabetic 
rodents also demonstrate reductions in the weight of seminal 
vesicles, as well as decreased weight and mass of testicular tissue. 
Moreover, the number of Leydig cells decreases, the seminiferous 
tubules’ diameter and germinal epithelium height decrease, and the 
volume of interstitial matrix increases in diabetic conditions 
(41, 42). 

Reduced sperm quality is a recognized issue in diabetes, 
particularly in cases of T1DM. This is linked to various factors, 
including altered gene expression related to sperm DNA repair, 
mitochondrial DNA deletions, and decreased sperm motility 
Frontiers in Endocrinology 04
(43, 44). Insulin levels in the bloodstream have been found to 
impact the acrosome and plasma membrane of sperm. Diabetic 
patients often experience reduced sperm motility and abnormal 
sperm morphology, which can impact fertility. 

Hyperglycemia, a common feature of diabetes, affects all stages 
of spermatogenesis, including spermatogonia proliferation, 
spermatocyte division, and spermiogenesis. Research has 
consistently shown that diabetes can lead to decreased sperm 
count, motility, semen volume, and abnormal sperm morphology. 
However, some studies suggest that insulin therapy can improve 
sperm content and motility, while others find that semen volume 
may or may not be affected by diabetes (45). Diabetes can also cause 
damage to sperm DNA structure, potentially leading to infertility. 
Fortunately, controlling blood glucose levels has been shown to 
restore sperm numbers and motility in diabetic animal models. 
FIGURE 2 

The pathways through which diabetes affects male fertility including oxidative stress, hormonal imbalance, impaired spermatogenesis, erectile 
dysfunction, and testicular structural damage. 
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Normal lipid metabolism is essential for spermatogenesis, and 
hyperglycemia can disrupt this process, affecting triglyceride 
hydrolysis, cholesterol esters, and steroid hormones (40). 

Hypogonadism, characterized by low testosterone levels, is 
another issue seen in diabetic men. Testosterone is crucial for 
male reproductive tissue development, sperm production, and 
overall sexual health (46, 47). Testosterone deficiency is more 
common in diabetic men, especially those over 40, and it may 
contribute to complications associated with diabetes (48). Testicular 
tissue degradation and small testes size have also been linked to low 
testosterone levels in diabetic men, impacting fertility and sexual 
function (49, 50). 
2.5 Molecular mechanisms linking glucose 
metabolism and male reproductive 
dysfunction in diabetes 

Male fertility is affected by Diabetes-induced dysregulation 
of glucose metabolism through several interconnected molecular 
pathways: 

2.5.1 Pancreatic a-amylase and intestinal a
glucosidase 

These enzymes break down complex carbs into glucose, 
inhibiting their function and lowering hyperglycemia after meals. 
Prolonged hyperglycemia encourages oxidative stress and glycation 
end products (AGEs), which harm the seminiferous epithelium, 
disrupt the function of Leydig and Sertoli cells, and fragment sperm 
DNA (51). 

2.5.2 Insulin action and insulin receptors in 
testicular tissue 

Sertoli and Leydig cells have receptors for insulin and insulin-
like growth factor-1 (IGF-1). Insulin resistance impairs testosterone 
synthesis, breaks down the blood-testis barrier, and decreases 
spermatogenesis, all of which decrease these cells’ responsiveness. 
This is partially mediated by the MAPK and PI3K/Akt pathways, 
which are implicated in cell survival and glucose uptake (52). 

2.5.3 Glucose uptake and spermatogenic support 
Spermatogenesis depends on Sertoli cells’ uptake of glucose (via 

the GLUT1 and GLUT3 transporters). The expression of the 
glucose transporter is dysregulated in diabetic conditions, which 
causes seminiferous tubules to lose energy. The maturation of germ 
cells is restricted, and apoptosis is increased (53). 
 

2.5.4 Oxidative stress and inflammation 
Prolonged hyperglycemia weakens antioxidant defenses and 

produces excessive ROS. This oxidative imbalance results in 
decreased sperm motility, mitochondrial failure, and lipid 
peroxidation in sperm membranes. Inflammatory cytokines, such 
as TNF-a and IL-6, also affect the endocrine and exocrine processes 
of the testicles (54). 
Frontiers in Endocrinology 05	
2.5.5 Hormonal imbalance 
Hypogonadotropic hypogonadism is linked to insulin 

resistance. It inhibits testosterone synthesis and Sertoli cell 
support for growing germ cells by decreasing LH and FSH 
signaling (55). 
3 Current diabetic management 
strategies and their side effects 

There are five classes of oral diabetes drugs (OHDs) available 
that function through four different pathways: 
 

a. Improving insulin secretion in the pancreas (sulfonylurea & 
non-sulfonylurea) 

b. Reducing glucose release from the liver (biguanides) 

c. Lowering gastrointestinal absorption of carbohydrates (a
glucosidase inhibitor) 

d.	 enhancing peripheral glucose disposal (biguanides and 
thiazolidinedione) (56, 57) 
All of the medications have side effects (58, 59). Though it is 
essential to achieve glucose management as soon as possible to 
reduce the impact of glucose toxic effects, it is also vital to provide 
treatment to control other associated risks, such as oxidative stress, 
dyslipidemia, mitochondrial dysfunction, vascular complications, 
and so on (Table 1) (64–67). Diabetes cannot be cured totally, but 
its severity and symptoms can be managed with medications and 
l ifestyle  changes  (68).  Thiazolidinediones,  Biguanides,  
Sulfonylureas, meglitinides, a-Glucosidase inhibitors, and 
Dipeptidyl peptidase-4 (DPP-4) inhibitors. These are some of the 
most regularly utilized pharmacological medications for the 
treatment of diabetes. These medicines are administered as the 
first line of defense to prevent the diabetic state from deteriorating 
(68, 69). 
3.1 Thiazolidinediones 

Thiazolidinediones or ‘glitazones’ are a novel class of oral 
diabetes medications. Thiazolidinediones are insulin sensitizers 
that function mostly through increasing insulin sensitivity in 
target organs such as the liver and muscles (70). Pioglitazone, 
rosiglitazone, and troglitazone are thiazolidinedione-derived 
drugs. Troglitazone became available in 1997 shortly thereafter 
removed due to toxicity to the liver (62, 71). 

3.1.1 Mode of action 
The activation of a transcription factor, peroxisome 

proliferator-activated receptor (PPAR), is the mechanism by 
which TZDs exert their anti-diabetic action. This factor affects the 
transcription of various genes involved in glucose  and lipid

metabolism and energy balance, such as fatty acyl-CoA synthase, 
malic enzyme, glucokinase, and glucose transporter 4 (GLUT4), 
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TABLE 1 A list of the current medications for type 2 diabetes mellitus, along with their disadvantages (44, 48, 60–63). 

Class Dosing Mechanism of action Physiological effects Glucose 
lowering 
efficacy 

Disadvantages Cost 

high efficacy Obesity Low price 
Hypoglycaemia 
Need for Self-Monitoring of Blood 
Glucose 
Dosage titration 

High efficacy Gastrointestinal side effects Low price 
Various potential 
contraindications, particularly 
involving renal dysfunction 
and hypoxemia 

Un assuming Digestive problems Normal price 

From moderate 
to high 

Increase in Weight 
Low blood sugar 

Normal price 

High efficacy Weight increase 
Accumulation of excess fluid in 
body tissues leads to swelling 
Heart failure 

Low price 

Midway efficacy Unestablished long-term safety 
Heighten the likelihood of 
pancreatic inflammation. 
Use of vildagliptin causes an 
increased risk of liver illness 

High price 

Low to Unestablished long-term safety High price 
high efficacy connection to urinary tract 

infections and 
perhaps genital diseases 
Osmotic diuresis may increase the 
risk of falls and hypotension. 
The risk of fractures increases 
Risk of an increase in 
diabetic ketoacidosis 

(Continued) 
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o
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0
6

 
fro

n
tie

rsin
.o
rg
and examples 

Sulfonylureas Once a day It binds to SUR1 on beta cells, closing KATP channels, Promote insulin secretion 
(1965) Or depolarizing them, and allowing calcium influx. 
Glyburide Twice a day 
Glimepiride 
Glipizide 
Gliclazide 

Biguanides Once a day AMP-activated protein kinase (AMPK) activation improves Reduce liver glucose production, improve 
(1957) twice a day intestinal glucose regulation, reduces respiratory chain insulin sensitivity, and increase Glucagon-
Metformin activity, and enhances cellular insulin signaling. like peptide-1 GLP-1 levels. 

a-Glucosidase inhibitors 
(1995) 
Miglitol 
Voglibose 
Acarobose 

Three times a 
day with meals 

Blocking the activity of a-glucosidase 
In the gut 

Prolonged glycemic response 

Meglitinides (1997) 
Repaglinide 

Taken with meals SUR1 can bind to b cells. Their mode of action is more rapid 
and short in duration than compared of sulfonylureas 

raise the secretion of insulin 

Thiazolidinediones 
(1997) 
Rosiglitazone 
Pioglitazone 

Once a day Agonists: Peroxisome proliferator-activated receptor gamma 
(PPAR-g) 

Greater insulin sensitivity 
Lower production of free fatty acids 

DPP-4 inhibitors 
(2006) 
Sitagliptin 
Saxagliptin 
Linagliptin 
Alogliptin 
Vildagliptin 

Once a day 
Or 
Twice a day 

Hinder the activity of DPP-4, and endogenous incretin 
levels increase 

Insulin production increases glucose-
dependently, while glucagon is inhibited. 

