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Background:Medication adherence plays a crucial role in determining the health

outcomes of patients, particularly those with chronic conditions like type 2

diabetes. Despite its significance, there is limited evidence regarding the use of

machine learning (ML) algorithms to predict medication adherence within the

Ethiopian population. The primary objective of this study was to develop and

evaluate ML models designed to classify and monitor medication adherence

levels among patients with type 2 diabetes in Ethiopia, to improve patient care

and health outcomes.

Methods: Using a random sampling technique in a cross-sectional study, we

obtained data from 403 patients with type 2 diabetes at the University of Gondar

Comprehensive Specialized Hospital (UoGCSH), excluding 13 subjects who were

unable to respond and 6 with incomplete data from an initial cohort of 422.

Medication adherence was assessed using the General Medication Adherence

Scale (GMAS), an eleven-item Likert scale questionnaire. The responses served as

features to train and test machine learning (ML) models. To address data

imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was

applied. The dataset was split using stratified K-fold cross-validation to

preserve the distribution of adherence levels. Eight widely used ML algorithms

were employed to develop the models, and their performance was evaluated

using metrics such as accuracy, precision, recall, and F1 score. The best-

performing model was subsequently deployed for further analysis.

Results: Out of 422 enrolled patients, 403 data samples were collected, with 11

features extracted from each respondent. To mitigate potential class imbalance,

the dataset was increased to 620 samples using the Synthetic Minority Over-

sampling Technique (SMOTE). Machine learning models including Logistic

Regression (LR), Support Vector Machine (SVM), K Nearest Neighbor (KNN),

Decision Tree (DT), Random Forest (RF), Gradient Boost Classifier (GBC),

Multilayer Perceptron (MLP), and 1D Convolutional Neural Network (1DCNN)

were developed and evaluated. Although the performance differences among

themodels were subtle (within a range of 0.001), the SVM classifier outperformed
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the others, achieving a recall of 0.9979 and an AUC of 0.9998. Consequently, the

SVM model was selected for deployment to monitor and detect patients’

medication adherence levels, enabling timely interventions to improve

patient outcomes.

Conclusions: This study highlights a variety of machine learning (ML) models that

can be effectively used to monitor and classify medication adherence in diabetic

patients in Ethiopia. However, to fully realize the potential impact of digital health

applications, further studies that include patients from diverse settings are

necessary. Such research could enhance the generalizability of these models

and provide insights into the broader applicability of digital tools for improving

medication adherence and patient outcomes in varying healthcare contexts.
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Introduction

Non-adherence to medication significantly affects patient health

outcomes and increases healthcare costs, particularly for those with

diabetes, a prevalent chronic condition (1–4). Non-adherence with

medications affects glycemic control, which in turn contributes to a

significant proportion of hospitalizations, deaths, and expenditures

related to drugs on higher healthcare system costs (5–11). Given

that diabetes is a major public health threat expected to affect 783

million people by 2045, ensuring medication adherence is

crucial (12).

Persistent long-term medication adherence is crucial for

effective disease management in patients with diabetes. However,

evidence indicates that a significant proportion of diabetes patients

fail to adhere to their prescribed medications. In developed nations,

up to 50% of patients report low adherence to long-term

medications, and this issue is even more pronounced in low- and

middle-income countries, where factors such as limited access to

healthcare, financial constraints, and cultural barriers further

exacerbate the problem. Addressing this challenge is essential to

improving patient outcomes globally (13).

Studies worldwide have shown that medication nonadherence

in patients with diabetes ranges from 6.3% to 87% (14–18).

Similarly, studies conducted in Ethiopia also showed that the rate

of drug nonadherence ranged from 41.5-76.9% (5, 19–26). The

pooled prevalence of nonadherence to medications has also been

reported to be high in meta-analysis studies (27, 28). These findings

highlight the challenges associated with medication adherence and

suggest that implementing an alarm system to monitor medication

adherence could be a valuable strategy. Traditionally, predicting

medication adherence has relied on static and group-based factors,

such as medication tolerability, diagnosis, duration of treatment,

and demographic information (29, 30). However, adherence can be

influenced by multiple factors, including logistical issues such as
02
forgetfulness, complex medication regimens, complications with

prescription refills, side effects, adverse effects, lack of insurance

coverage, and limited financial resources (5, 31, 32).