SGLT2 inhibitors Once a day In proximal renal tubules, SGLT2 activity inhibits Glucose excretion in the urine increases 
(2012) 
Dapagliflozin 
Canagliflozin 
empagliflozin 
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TABLE 1 Continued 

Class Dosing Mechanism of action Physiological effects Glucose Disadvantages Cost 
lowering 
efficacy 

Retention of hepatic glucose output Normal efficacy Fatigue High price 
Glucose disposal increases Nausea 

Dizziness 

Hepatic glucose output is possible to Normal Triglyceride levels increase High price 
decrease, and incretin secretion increases efficacy Absorption of some other drugs 

increases 
Constipation 

Glucose disposal increases High efficacy Weight increase Varying 
Hepatic glucose output lessens Edema 
Lipolysis reduces Hypoglycaemia 

Insulin production rises glucose- High efficacy Unestablished long-term safety High price 
dependently, while glucagon secretion is Pancreatitis 
inhibited Gastrointestinal issues 
decrease in excretion after eating Insertable 
enhance satiety 
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n
d
o
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o
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g
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0
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fro
n
tie

rsin
.o
rg
and examples 

dopamine-2 Once a day Hypothalamic dopamine receptors activate 
agonist (2009) 
bromocriptine 

Bile-acid sequestrant Once a day Hepatic bile salt production increases 
(2008) Or GLP1 secretion increases 
colesevelam Twice a day Liver farnesoid receptors activate 

insulin (1920s) Once a day, four Insulin receptors are directly activated 
Speedy acting (aspart, times a day 
lispro, glulisine) 
Low acting (humulin-S, 
inuman rapid, actrapid) 
Intermediary acting 
(insulin, insulin basal) 
Long-term acting 
(glargine, detemir) 

GLP-1RAs (2005) Once a day The GLP-1 receptor activates 
Liraglutide Or 
Lixisenatide Twice a day 
Albiglutide 
Dulaglutide 
Exenatide 
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among others. As a result, TZDs decrease insulin resistance (IR) in 
adipose tissue, muscle, and the liver (70, 71). 

3.1.2 Adverse effects of using thiazolidinediones 
One of the main adverse effects associated with PPAR receptor 

activation is the enhanced proliferation of peripheral adipocytes, 
which leads to increased uptake of free fatty acids. This process can 
ultimately result in weight gain and an increase in peripheral fat 
mass (72, 73). Several recent studies and analyses have indicated the 
potential role of TZD in cardiovascular events in type 2 diabetic 
patients. In this way, meta-analyses of adverse outcomes from 
controlled studies have revealed a possible link between 
thiazolidinedione use and an elevated risk of ischemic myocardial 
events in diabetes patients (74, 75). Fluid retention is another 
known side effect associated with the use of thiazolidinediones 
(TZDs). It is hypothesized that TZD-induced renal edema results 
from the activation of sodium-coupled bicarbonate reabsorption in 
the renal proximal tubules. This leads to increased salt and water 
reabsorption, ultimately causing an expansion in kidney volume 
(76). The outcomes of these studies caused disagreement as well as 
confusion about the use of TZDs in diabetic treatment methods 
(68, 71). 
 

3.2 Biguanide 

Biguanides are a pharmacological and pharmaceutical class that 
relies on the biguanidine molecule (77, 78). These chemicals were 
first isolated from the plant Galega officinalis (79, 80). Guanidine, 
the active component of Galega officinalis, was demonstrated to 
reduce glucose levels in the 1920s and was used for synthesizing 
many anti-diabetic drugs (78, 81). They are known as another type 
of insulin sensitizer, and metformin is one of the most commonly 
used medications for diabetes in this class (68, 72). Biguanides do 
not act as true hypoglycemic agents (82, 83). Thiazolidinediones 
(TZDs) lower elevated blood glucose levels in patients with non-
insulin dependent diabetes mellitus (NIDDM), but they do not 
significantly reduce blood glucose levels in non-diabetic individuals 
unless there has been prolonged fasting (84–89). Biguanides, 
compared to sulfonylureas, do not increase insulin secretion from 
p-cells; however, biguanide therapy may result in decreased insulin 
levels (89, 90). 

3.2.1 Adverse effects of biguanide 
Symptoms of the gastrointestinal tract (e.g., nausea, vomiting, 

diarrhea, and abdominal discomfort) are among the side effects 
linked with the therapeutic use of all biguanides (78, 91). Metformin 
is seldom associated with acute hepatitis and cholestasis (81, 92– 
100) Metformin has been linked to malabsorption syndromes, 
which can result in electrolyte imbalances and vitamin B12 
insufficiency (13, 81, 84–86, 90, 101–112) Diarrhea is associated 
with hypomagnesaemia, hypocalcemia, and hypokalemia (85, 104, 
105, 113). Vitamin B12 deficiency can lead to megaloblastic anemia 
and various neuropathies. The underlying causes of this deficiency 
are not fully understood but appear to be multifactorial. 
Frontiers in Endocrinology 08
Contributing factors may include alterations in gut microbiota, 
reduced gastrointestinal motility, competitive inhibition of B12 
absorption, and disruptions in calcium-dependent membrane 
transport mechanisms in the terminal ileum (106, 113). 

Lactic acidosis is an uncommon but possibly hazardous 
metformin adverse effect. The occurrence of this consequence is 
quite low: one case per 100,000 individuals receiving treatment 
(114–119). Lactic acidosis can be produced by very high metformin 
levels in blood vessels or by any circumstance that causes hypoxia or 
hepatic insufficiency, restricting the capacity of the body to break 
down lactate (120). Lactic acidosis usually arises in patients who 
have persisted in using metformin despite risks (114, 120). Renal 
insufficiency, indicated by serum creatinine levels of 1.5 mg/dL or 
higher in men and 1.4 mg/dL or higher in women, is a 
contraindication for metformin therapy. Additionally, conditions 
such as severe cardiac or pulmonary insufficiency that lead to 
reduced peripheral perfusion, lactic acidosis, liver disease, alcohol 
dependence, or the use of intramuscular contrast agents for 
radiographic imaging also represent exclusion criteria due to the 
increased risk of adverse effects, particularly lactic acidosis (80, 121). 
3.3 Sulfonylureas 

Sulfonylureas are categorized as either first-generation (e.g., 
tolbutamide and chlorpropamide) or second-generation  (e.g.,
glyburide, gliclazide, glipizide, and glimepiride) (122, 123). 
Similar to first-generation sulfonylureas (such as tolbutamide, 
acetohexamide, and chlorpropamide), second-generation 
sulfonylureas also effectively lower hyperglycemia (124, 125). 
Second-generation sulfonylureas are preferred over first-
generation agents due to their higher potency and more favorable 
safety profile. First-generation sulfonylureas are associated with a 
greater risk of adverse effects, including hypoglycemia, weight gain, 
and fluid retention, making second-generation drugs the 
recommended choice in clinical practice (126, 127). 

3.3.1 Mode of action 
Sulfonylureas act by inhibiting the ATP-sensitive K channel 

(KATP), causing the release of insulin from the cells of the pancreas 
and therefore lowering blood glucose levels (128–131). Over 90 
percent of sulfonylureas in the blood are linked to plasma proteins, 
causing interactions between drugs with salicylates, sulfonamides, 
and warfarin (123, 132). While the effectiveness of sulfonylureas 
varies, they tend to reduce A1C to a comparable extent as 
metformin, by 1.5 percentage points (117, 133). 

3.3.2 Side effects of sulfonylureas 
The primary adverse effect associated with sulfonylureas is 

hypoglycemia. Due to variations in the pharmacotherapeutic 
properties of different sulfonylurea agents, the risk of 
hypoglycemic episodes can vary significantly among them (120, 
134). The possibility of gaining weight is yet another drawback of 
sulfonylureas. Many people see an increase of at least 2 kg when 
taking these drugs (117, 135). It is also to be noted that certain 
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people with sulfonamide allergies show cross reactivity with 
sulfonylureas; thus, these treatments shouldn’t be used in patients 
with sulfa allergies. Cross-reactivity with other medicines, such as 
carbonic anhydrase inhibitors, loop diuretics, and thiazide diuretics, 
is also possible (120, 136). Sulfonylureas are also linked to an 
increased risk of cardiovascular disease (68, 137). According to 
research, while promoting the closure of pancreatic-cell KATP 
channels to boost insulin secretion, this medicine may also lead 
to the closure of cardiac KATP channels, resulting in a higher 
cardiac risk in those people (138, 139). 
3.4 Meglitinides 

Nateglinide and repaglinide are the two most common 
meglitinides (glinides) (62, 140–142). The insulinotropic drugs 
are meglitinide analogues. They were introduced in 1995 and 
were licensed for clinical use in people with T2DM in 2000. They 
are secretory substances with a faster anti-hyperglycemic activity 
and a shorter duration of action than sulfonylurea. As a result, post
prandial hyperglycemia is better managed, and the risk of late 
hypoglycemia is also decreased (143–146). 
3.4.1 Mode of action 
Meglitinides attach themselves to Sulfonylurea Receptor 1 

(SUR1’s) benzamido site on b cells (123, 147). The first 
meglitinide analogue approved for clinical use in adults with 
T2DM was repaglinide. The insulinotropic effect of repaglinide, 
similar to that of sulfonylureas, operates through ATP-dependent 
potassium (KATP) channels. Repaglinide stimulates insulin 
secretion by inhibiting KATP channels in pancreatic b-cells, 
leading to membrane depolarization and the opening of voltage-
gated calcium channels. The resulting influx of calcium increases 
intracellular calcium levels, triggering the exocytosis of insulin-
containing granules (148, 149). Nateglinide, like repaglinide, binds 
to SURs, blocking KATP channels and promoting insulin secretion, 
but its pharmacodynamic effects are distinct in several important 
respects (150, 151). 
3.4.2 Adverse effects of meglitinides 
Repaglinide and nateglinide studies have revealed different 

levels of hypoglycemia and, overall, lesser weight gain than 
sulfonylureas (149, 152–163). Although a topical test-positive 
delayed-type hypersensitivity reaction to repaglinide has been 
documented, cutaneous reactions to meglitinides seem to be 
uncommon. In this case, the fifth day after starting repaglinide, a 
maculopapular rash developed. Repaglinide was stopped, and 
systemic corticosteroids and antihistamines were administered 
instead (158, 164). Six people in a post-marketing monitoring 
study of nateglinide reported seven cutaneous side effects 
associated with treatment, including two occurrences of allergic 
dermatitis and one non-specific rash. There were 892 patients in the 
study overall (153, 165). 
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3.5 a-Glucosidase inhibitors 

In the early 1990s, acarbose was the first alpha-glucosidase 
inhibitor to be introduced. Miglitol and voglibose also became 
available later on. It is common for Asian communities to utilize 
AGIs, especially those who consume diets that are high in complex 
carbohydrates (166, 167). 

3.5.1 Mechanism of action 
In the brush border of enterocytes lining the intestinal villi, a

glucoside inhibitors (AGIs) competitively inhibit a-glucosidase 
enzymes, preventing the enzymes from cleaving disaccharides and 
oligosaccharides into monosaccharides (167–170). This process helps 
to reduce fluctuations in blood glucose levels and decrease the 
amount of insulin required during meals by slowing down the 
digestion and absorption of carbohydrates in the lower part of the 
digestive system (148, 167). Compared to controls, AGI therapy 
reduces Glucagon-like Peptide (GIP) secretion and increases 
postprandial Glucose-dependent Insulinotropic Polypeptide (GLP
1) secretion (171–173). Varying a-glucosidase enzymes have distinct 
affinities for AGIs, resulting in unique activity profiles. For example, 
acarbose shows a higher affinity for glucoamylase while miglitol is a 
more effective sucrase inhibitor (167, 174). 

3.5.2 Adverse effects of a-glucoside inhibitors 
The common gastrointestinal side effects caused by AGIs, such 

as flatulence, stomach pain, and diarrhea, may lead patients to 
discontinue their medication (123, 175). 
3.6 Dipeptidyl peptidase-4 inhibitors 

The DPP-4 inhibitors currently on the market are sitagliptin, 
vildagliptin, saxagliptin, linagliptin, and alogliptin (176, 177). Japan 
has granted licenses for two DPP-4 inhibitors, omarigliptin and 
trelagliptin (178–181). 

3.6.1 Mechanism of action 
DPP-4 inhibitors increase levels of incretin hormones in 

circulation, notably GLP-1 and GIP. The “incretin effect” refers to 
the ability of intestinal variables to increase insulin responses by 50
70% in healthy individuals following a diet (182–184). In T2DM, 
this effect is significantly reduced. When lipids and carbohydrates 
are consumed, K cells in the duodenum and jejunum release 
glucose-dependent insulinotropic polypeptide (GIP) (185–190). 
Apart from its incretin action, GIP also plays roles in 
adipogenesis and potentially b-cell proliferation, and reduces 
stomach acid output (188, 190–198). 

3.6.2 Adverse effects 
There is an uncertain safety concern over the long run, which 

may raise the possibility of pancreatitis and an increased risk of liver 
dysfunction associated with Vildagliptin (123). 
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4 Plant-based metallic nanoparticles 
in diabetes management 

As previously mentioned, the use of synthetic medicines for 
diabetes treatment is often hindered by their associated side effects 
(199, 200). Consequently, the current focus is on exploring the 
antihyperglycemic potential of medicinal plants in managing 
diabetes. According to worldwide ethnobotanical studies, 
approximately 800 plant species are employed for medicinal 
purposes in preventing diabetes (201, 202). Among these, 
scientific validation has confirmed that only 450 of these plants 
possess properties capable of lowering blood glucose levels, with 109 
of them having well-documented mechanisms of action (58, 203). 

Various treatments are also being employed in a holistic 
approach that takes into account physical, psychological, and 
spiritual aspects (204, 205). Notably, between 60% to 80% of the 
global population utilizes traditional medicines derived from 
medicinal plants to address various health conditions, including 
diabetes. There is a multitude of plants known for their anti-diabetic 
properties (206, 207). 
4.1 Preparation and characterization of 
plant-based metallic nanoparticles 

4.1.1 Synthesis methods 
Using green synthesis techniques, plant extracts serve as both 

capping and reducing agents in the synthesis of plant-based metallic 
nanoparticles (NPs). The extracts, which are high in alkaloids, 
terpenoids, phenolics, and flavonoids, are combined with metal 
precursors such as gold chloride (HAuCl4), zinc sulfate (ZnSO4), or 
silver nitrate (AgNO3) (208). The pH, temperature, and reaction 
time are all regulated during the biosynthesis, which is usually 
shown by a color shift brought on by surface plasmon resonance 
(for example, AgNPs turning from pale yellow to dark brown) For 
example, the aqueous leaf extract of Musa paradisiaca is frequently 
utilized as a stabilizing and reducing agent in the synthesis of zinc 
oxide nanoparticles (ZnONPs). The plant extract’s bioactive 
components, including flavonoids, polyphenols, and reducing 
sugars, convert Zn²+ ions to ZnO nuclei when the zinc nitrate 
hexahydrate [Zn(NO3)2·6H2O]+ precursor is introduced under 
carefully monitored conditions (usually 60–80°C, pH ~9). These 
phytochemicals also cap the developing nanoparticles as the 
reaction goes on, limiting aggregation and encouraging size 
control. A color shift (such as a yellowish-white precipitate) 
usually  signals  the  creation  of  ZnONPs,  and  UV-Vis  
spectroscopy, which shows a distinctive absorption peak at about 
360–380 nm, confirms this (209). 

Similarly, Argyria nervosa root extract is used to synthesize 
silver nanoparticles (AgNPs) by reducing Ag+ ions from silver 
nitrate (AgNO3). The phytochemicals present, particularly 
phenolics and alkaloids, donate electrons to reduce Ag+ to 
metallic Ag⁰, initiating nanoparticle nucleation. Simultaneously, 
these compounds act as capping agents, forming a protective 
layer around each nanoparticle that improves colloidal stability 
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and biocompatibility (210) (Tables 2, 3). In these green synthesis 
systems, plant-derived compounds become physically or chemically 
associated with the nanoparticle surface. For crude extracts, the 
nanoparticles serve as nano-carriers, embedding or adsorbing 
various phytochemicals in their matrix or on their surface. This 
makes it possible for several bioactives, like enzyme inhibitors, anti-
inflammatory  drugs,  and  antioxidants,  to  be  delivered  
simultaneously in a single nanoformulation (239). 