Assessing medication adherence is crucial for ensuring optimal

patient outcomes, yet directly identifying adherence levels can be

challenging for healthcare providers. Physicians often rely on

methods such as self-reporting or pill counts, which may not

accurately reflect a patient’s true adherence. This gap highlights

the need for more reliable methods to detect nonadherence and take

appropriate action. Achieving a precise and cost-effective

assessment remains a significant challenge. However, leveraging

assistive technologies, particularly machine learning (ML) models,

could enhance early detection of nonadherence. By analyzing data

from various sources, these models can provide healthcare

providers with actionable insights, helping them allocate

resources more effectively and improve patient care (33).

Research demonstrates that health data can provide ML models

with valuable information for individual healthcare evaluation and

analysis (34). ML models have proven especially useful for data

analysis, prediction, and the detection of chronic conditions and

related complications such as diabetes (35–38). In the context of

chronic diseases, adherence is often measured using statistical

methods (39). However, with the growing volume of healthcare

data, predictive models based on ML techniques are increasingly

utilized. Compared to traditional statistical methods, ML

approaches offer distinct advantages, including the ability to

capture nonlinear relationships, reduced bias through automated

learning, and greater flexibility in preventing overfitting (40, 41).

Unlike traditional methods, which rely on predefined

instructions, ML models are trained using real-world data. These

models learn to map features to outcomes through algorithms,

enabling them to generalize knowledge and make accurate

predictions for new, unseen inputs (42). This paradigm shift

toward ML applications has transformed chronic disease
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management, introducing personalized, data-driven precision care

in place of traditional strategies.

Despite the increasing significance of machine learning (ML) in

healthcare, our comprehensive literature review found no

documented evidence of its application in assessing, monitoring, or

collecting data on medication adherence among individuals with

diabetes in the Ethiopian population. To address this gap, the present

study developed and evaluated ML models designed to classify,

monitor, and record medication adherence levels in patients with

type 2 diabetes in Ethiopia. These findings contribute to the growing

body of knowledge on technological solutions for predicting

medication adherence, particularly within the Ethiopian context.

Additionally, they provide a foundation for future research, offering

insights into effective ML-based methods for improving patient

outcomes and advancing healthcare practices in Ethiopia.
Methods

Study design, setting, and participants

A cross-sectional study design was used to collect data on

medication adherence among patients with type 2 diabetes who

attended the chronic care follow-up at the University of Gondar

Comprehensive Specialized Hospital (UoGCSH) between February

and May 2023. The study included adults (aged ≥ 18 years) who had

been receiving diabetes medications for at least 3 months and were

able to respond to the interview. The three months were chosen

because it provides a sufficient time frame to assess medication

adherence reliably, as it captures habitual patterns and allows

treatment regimens for chronic conditions like diabetes to

stabilize. This duration is commonly used in clinical studies and

guidelines, offering a balance between obtaining meaningful data

and enabling timely interventions. Exclusion criteria included

patients with severe or acute illnesses requiring emergency

treatment, individuals with severe neurological or psychiatric

conditions who could not communicate effectively, pregnant

women, and patients with incomplete data. This approach

ensured that the study focused on individuals who could provide

reliable information about their medication adherence.

The sample size was determined using the single mean

proportion formula: n = p(1-p) Z²/d², with the following

assumptions: a predicted response distribution for medication

adherence using ML (P = 0.5), a 95% confidence interval, and a

5% margin of error (d = 0.05), yielding a sample size of 385.

Considering a 10% non-response rate, the final study enrolled 422

participants. Using the medical record list as a sampling frame,

participants were selected through simple random sampling and a

lottery method. Signed informed consent was obtained from all

participants, indicating their agreement to allow the use of their

questionnaire responses and medical records for research purposes.

Of the 422 participants, 13 were excluded due to their inability to

respond to the interview, and 6 were excluded due to missing data

in the medication adherence measurement items. Ultimately, 403

data entities were included in the final analysis.
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Model development procedure

The development of the ML model was continued using data on

patient medication adherence as determinant features of the model

development that can distinguish medication adherence from

patients with high and low levels of medication adherence. These

determinant features were subsequently used to train an ML model.

Figure 1 shows the overall methodology used in this study.
Instruments and data
collection procedures

Demographic and medication-related data from the patients

were collected using a structured interview-based questionnaire.

Before the actual data collection, the data collection instrument was

validated and ensured for its content and clarity. Then 4.5% of the

study subjects in the study area were pretested (excluded from the

final analysis) to ensure the completeness and consistency of the

data collection tool. Then, an appropriate amendment was

employed. The data were collected by experienced nurses and

pharmacists after they had trained for two days. The supervisor

explicitly clarified the purpose of the study, and the data collection

tools and techniques. The data collection procedure was closely

monitored. After the medical records were entered into Microsoft

Excel 2013 and checked for repetition, the patients were

interviewed, and the data were simultaneously extracted.