The production of gold nanoparticles (AuNPs) using extract 
from Typha capensis, which includes bioactive flavonoids and 
glycosides, is another well-researched example. The gold ion 
precursor in this method is chloroauric acid (HAuCl4). When the 
TABLE 2 Antidiabetic action of plant-based AgNPs. 

Plants 
sources 

Mechanism action Reference 

Argyeria 
nervosa 
(leaves) 

These secondary metabolites, carbohydrates, 
phenols, sterols, terpenoids, and flavonoids 
have applications in zerovalent NPs 
preparation. About 100 μg/ml caused the 70% 
inhibition of a-amylase and a
glucosidase enzymes. 

(211–214) 

Callophylum 
tomentosum 
(leaves) 

About 500 μg/ml blocks the activities of a-
amylase 18%, a-glucosidase 52%, and 
Dipeptidyl Peptidase-IV (DPPIV) 58%, by 
contribution of tannins, alkaloids, coumarins, 
glycosides, and flavonoids. 

(215, 216) 

Cantella 
asiatica 
(leaves) 

These biochemicals, carbohydrates, 
glycosides, proteins, and alkaloids contributed 
to the NPs preparation. About 200μg/ml 
enhances the glucose uptake up to 63%, 53% 
in non-enzymatic glycosylation, while 44% 
decreases the a-amylase at 1000μg/ml. 

(217, 218) 

Clausena 
anisate 
(roots) 

Alkaloids, terpenoids, and flavonoids are 
taking part. About 500μg/ml hang up 83.60% 
a-amylase and 10mM increase glucose 
uptake 69.51%. 

(219, 220) 

Eysenhardtia 
polystachya 
(barks) 

Flavonoids. Alcohol and alcoholic derivatives 
compounds intermingled in the NPs 
synthesis. It decreases blood glucose level and 
enhances the insulin secretion by INS-1 at 
10μg/ml. 

(221, 222) 

Musa 
paradisiaca 
(stem) 

Alkaloids, saponins, glycosides, and steroids 
are involved in NPs preparation. It reduces 
the glucose level 281.08–208 mg/dl, and 
enhances the insulin level 16.12μU at 50μg/ 
kg, and glycogen rises 38.51-29.42 mg/g, 
while the glycosylated hemoglobin is reduced 
to normal at 50μg/kg and elevates 
the hemoglobin. 

(223, 224) 

Solanum 
nigrum 
(leaves) 

Alkaloids, saponins, tannins, flavonoids, and 
phytosteroids are contributed from a plant 
source. About 10mg/kg reduced the blood 
glucose level from 250mg/dl- 125 mg/dl and 
maintained the body weight. 

(225, 226) 

Tephrosia 
tinctoria 
(stem) 

Flavonoids and phenols contribute to NPs 
preparation. 75μg/ml immobilized 83.52% a-
amylase and 95% a-glucosidase activities, and 
enhanced the glucose level in hemoglobin 
by 1.19%. 

(227) 
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phytochemicals are combined with the plant extract and heated to 
about 70°C, they convert Au³+ to elemental Au⁰, which starts the 
nucleation of nanoparticles. The extract’s flavonoids stabilize the 
suspended nanoparticles by attaching to the gold surface and acting 
as capping ligands in addition to reducing agents (240). 
Additionally, certain bioactive substances, like naringenin, can be 
added to these AuNPs either post-synthesis or from the same 
extract. Naringenin finds adsorption sites on the surface of the 
nanoparticles through p-p stacking interactions or hydrogen 
bonding. Consequently, the plant-derived substance with 
enhanced cellular absorption and prolonged release is delivered 
by the nanocarrier system along with the metallic therapeutic 
activity (e.g., antioxidant, anti-inflammatory from AuNPs) (241). 

4.1.2 Characterization techniques 
Analyzing the composition and functionality of synthesized 

NPs using key approaches includes: 

4.1.2.1 UV–Visible spectroscopy 
Utilized to identify the surface plasmon resonance (SPR) peaks 

characteristic of metallic nanoparticles to verify the formation of 
nanoparticles. Peaks for silver nanoparticles typically show up 
between 400 and 450 nm (242). 
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4.1.2.2 Fourier transform infrared spectroscopy 
Determines the functional groups that are involved in NP 

stabilization and reduction. This validates how phytochemicals 
from plant extracts, such as -OH, -COOH, and -NH₂, play a part 
in NP capping and surface chemistry (243). 

4.1.2.3 Dynamic light scattering 
Assesses the stability of colloidal particles in solution by 

measuring  hydrodynamic  size,  zeta  potential,  and  the  
polydispersity index (PDI) (244). 

4.1.2.4 X-ray diffraction 
Determines the NPs’ crystalline structure. Specific crystalline 

planes are represented as peaks in XRD patterns, indicating that the 
particles are metallic (245). 

4.1.2.5 Scanning and transmission electron microscopy 
Gives information on particle size distribution and morphology 

at the nanoscale. The particle shape (spherical, rod-like, etc.) that 
affects biological interactions is also revealed by TEM (246). 

4.1.2.6 Zeta potential analysis 
Evaluates the surface charge to determine the stability of 

dispersion. Zeta potentials of ±30 mV or above indicate strong 
anti-aggregation stability (247). 

4.1.3 Drug loading strategies 
From the reference to tables (2–6), plant-based metallic NPs in 

this review utilize: 

4.1.3.1 Crude extracts 
The majority of formulations comprise entire plant extracts that 

contain many phytochemical components, such as alkaloids, 
flavonoids, and tannins (from, for example, Solanum nigrum, 
Tephrosia tinctoria, and Eysenhardtia polystachya) (248). 

4.1.3.2 Isolated compounds 
Numerous studies used particular bioactive substances, 

including naringenin in AuNPs produced from Typha capensis or 
silybin from Silybum marianum (240). 

4.1.4 Administration routes and formulations 
In the preclinical studies reviewed, the following administration 

routes were commonly reported: 

4.1.4.1 Oral administration 
When it comes to administering plant-based metallic 

nanoparticles in antidiabetic models, this is the most popular 
method. As an example, ZnONPs produced from Musa 
paradisiaca were taken orally at a dose of 50 μg/kg, which 
markedly raised insulin levels and decreased blood glucose 
(Table 2). When taken orally at a dose of 10 mg/kg, NPs derived 
TABLE 3 Antidiabetic application of ZnONPs. 

Plants 
sources 

Mechanism action Reference 

Azadirachta 
indica (leaves) 

Flavonoids, phenolic compounds, saponins, 
and glycosides are involved. 100μg/ml 
concentration inactivates the a-amylase and 
a-glucosidase 85.7% and 87% respectively. 

(228, 229) 

Sonneratia 
apetala 
(leaves) 

By the conjugation of carbohydrates, 
proteins, lipids, steroids, and cardiac 
glycosides, NPs are prepared. HF-ZnONPs 
and SA-ZnONPs, 334μg/ml and 394μg/ml, 
stop the activity of a-amylase. 

(230, 231) 

Moringa 
oleifera 
(leaves) 

The mixture of proteins, flavonoids, 
glycosides, and tannins is involved. About 
100μg/ml inactive the 90% a-amylase and 
96% a-glucosidase. 

(229, 232) 

Silybum 
marianum 
(Seeds) 

Flavonoids and silybin derivative 
compounds are conjugated with these NPs. 
96-207mg/dl dose lowers the Fasting blood 
sugar while enhancing the insulin and High-
Density Lipoprotein (HDL) level. 

(233, 234) 

Urtica 
dioica (leaves) 

Palmitic acids, stearic acid, alkanes, and 
tetrachlorohydroquinone are contributed. 
HDLC and insulin level enhance 181% and 
130% respectively, while they lower the level 
of TG, TC, and FBS 39%, 17.4%, and 
51.7% respectively. 

(235, 236) 

Vaccinium 
arctostaphylos 
(flowers) 

Flavonoids, polyphenols, and anthocyanins 
are involved. It reduced the fasting blood 
glucose from 175 to 50 mg/ml but had no 
impact on insulin. 

(237, 238) 
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from Solanum nigrum extract showed a decrease in blood glucose 
and a maintenance of body weight in diabetic mice (Table 2). At 100 
μg/ml oral dosages, Moringa oleifera ZnONPs demonstrated 
substantial inhibition of a-amylase and a-glucosidase (Table 3). 