Medication adherence: in this study, it refers to the extent to

which a patient actively, voluntarily, and consistently follows a

mutually agreed-upon treatment plan, including taking medications

as prescribed, in collaboration with their healthcare provider. It

involves the patient’s commitment to take their medication by

prescription that aims to achieve the desired therapeutic outcomes.

Medication adherence data were utilized as a key determinant

in developing the ML model. Low and high levels of medication

adherence were assessed using the General Medication Adherence

Scale (GMAS), an 11-item interview-based questionnaire

combining subjective and objective measures. Each item was

rated on a 4-point Likert scale, ranging from 0 (lowest) to 3

(highest). The items were categorized into three factors: (I)

patient behavior (5 items), (II) medication pill or injection

burden (4 items), and (III) medication cost and payment (2

items). The 11 items for which responses were collected

addressed various challenges related to medication adherence.

These included difficulty remembering to take medications,

forgetting medications due to busy schedules, travel, or other

events, discontinuing medications when feeling well, stopping

medications due to adverse effects, discontinuing medications

without consulting a doctor, ceasing medications when prescribed

additional treatments for other conditions, finding it burdensome to

remember medications due to regimen complexity, missing doses

because of disease progression or the addition of new medicines,

altering medication regimen, dose, or frequency, discontinuing

medications because they are perceived as not worth the cost, and

difficulty purchasing medications due to high expenses. The
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responses to these 11 items, which determined the level of

medication adherence as either low or high, were subsequently

used to train and develop the ML model.

The English version of the GMAS has been validated (43) and

the item has been previously applied to assess medication adherence

within the Ethiopian population with a Cronbach’s alpha of 0.84,

and its item-level content validity index exceeded 0.79 (5). Scores

for each item were summed to calculate a total adherence score,

which was used to classify patients’ adherence levels. A GMAS score

of <26 indicated low adherence, while a score of ≥27 (out of a

maximum of 33 points) was classified as high adherence (5, 44).

During data collection, most participants were found to have

low adherence to their medications, with only 22.6% exhibiting a

history of high medication adherence. This imbalance in class

distribution could significantly affect the performance of machine

learning models, as the model may become biased toward the

majority class. To address this issue, the Synthetic Minority

Oversampling Technique (SMOTE) was employed. SMOTE

works by selecting instances from the minority class, identifying

their nearest neighbors, and generating synthetic samples through

interpolation between the selected instances and their neighbors.

These synthetic samples are added to the dataset, effectively

balancing the class distribution, improving the model ’s

performance, and reducing bias toward the majority class.

Additionally, class imbalance can cause issues when the dataset

is split into training and testing subsets, where one class may

dominate the training set while the other predominates in the test

set. This could result in skewed outcomes and variability with each

train-test split. To mitigate this, the stratified K-fold cross-

validation technique was applied, ensuring that each fold

maintains a proportional distribution of both classes, leading to

more stable and reliable model evaluation.
Classification models and
performance evaluation

Once the data was read then it was subsequently divided into

training and testing sets. Then training was performed using LR,

RF, SVM, DT, KNN, and XGBC algorithms. The performance of

each classification model was evaluated using the parameters

precession, recall, F1 score, accuracy, and the area under the

curve (AUC). The performance of a machine learning classifier

can be measured using several performance evaluation metrics. In

this study accuracy precision, recall, and f1-score are used to

measure the performance of the developed models. Accuracy is

the measure of the overall correctness of the model given by the
Frontiers in Endocrinology 04
formula:

accuracy =
TP + TN

TP + TN + FP + FN

Where: TP (True Positives): The number of positive samples

correctly identified by the model. TN (True Negatives): The number

of negative samples correctly identified by the model. FP (False

Positives): The number of negative samples incorrectly identified as

positive. FN (False Negatives): The number of positive samples

incorrectly identified as negative. Precision is the ratio of

correctively classified positive observation to the total predicted

positives and is given by the formula:

precision =
TP

TP + FP

High precision indicates a low false positive rate. Recall is the

ratio of correctly predicted positive values to all actual positive

values given by the formula:

recall =
TP

TP + FN

High recall indicates a low false negative rate. Recall is also

called Sensitivity or True Positive Rate (45). False positive rate

(FPR) is the ratio of actual negatives that are incorrectly classified as

positive and all actual negatives given by the formula:

FPR =
FP

FP + TN

F1 score is the harmonic mean of precision and recall given by

the formula:

  f1   score   = 2*
precision*recall
precision + recall

A binary classification model’s performance is graphically

represented by the Receiver Operating Characteristic curve, or

AUC-ROC curve that shows the degree or measure of

separability. At different categorization criteria, it shows the true

positive rate (45) against the false positive rate (FPR). As it gives a

single scalar value ranging from 0 to 1 the total performance of the

model is shown by the AUC_ROC score. ROC_AUC score can be

obtained by the formula:

AUC − ROC =
Z 1

0
TPR(FNR)dFNR

For the perfect model, the AUC_ROC score will be 1, models

that are not better than random guessing will score 0.5, and models

worse than random guessing will score less than 0.5.
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FIGURE 1

Study procedures for ML model development.
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Extensive parameter tuning was done using grid search, random

search, and optuna parameter tuning algorithms, and the best

combination of hyperparameters was selected.
Monitoring system development

Finally, the selected best performer model was deployed using a

flask environment aiming to design a data collector, monitor, and

classifier platform for medication adherence level.
Results

Data collection results

Out of 422 participants approached, data on medication

adherence, used as a feature for machine learning, were analyzed

from 403 patients, resulting in a 95.5% response rate. Most of the

study participants (77.45%; 95% CI: 70.1-83.8) were found to have

low medication adherence.
Classification models and
performance evaluation

Using the extracted data features, ML models were developed

using six ML algorithms. The performance of each model developed

was evaluated. Table 1 displays the model’s accuracy, AUC-ROC

score, recall, precision, and F1 score before the application of

SMOTE. SVM performs better with the values 0.9948 and 1.00

for recall and AUC_ROC, respectively. From the confusion matrix

plots before SMOTE shown in Figure 2, we can see that SVM

misclassifies an average of 0.2 out of 80.6 entities, which is the

lowest value.

The goal of the model is to classify medication adherence levels.

This is somewhat acceptable if the model categorizes low non-

adherence levels as high. However, suppose the model incorrectly

identifies high non-adherence levels as low. In that case, it can be
Frontiers in Endocrinology 05
critically harmful, as it would mislead both the patient and the

physician, potentially delaying necessary corrective measures. A

high recall value indicates a low false negative rate, meaning that the

number of instances where high non-adherence levels are

incorrectly predicted as low non-adherence levels are minimal.

Therefore, models that demonstrate higher accuracy and recall

are considered better. Among the eight models evaluated, three

performed better in accuracy and recall. The collected data is highly

imbalanced, with 93 instances (22.6%) of high non-adherence and

310 instances (77.4%) of low non-adherence, which significantly

unbalanced data for machine learning models. To address this issue,

the Synthetic Minority Over-sampling Technique (SMOTE) was

used. The balanced data’s class distribution is 50% for the low

adherence class and 50% for the high adherence class detailed

in Table 2.

For the first seven machine learning models the parameters are

not bulky and parameter tuning was done manually. Again, for the

case of 1DCNN, it was computationally inefficient to tune all

1DCNN parameters automatically; as a result, the number of

epochs and the batch size were tuned manually, and the

performance of the model with the respective batch size and

epochs is shown in Figure 3.

Considering the computation time, recall score, accuracy, and

loss, batch size 20 is the optimum value. Again, by considering the

computation time, recall score, accuracy, and loss, the optimum

number of epochs is 90. Finally, after applying SMOTE to the data

and tuning parameters, the SVM model is performing superior to

others, with a recall of 0.9969 and an AUC score of 0.9998, as

presented in Table 3. Furthermore, Figure 4’s confusion matrix

computation reveals an average misclassification of 0.8 for the SVM

model among 124 entities.

Figure 5 shows the region of convergence (ROC) graphs of the

final optimized models.
Monitoring system development

The Support Vector Classifier model was deployed on a flask

environment as a web-based application. Figure 6 shows an
TABLE 1 The accuracy, precision, recall, and F1 score of the developed models before balancing the data classes and tuning model parameters.