4.1.4.2 Intraperitoneal injection 
Used, especially in models of male infertility, to evaluate 

systemic effects on oxidative or hormonal markers. For example, 
when 200–1000 mg/kg of costus after AgNPs were injected 
intraperitoneally, the levels of serum testosterone, LH, and FSH 
rose (Table 4). To enhance sperm quality and antioxidant enzyme 
activity, diabetic mice were given injections of 2 mg/kg of Withania 
somnifera-derived SeNPs (Table 4). 
4.1.4.3 Other routes 
Nigella sativa-mediated AgNPs were orally administered in 

toxicity reversal studies involving hexavalent chromium 
exposure (Table 4). 
4.1.4.4 Therapeutic advantages of nanoparticle-based 
delivery 

In a study employing ZnONPs made from Moringa oleifera, 
oral treatment at 100 μg/ml inhibited a-glucosidase by 96% and a-
amylase by 90%, suggesting a potent postprandial glucose-lowering 
action with negligible liver damage (Table 3). Intraperitoneally 
administered costus after-derived AgNPs at 200 mg/kg 
significantly decreased testicular lipid peroxidation (MDA) levels 
and increased endocrine restoration with less oxidative stress, 
restoring testosterone levels from 2.1 ng/mL in diabetic controls 
to 4.5 ng/mL (Table 4). Because of their superior stability and 
targeted administration, quercetin-loaded AuNPs demonstrated a 
three-fold increase in cellular absorption in b-cells and decreased 
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cytotoxicity to liver cells at equivalent therapeutic doses when 
compared to free quercetin. 

4.1.5 Synergistic mechanisms between plant 
phytochemicals and metal nanoparticles 

Plant-mediated metal nanoparticles have synergistic 
therapeutic effects that result from the interaction of metal cores 
(such as Au, Ag, Zn, and Mn) with bioactive phytochemicals (like 
flavonoids, alkaloids, and phenolics) (208). In addition to 
improving the solubility and bioavailability of encapsulated plant 
components, metallic nanoparticles shield them against early 
degradation. To replicate natural pharmacokinetics, this permits 
sustained release. In diabetic and cancer animals, for example, 
AuNPs  loaded  with  naringenin  from  Typha  capensis  
demonstrated enhanced delivery. Metal nanoparticles (NPs) such 
as ZnO or AgNPs may reduce oxidative stress by upregulating 
endogenous antioxidant enzymes (e.g., SOD, CAT, GPx), while 
plant components frequently scavenge free radicals. By doing so, 
oxidative damage to cells decreases (240). 

For example, in diabetic mice, SeNPs derived from Withania 
somnifera increased antioxidant defense and decreased ROS, 
improving sperm quality (250). The inhibition of important 
enzymes in glucose metabolism (a-amylase, a-glucosidase, and 
DPP-IV) by both phytochemicals and metal nanoparticles can 
result in additive or synergistic hypoglycemic effects. The metal 
ion activity and polyphenolic stabilization of Moringa oleifera-
ZnONPs were responsible for the 90% and 96% inhibition of a-
amylase  and  a-glucosidase,  respectively.  Furthermore,  
phytochemicals facilitate receptor-mediated endocytosis of NPs 
by acting as biocompatible capping agents. This improves insulin 
signaling and tissue regeneration by increasing NP uptake into 
target cells (such as pancreatic b-cells and Sertoli cells) (256). For 
instance, male rats’ levels of LH, FSH, and testosterone were raised 
TABLE 4 Plant-based metallic NPs for the treatment of male infertility. 

Plant name NPs Concentration Activity Reference 

Costus afer Silver NPs from 
leaf extract 

200mg/kg- 1000 
mg/kg 

Serum levels of testosterone, LH, and FSH significantly increased (249) 

Withania 
somnifera 

Selenium NPs 2mg/kg Increased antioxidant enzyme activities and improved sperm quality (250) 

Moringa olifera Zinc Oxide NPs 10mg/kg Improve testicular damage, Apoptosis, and Steroidogenesis-Related 
Gene Dysregulation. 

(251) 

Panax ginseng Ginseng 
NPs emulsion 

125 and 250 mg/kg Improved level of testosterone (252) 

Aloe barbadensis zinc oxide NPs 5mg/kg Protective effects 
on testis histology, sperm parameters, oxidative stress markers 
Androgen production in rats treated with cisplatin 

(253) 

Nigella sativa Silver NPs 1.5 mg/kg Reduce hexavalent chromium toxicity, and toxic heavy metals cause harm to the 
reproductive system. 

(254) 

Ocimum 
tenuiflorum 

silver NPs 1.5 mg/kg fertility diagnosis (255) 

Typha capensis GoldNPs 
AuNPs 

1.5 mg/kg Prostate cancer therapy (240) 
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by Costus after-derived AgNPs. This was probably because of 
increased bioavailability and hormonal signaling through NP 
absorption (257). 

4.1.6 Structural analogies and comparative 
efficacy of plant-based actives 

The structure and functional characteristics of many active 
chemicals originating from plants are comparable to those of 
commerc i a l l y  marke t ed  medica t ions .  For  i n s t ance ,  
thiazolidinediones and flavonoids like quercetin and kaempferol 
have structural similarities and can bind to PPAR-g to increase 
insulin sensitivity (258). The same mechanism that metformin 
targets, AMPK, is also activated by berberine, and silybin from 
Silybum marianum has antioxidant and insulin-sensitizing 
properties similar to those of hepatoprotective drugs (259). In 
addition to sharing structural similarities with synthetic 
pharmaceuticals, these substances also modulate insulin signaling, 
glucose metabolism enzymes (including a-glucosidase and a-
amylase), and reproductive hormone pathways. 

Due to the synergistic effects of several phytochemicals acting 
on various targets at once, crude plant extracts frequently exhibit 
efficacy that is about equal to or even better than isolated 
substances. For example, formulations using extracts of 
Azadirachta indica and Moringa oleifera for ZnONPs showed 
over 85% inhibition of important enzymes involved in the 
digestion of glucose, which is comparable to that of common 
medications such as acarbose (260) (Table 3), whereas the extract 
from Eysenhardtia polystachya increased the release of insulin via 
INS-1 pancreatic cells (Table 2). Improved bioavailability, wider 
therapeutic coverage, and natural excipients that promote stability 
and solubility are all advantages of these multi-component systems 
(221). However, there are drawbacks to crude extracts as well, 
including unpredictability, ambiguity in composition, and 
standardization issues. Curcumin and naringenin, on the other 
hand, are single-component phytochemicals that provide superior 
control over nanoparticle formulations, promoting regulatory 
compliance and reproducibility (261). In general, plant-based 
bioactives serve as natural substitutes for synthetic medications, 
and both isolated molecules and crude extracts offer special benefits 
that can be used strategically depending on the intended therapeutic 
outcome (262). 
Frontiers in Endocrinology 13 
Delivering therapeutic agents to their target sites presents 
several challenges, including poor bioavailability, in vivo 
instability, low solubility, limited absorption, target-specific 
delivery difficulties, and suboptimal therapeutic efficacy. To 
address these limitations, advanced targeted drug delivery systems 
have been developed. Among these, nanotechnology has emerged as 
a promising interdisciplinary approach, offering cost-effective and 
innovative solutions for precise drug delivery (263). In particular, 
metal nanoparticles (NPs) have gained significant attention due to 
their wide-ranging applications in medicine, biology, and physics, 
making them valuable tools for enhancing the efficiency and 
specificity of therapeutic interventions (263, 264). The use of 
plant-based metallic NPs in diabetes treatment offers a promising 
approach for the precise delivery of therapeutic compounds 
(Table 2). Derived from natural sources, these NPs are 
biocompatible and can be engineered to encapsulate insulin, 
antidiabetic medications, and plant-derived bioactive compounds. 
This allows for sustained and targeted delivery, mimicking the 
body’s insulin release patterns, regulating blood glucose levels, 
and potentially reducing the dosage needed. Additionally, these 
NPs can help mitigate diabetes-related inflammation and oxidative 
stress,  protect  against  complications,  and  enhance  the  
bioavailability of oral medications (265). These phytogenic 
nanoparticles offer various advantages compared to synthetic 
antidiabetic drug (Table 5). 

Utilizing Nigella sativa plant extract, Alkhalaf et al. (276) 
Assessed the green prepared Ag NPs for diabetic neuropathy. A 
comparison between diabetic neuropathy-induced and stable 
control groups revealed a significant increase in blood glucose 
levels, advanced glycation end products (AGEs), and aldose 
reductase activity, accompanied by a marked reduction in insulin 
levels. Additionally, inflammatory markers were significantly 
elevated in the diabetic neuropathy group. Notably, nitrotyrosine 
levels were substantially lower, suggesting a notable alteration in the 
oxidative state. Gene expression analysis further demonstrated a 
significant upregulation of nerve growth factor (NGF) and a 
downregulation of brain Tyrosine Kinase Receptor A (TrkA) in 
individuals with diabetic neuropathy compared to healthy controls. 
Various therapeutic interventions targeting diabetic neuropathy 
have shown significant improvements across all evaluated 
biomarkers (276). 
TABLE 5 Comparative analysis of synthetic anti-diabetic drugs vs. plant-based metallic NPs. 

Measures Synthetic drugs References Plant-derived nanoparticles References 

Potency 1.8% HbA1c levels dropped 
(SGLT2 inhibitors) 

(266) 89% a-amylase inhibition by Moringa oleifera
derived ZnONPs. 

(267) 

Onset 30–60 min effect of GLP-1 RAs. (268) 12 min glucose reduction by Sargassum-derived AuNPs. (269) 

Adverse effects 4.2% genital infections with SGLT2i. (270) Renal clearance issues with AgNPs >20 nm (271) 

Expense More expensive (272) Cost-effective for optimized green synthesis. (273) 

Process SGLT2 activity inhibition (273, 274) Simultaneous activation of a-amylase and GLUT4 (43) 

Fertility 
Outcome 

Potential sperm DNA damage (250) 40% motility increase with SeNPs. (275) 
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Cheng et al. (277) conducted a study involving the 
manufacturing of Ramulus Mori extract loaded on polyacrylic 
Gold nanoparticles (AuNPs) as an antidiabetic agent, specifically 
gestational diabetes mellitus nursing (GDM). Microscopic 
examination of the livers in diabetic mother rats revealed 
characteristic alterations in cell layers. However, administering Au 
NPs at the maternal stage significantly improved. Biochemical 
analysis indicated that Au–PAA–NPs contributed to the 
amelioration  of  alterations  in  maternal  serum  glucose  
concentration. Govindan et al. (278) created eco-friendly Zn
doped Catharanthus Roseus plants, aiming to enhance anti-
diabetic properties through inhibiting alpha amylase activity. 

A recent study revealed that Allium cepa extract-prepared NPs 
effectively suppressed the activity of a-amylase and a-glucosidase 
enzymes. Since a-amylase plays a crucial role in carbohydrate 
metabolism, inhibiting its activity is considered a promising 
strategy to lower blood sugar levels. Additionally, these amylase 
inhibitors act to reduce the absorption of dietary starch in the body. 
Likewise, a-glucosidase is a key enzyme in carbohydrate 
metabolism, facilitating the breakdown of disaccharides and 
oligosaccharides into monosaccharides (279, 280). Furthermore, 
NPs derived from plants and coated with phytochemicals, and other 
vital bioactive compounds sourced from plant secondary 
metabolites may find application in treating foot or limb 
infections in individuals with diabetes (281, 282). 

Silver NPs derived from Argyreia nervosa and Punica granatum 
(211, 283), and marine algae Colpomenia sinuosa (284, 285) Have 
been documented for their antidiabetic properties. They exhibited a 
dose-dependent inhibition of a-amylase and a-glucosidase 
activities, as compared to the crude plant extracts. Moreover, 
silver nanoparticles (AgNPs) derived from the stem section of 
Tephrosia tinctoria were found to inhibit the activities of a-
amylase and a-glucosidase, while also enhancing glucose uptake 
in human red blood cells (286, 287). 

Shanker et al. (288) Reported that Zinc oxide nanoparticles 
(ZnONPs) derived from different plant sources such as Momordica 
charantia, Azadirachta indica, Hibiscus rosa-sinensis, Murraya 
koenigii, Moringa oleifera, and  Tamarindus indica have 
antidiabetic potential by significantly inhibiting the activities of a-
amylase and a-glucosidase(Table 3). The anti-diabetic properties of 
ZnONPs prepared from the leaves of the insulin plant (Costus 
igneus), by diminished the activities of a-amylase and a
glucosidase, were reported by (282). Gold NPs (AuNPs) obtained 
from Cassia auriculata (289) And Sargassum swertzii (Dhas et al., 
2016) demonstrated antihyperglycemic action in rats after induced 
diabetes. Gold NPs have been found the application biocompatible, 
nontoxic, and easily interact with a variety of biomolecules such as 
amino acids, proteins, enzymes, and DNA, also playing a vital role 
in their immobilization (Table 6). 

Plant-based metallic NPs have been found to heighten 
antimicrobial resistance in diabetic patients even at lower 
concentrations, exhibiting lower toxicity to the human body 
(Table 7). These SNPs induce bacterial cell damage through two 
mechanisms. Firstly, they adhere to the bacterial cell wall, 
disrupting  permeability  and  cellular  respiration  (298).  
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Additionally, they cause damage by interacting with phosphorus-
and sulfur-containing compounds like DNA and proteins (299). 
Based on the Streptomyces achromogenes bacterium, Streptozotocin 
(STZ) serves as a broad-spectrum antibiotic. Additionally, it 
functions as a pancreatic beta-cell–specific cytotoxin, making it a 
commonly used inducer of diabetes in rat models (280). 
TABLE 6 Antidiabetic application of AuNPs. 

Plants 
sources 

Mechanism action Reference 

Cassia 
auriculate 
(Flowers) 

Proponic acid conjugate with NPs, and 0.5μg/ 
kg, balances the cholesterol, insulin, and body 
weight in diabetic induced rodents. 

(289, 290) 

Cassia 
fistula 
(stem 
bark) 

Flavonoids, phenolics, and anthroquinones are 
involved in NPs preparation. It enhances the 
protein content, globulin, and serum albumin 
while reducing the alanine, aspartate 
transaminase, and alkaline phosphatase. 

(291, 292) 

Gymnema 
sylvestre 
(leaves) 

Alkaloids, flavonoids, and terpenoids stabilized 
them and reduced the level of cholesterol, 
triglycerides, and LDL-C, and gave rise to HDL
C in rodents. 

(293, 294) 

Saraca 
asoca 

Carbohydrates, proteins, saponins, and 
flavonoids make the zerovalent NPs. It 
immobilized the a-amylase enzyme. 

(295, 296) 

Sargassum 
swartzii 

Alkaloids, flavonoids, steroids, and phenolic 
groups stabilized them. It enhances the insulin 
and HDL-C, and reduces FBS, TG, LDL-C, TC, 
and hemoglobin. 

(268, 297) 
TABLE 7 Antidiabetic application of various phyto-NPs. 

Plants 
source 

Metal 
source 

Mechanism action Reference 

Gnidia 
glauca 
(leaves) 

Copper Phenolics and flavonoids act as 
carriers. 100μg/ml 
concentration caused 88.6% 
immobilization of 
a-glucosidase. 

(300) 

Ocimum 
basilicum 
(flower) 

Au-
Ag 
composites 

Flavonoids, phenolics, 
terpenes, and cyclohexane are 
involved in zerovalent NPs 
preparation. It reduced the 
activity of a-amylase by 70% 
and a-glucosidase by 
78.62%, respectively. 

(280, 
301, 302) 

Stevia 
rebaudiana 
(leaves) 

Chitosan Diterpenes glycosides are 
involved in NPs preparation. It 
normalized the biochemical 
assay and reduced the blood 
glucose level by 
around 167.2%. 

(303) 

Zanthoxylum 
armatum 
(Fruits) 

Pd
rGO 
composite 

Sterols, alkaloids, amino acids, 
glycosides, fatty acids, and 
benzenoids are involved in 
NPs synthesis. 0.0218μg/ml 
caused immobilization of a
glucosidase enzyme activity. 

(304) 
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STZ elevates malondialdehyde (MDA) and nitric oxide (NO) 
levels while reducing the antioxidant capabilities of catalase (CAT), 
superoxide dismutase (SOD), GR, and glutathione peroxidase 
(GPx) in rodents. It utilizes specific receptors such as glucose 
transporter-2 (GLUT 2) receptors, competing with glucose 
molecules and leading to AKt phosphorylation, also referred to as 
protein kinase B. Moreover, STZ triggers apoptosis and cytotoxicity 
by elevating reactive oxygen species (ROS) and nitric oxide synthase 
production. It instigates oxidative stress, resulting in lowers 
testosterone levels, mitochondrial breakage, and DNA destruction 
through diminishing the antioxidant capacity of CAT, SOD, and 
other factors. Eventually resulting in the demise of cells. Through 
the utilization of receptor-mediated endocytosis for internalization, 
phyto-fabricated metallic NPs reduce the generation of ROS and 
nitric oxide synthase by boosting the antioxidant capacity of CAT, 
POD, serum testosterone, and lipid levels in STZ-treated 
rodents (305). 

Furthermore, the synthesis of metallic NPs from plant extracts 
adds another dimension to the therapeutic potential of these natural 
remedies. NPs exhibit diverse shapes and sizes, which can influence 
their pharmacokinetics, biodistribution, and interactions with 
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biological systems. For instance, NPs with smaller sizes may have 
enhanced cellular uptake and bioavailability compared to larger 
particles. Additionally, their unique shapes can affect their stability, 
surface area, and binding affinity to target molecules. 

When metallic NPs derived from plant extracts are used as 
antidiabetic agents, their distinct properties contribute to their 
efficacy through multiple mechanisms. These mechanisms may 
include modulating insulin sensitivity, enhancing glucose uptake 
by cells, inhibiting carbohydrate-digesting enzymes, and protecting 
pancreatic beta cells from oxidative stress. The specific combination 
of phytochemicals encapsulated within NPs, along with their size 
and shape characteristics, determines their overall impact on 
different regulatory pathways involved in diabetes management 
(Figure 3). 
5 Plant-based metallic NPs for the 
treatment of male infertility 

The use of plant-based metallic NPs for the treatment of 
diabetes-induced male infertility offers numerous potential 
FIGURE 3 

Anti-diabetic activity of plant-based metal NPs: The therapeutic target of monomeric plant peptidase IV (DPPIV), which is implicated in glucose 
regulation, is MNPs coated with plant metabolites in type 2 diabetes. When glucose or other nutrients are consumed, the intestine secretes two 
main incretin hormones that trigger the pancreatic b cells to secrete insulin: gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). 
MNPs cause the serine protease enzyme DPPIV to be inhibited, as well as GLP-1 and GIP, which in turn causes an increase in the amount of insulin 
secreted by pancreatic b-cells. By inhibiting the PTP-1B enzyme on the ER membrane, MNPs stimulate insulin signaling pathways, which in turn 
cause adipocytes and muscle cells to absorb glucose. MNPs decrease the release of glucose by inhibiting the a-amylase and a-glucosidase 
enzymes. 
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advantages. They can be customized to deliver bioactive 
compounds to the male reproductive system, potentially 
enhancing sperm quality and motility. These NPs may also 
address inflammation associated with diabetes-induced male 
infertility. Furthermore, the encapsulation of plant-derived 
compounds can help regulate blood sugar levels, indirectly 
improving fertility and reducing side effects (306). 

With a prevalence ranging from 2.5% to 12%, male infertility 
impacts more than 30 million men globally. It stands as the primary 
cause in 20%-30% of cases and contributes significantly to half of all 
instances of infertility (307–309). The key determinants of male 
fertility, including sperm count, quality, motility, and morphology, 
play crucial roles, and deviations in any of these factors can result in 
infertility (310). A substantial proportion, up to 90%, of infertile 
couples contend with issues related to low sperm count and/or poor 
sperm quality (257). Several factors, such as testicular development, 
reproductive system diseases, elevated scrotal temperature, immune 
system and endocrine disorders, as well as lifestyle choices, 
environmental conditions, and nutritional factors, have been 
identified as detrimental to sperm parameters, contributing to 
male infertility (251). 

A significant proportion of male infertility cases remain 
idiopathic, highlighting the ongoing difficulty in determining 
definitive underlying causes. In such cases, the absence of a 
clearly defined etiology limits the availability of targeted 
pharmacological treatments. As a result, clinicians often resort to 
various empirical strategies aimed at stimulating spermatogenesis, 
which frequently produce inconsistent and non-standardized 
outcomes. In some countries, the off-label use of selective 
estrogen receptor modulators (SERMs), such as tamoxifen and 
clomiphene citrate, has been explored as a potential therapeutic 
option for managing male infertility (311). However, it is 
noteworthy that some drugs commonly used in this context have 
been linked to side effects that may impact male fertility. Within the 
realm of traditional medicine, plant-based preparations, including 
decoctions, concoctions, macerations, or infusions, are frequently 
employed to address a broad spectrum of ailments. Some of these 
botanical remedies are specifically utilized in connection with male 
reproductive health issues, acknowledging the global significance of 
these concerns as a public health and social challenge (312). 

In recent decades, nanotechnology has emerged as a promising 
avenue for addressing infertility. NPs, characterized by their 
extremely small size (one billionth part of a meter - 10^-9), offer 
innovative solutions. While the chemical method of nanoparticle 
synthesis poses potential harm to human health and the 
environment, the biological method stands out as an eco-friendly, 
cost-effective, and reliable alternative. Nanostructures find diverse 
applications in gene delivery, tissue engineering, drug delivery, 
biological labeling, protein tracing, pathogen detection, cancer 
therapy, DNA structure analysis, and serve as contrast agents in 
magnetic resonance imaging (MRI) and molecular sensing. The 
green synthesis approach, employing plant extracts, presents 
notable advantages, including simplicity, cost-effectiveness, 
environmental friendliness, and reliability (249). 
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In a recent study by Egbiremhon et al. (313), the focus was on 
evaluating the impact of Costus afer-AgNPs extracts on male 
reproductive hormones in rats. The primary aim was to investigate 
the effects on testosterone, luteinizing hormone (LH), and follicle-
stimulating hormone (FSH). The experimental groups, administered 
varying doses of 200mg, 400mg, 600mg, 800mg, and 1000mg of Costus 
afer-AgNPs extract per kilogram of body weight, demonstrated a 
significant elevation in serum levels of testosterone, LH, and FSH 
compared to the control group (P < 0.05). Remarkably, Costus after-
AgNPs not only sustained but also exhibited the potential to augment 
the concentrations of these crucial reproductive hormones. 

In their study, Ali et al. (250) Utilized a secure and non
hazardous approach to synthesize selenium nanoparticles (Se NPs) 
with the aqueous extract of Withania somnifera roots. The 
investigation focused on evaluating Se NPs’ potential to enhance 
antioxidant enzyme function and mitigate DNA damage in sperm, 
specifically in STZ-induced diabetic mice. The results demonstrated 
that Se NPs treatment increased antioxidant enzyme activities, 
improved sperm quality, and stabilized ROS levels in diabetic mice. 
The green synthesis method using plant extracts emerged as a secure 
means of producing Se NPs, with Se NPs exhibiting greater benefits 
compared to both inorganic and organic selenium counterparts. 

Mostafa-Hedeab et al. (251) Conducted an assessment of the 
potential protective role of zinc oxide NPs synthesized via a green 
method using Moringa oleifera leaf extract (MO-ZNPs) against 
acrylamide (ACR)-induced reproductive dysfunctions in male rats. 
The results conclusively demonstrated the protective impact of 
MO-ZNPs, shielding male rats from ACR-induced reproductive 
toxicity. This effect was attributed to the suppression of oxidative 
injury  and  apoptosis,  along  with  an  augmentation  in  
steroidogenesis and sex hormones. In summary, MO-ZNPs 
emerged as a valuable intervention to mitigate the adverse 
reproductive effects induced by ACR in male rats. 

In their 2019 study, Kamel et al. (252) Addressed the clinically 
significant testicular toxicity associated with methotrexate (MTX). 
While previous research indicated ginseng’s potential to stimulate 
spermatogenesis and prevent chemotherapy-induced testicular 
injury, the study focused on formulating ginseng into NPs due to 
its low bioavailability. With limited available data on the protective 
effects of ginseng or its NPs against MTX-induced testicular 
toxicity, the findings of this study suggest that both ginseng and 
ginseng NPs protect against MTX-induced testicular toxicity in rats. 
This protective effect is attributed to the inhibition of MTX-induced 
testicular apoptosis, with ginseng NPs exhibiting a superior 
protective effect compared to ginseng at the given doses. 

In their 2023 study, Nauroze et al. (254) aimed to investigate the 
adverse effects on the reproductive system induced by hexavalent 
chromium (Cr (VI)) and explore potential ameliorative effects using 
Nigella sativa and Nigella sativa-mediated silver NPs (AgNP) in 
male mice (Mus musculus). Clomiphene citrate, a known infertility 
medication, served as a positive control. The primary objective was 
to assess the ameliorative potential of orally administered 
substances, including 50 mg/kg body weight clomiphene citrate 
(control), chemically synthesized AgNP, Nigella sativa seed 
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extract, and Nigella sativa-mediated AgNP, against the toxic effects 
of Cr (VI) induced by oral administration of K2Cr2O7 at a dose of 
1.5 mg/kg body weight over eight weeks. The administration of 
Nigella sativa and Nigella sativa-mediated AgNPs demonstrated a 
reduction in toxicity. 

The study by Jha et al. (255) Delves into nanocarrier-mediated 
targeted delivery and biosensing in reproductive health care. It 
specifically highlights the encapsulation of silver NPs (AgNPs) from 
Ocimum tenuiflorum within multiwalled carbon nanotubes 
(MWCNTs). This approach demonstrates the composite’s efficacy 
in targeting the intracellular region of sperm cells, suggesting its 
potential applications in biosensing-based infertility diagnosis. The 
investigation also confirms the binding and targetability of AgNP to 
the sperm nucleus, supported by assessments of DNA 
fragmentation and morphological examinations. The enhanced 
targeting efficiency and biosensing capabilities position the AgNP-
MWCNT composite as a promising candidate for fertility 
diagnosis applications. 

In their 2023 study, Pearce et al. (240) Explore the biomedical 
applications of green nanotechnology in addressing the challenges 
associated with the clinical use of naringenin, a flavone recognized 
for its emerging anti-cancer properties. Naringenin is naturally 
found in Typha capensis, a South African plant used in traditional 
medicine. Despite promising in vitro results, the study addresses 
limitations such as poor oral bioavailability and rapid metabolism. 
The research focuses on a novel drug delivery approach, reporting 
the successful synthesis of self-stabilized gold NPs (AuNPs) derived 
from naringenin. This innovation introduces an effective drug 
delivery tool with anticipated applications in prostate cancer 
treatment, aiming to enhance the delivery of anticancer 
therapeutics, particularly naringenin. 

In a study, Majd et al. (253) Address the adverse effects of 
cisplatin (CP) on male reproductive tissues during cancer 
treatment. While the potential benefits of zinc oxide NPs (ZnO 
NPs) in cancer therapy have been extensively explored, limited data 
exists on the protective effects of green ZnO NPs against CP-
induced male reproductive dysfunctions. The research involved 
comprehensive analyses, including testis histology, sperm 
parameters, oxidative stress markers, testosterone concentration, 
and the expression of genes related to steroidogenesis in different 
experimental groups. The findings indicate that green ZnO NPs 
exhibit notable protective effects, mitigating testis tissue damage 
and epididymal sperm disorders induced by CP. Across various 
factors, green ZnO NPs demonstrated a more potent protective 
effect compared to other forms of ZnO, suggesting their potential in 
attenuating CP-induced male reproductive dysfunctions (Table 4). 
6 Challenges and considerations 

Use of phytogenic metal NPs for treating diabetes and male 
infertility presents several challenges and considerations, 
particularly regarding safety and toxicity. Plant-based metal NPs 
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must demonstrate biocompatibility to prevent eliciting immune 
responses or adverse reactions within the body, which could 
potentially lead to inflammation or tissue damage. 
6.1 Unresolved toxicity profiles 

While green-synthesized nanoparticles have demonstrated 
significant therapeutic potential in laboratory-based research, 
their unverified toxicological patterns remain a significant risk. 
Previous studies suggested that such nanoparticles can be 
involved in cytotoxicity, oxidative stress, and genotoxic alterations 
within biological systems (314). These nano-formulations have 
been associated with disruption of cellular architecture, metabolic 
imbalances, and induction of necrosis (315). Prolonged exposure 
and systemic accumulation can lead to chronic toxicity, 
necessitating comprehensive evaluations through longitudinal 
studies  (314).  As  indicated  by  research  findings  that  
approximately 60% of the administered (AgNPs) accumulated in 
the liver and spleen of rodents within 28 days (316). Likewise, zinc 
oxide nanoparticles (ZnONPs) at doses higher than 50 mg/kg were 
found to induce oxidative stress in the testes of diabetic rats (251). 

Assessing the long-term safety of phytogenic NPs is essential, 
particularly in chronic conditions such as diabetes and male 
infertility, where prolonged treatment may be necessary. 
Conducting longitudinal studies becomes essential to thoroughly 
evaluate any potential cumulative effects and chronic toxicity that 
may arise from prolonged exposure to these NPs. Understanding the 
interaction of phytogenic NPs with biological systems is essential for 
predicting their effects and potential toxicity. This includes studying 
their pharmacokinetics, biodistribution, metabolism, and excretion 
pathways. Phytogenic NPs are typically derived from plant-based 
compounds, which may have their safety profiles and toxicity 
concerns. Some phytochemicals may exhibit dose-dependent 
toxicity or interactions with medications. Assessing their potential 
to induce cytotoxicity, genotoxicity, or immunotoxicity is crucial. 
While phytogenic NPs hold promises for treating diabetes and male 
infertility, addressing safety and toxicity considerations is paramount 
for their successful clinical translation. 
6.2 Lack of standardized synthesis 
protocols 

Green synthesized formulation of nanoparticles utilizes diverse 
techniques notably eco-friendly synthesis routes involving botanical 
extracts. Developing standardized, reproducible, and scalable 
synthesis protocols is essential to achieve uniformity and 
reliability in therapeutic applications (317). 

However, the field at the current stage lacks standardized 
production (317, 318). Factors such as plant species, extraction 
methods, climate, and reaction conditions can significantly affect the 
properties and efficacy of the nanoparticles. Aspects like plant 
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taxonomy, extraction techniques, climate, and reaction parameters 
highly influence the properties and effectiveness of the resulting 
nanoparticles (318). Natural inconsistencies in raw materials further 
obstructed the standardization of plant-derived nanoparticles. For 
instance, shifts in climatic patterns alter the phenolic concentrations 
in Argyreia nervosa leaf extracts, thereby affecting the efficiency of 
AgNP biosynthesis (212). To validate reproducibility, protocols must 
include characterization via dynamic light scattering (DLS) and 
Fourier-transform infrared spectroscopy (FTIR) to confirm stability 
and surface functionalization of nanoparticles. 
6.3 Insufficient human trial data 

Although experimental research shows the potential of plant-
derived nanoparticles in addressing diabetes and male infertility, 
verification from human trials remains limited (319). Most 
experimental work has relied on in vitro or animal models, 
restricting it to directly applying these results to human treatment 
without strong clinical validation (19). Comprehensive human 
studies are important for exploring how these nanoparticles 
behave in the body, including their distribution, absorption, 
metabolism, and possible long-term effects (319). 

Robust preclinical and clinical studies are needed to evaluate 
their efficacy, safety, and long-term effects in patients. Furthermore, 
the personalized design of plant-based metallic NPs has the 
potential to significantly advance precision medicine techniques 
for the treatment of male infertility and diabetes. Utilizing the 
special advantages of plant-based substances and customizing 
nanoparticle compositions to match the specific needs of each 
patient, personalized NPs present a viable way to enhance 
therapeutic results while lowering risks and enhancing patient 
safety and satisfaction. 
7 Conclusion 

In conclusion, diabetes mellitus poses a substantial threat to 
male reproductive health, affecting critical functions such as 
ejaculation, erectile performance, reproductive organ integrity, 
and overall semen quality. While conventional synthetic anti-
diabetic medications are widely used, their associated side effects 
and limitations underscore the urgent need for safer and more 
effective alternative therapies. Among emerging solutions, plant-
derived metallic nanoparticles (NPs) have shown promising 
antidiabetic potential. These NPs have demonstrated the ability to 
modulate key regulatory pathways, including the inhibition of 
pancreatic a-amylase and intestinal a-glucosidase, enhancement 
of insulin activity, and improved glucose uptake. Such 
advancements offer considerable promise in addressing the 
complex interplay between diabetes and male infertility. Although 
preclinical studies have yielded encouraging results, clinical 
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validation through Phase I/II trials is essential to confirm their 
safety and efficacy in humans. One promising strategy involves the 
repurposing of FDA-approved phytochemicals such as curcumin 
formulated into gold nanoparticles (AuNPs), which may streamline 
the regulatory approval process. To successfully transition these 
therapies from the laboratory to widespread clinical use, strong 
collaboration between nanotechnologists and healthcare 
professionals is crucial. Furthermore, the development of 
personalized, plant-based nanoparticle formulations represents a 
forward-thinking approach in precision medicine, offering tailored 
treatments for individuals affected by diabetes and infertility. 
Ultimately, these innovations hold the potential to significantly 
enhance human health and quality of life. While this review focuses 
on male infertility associated with diabetes mellitus due to its high 
prevalence and the abundance of relevant studies, it is important to 
note that diabetes also significantly affects female reproductive 
health, including menstrual irregularities, polycystic ovary 
syndrome (PCOS), and reduced fertility. Future research should 
explore the potential of plant-based metallic nanoparticles in 
addressing diabetes-related female reproductive disorders. 
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