Models Performance evaluation report

Accuracy Precision Recall F1-score AUCROC

Logistic Regression 0.9876 0.9809 0.9731 0.9684 1.0000

Support Vector Classifier 0.9975 0.9900 0.9948 1.0000 1.0000

K Neighbors Classifier 0.9504 0.9114 0.8938 0.8852 0.9947

Decision Tree Classifier 0.9825 0.9675 0.9601 0.9575 0.9774

Random Forest Classifier 0.9827 0.9375 0.9589 0.9875 0.9998

Gradient Boosting Classifier 0.9330 0.7497 0.8312 0.9666 0.9866

Multilayer Perceptron Classifier 0.9277 0.7775 0.7332 0.6975 0.8726

1D convolutional neural network 0.9875 0.9804 0.9744 0.9701 0.9998
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overview of the web-based applications. The deployed application

enables the subjects with diabetes to fill out the GMAS parameters

and assess their adherence level, the physicians to monitor the

patient’s medication adherence level, and the data scientist to access

the collected medication adherence data from the database.
Discussion

Diabetes is one of the biggest health risks worldwide, expected

to affect 783 million people by 2045 (5–8, 11). In developing

countries like Ethiopia, poor medication adherence has become a

significant contributor to mortality, hospitalization, and financial

strain (13, 19–22, 25, 26). ML algorithms offer a promising solution

to this issue and have shown encouraging results. However, models

developed in one country may not be applicable to others due to

differences in data. This study aimed to develop and implement a

machine learning (ML) model to classify and monitor medication

adherence levels, as well as to gather data on medication adherence.

Data on medication adherence among diabetic patients were

collected using the GMAS questionnaire tool [5].

With promising recall (true positive rates) of 0.9898, 0.9969,

0.9785, 0.9907, 0.9962, 0.9637, 0.7838, and 0.9932, and AUC-ROC

scores of 0.9992, 0.9998, 0.9981, 0.9906, 0.9998, 0.9805, 0.8484, and

0.9996 for the LR, SVM, KNN, DT, RF, GBC, MLP, and 1DCNN

models, respectively, the study’s findings demonstrated that

machine learning models can effectively classify medication

adherence. Although all the models except the multilayer
Frontiers in Endocrinology 06
perceptron model performed very well, the support vector

classifier model achieved the best recall and AUC scores before

and after addressing the data class imbalance and performing

significant parameter adjustments. This study discusses the

findings using other international studies conducted on patients

with diabetes and other chronic diseases because of a lack of similar

studies in a local context. Consistent with the current study, a study

used 18 machine learning models for predicting medication

adherence of diabetic patients obtained an AUC score of 0.716,

0.743, 0.698, 0.672, 0.667, 0.717, and 790 for LR, RF, SVM, DT,

KNN, XGBC, and ensemble models respectively (46). A study on

predicting medication adherence levels in people with type 2

diabetes found that the KNN model had an AUC of 0.838 and

the SVM model had an AUC of 0.765 (47). Another study that

employed logistic regression, multilayer perceptron, and

convolutional neural networks to predict medication adherence

from Continuous Glucose Monitoring (CGM) signals resulted in

accuracy scores of 0.652, 0.725, and 0.775 (48). While most of the

findings are in line, little discrepancies between the current study

and these previous studies could be due to variations in data

collection and analysis methods, with some studies employing in-

person questionnaires and electronic medical records. However, the

ML models developed in the current study performed remarkably

well. This study achieved a better AUC_ROC score, suggesting that

its implementation will contribute significantly to monitoring

medication non-adherence.

A study on opioid medication adherence classification using LR,

DT, RF, and XGBC models reported accuracy scores of 0.9415,

0.8787, 0.9411, and 0.9417, respectively (49). These results indicate

that such models are well-suited for implementation in healthcare

settings. Similarly, another study onmedication adherence in Crohn’s

disease patients showed average classification accuracies of 0.816,

0.859, and 0.877 for LR, Backpropagation Neural Network, and SVM

models, respectively (40). This suggests that the current study has

achieved strong comparative results. Discrepancies between studies

may stem from differences in adherence measurement techniques,

the nature of the data, and population characteristics.
FIGURE 2

The confusion matrix scores of the developed models before balancing the data classes and tuning model parameters.
TABLE 2 The amount of data in each class before and after applying the
SMOTE technique.

Applying smote Number of outputs at each level

Low adherence high adherence

Without 310 93

With 310 310
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In another example, Artificial Neural Networks, RF, and

Support Vector Regression models achieved accuracies of 0.65,

0.78, and 0.79, respectively, in predicting medication adherence

(50). Additionally, a study on predicting medication adherence

reported accuracies of 0.777 and 0.772 for XGBC and RF models,

respectively (51). Another study using XGBC to classify medication

adherence achieved an accuracy of 0.722 in the early stages of

research (52). The application of SVM models for medication

adherence classification achieved an accuracy of 0.776 using data

from 76 patients with heart failure (53). These results align with the

findings of this study, supporting the idea that the models

developed are suitable for implementation in real-world

healthcare settings. Furthermore, a study predicting medication

adherence levels in hypertension patients reported AUC scores of

0.774, 0.914, and 0.866 for LR, DT, and RF models, respectively

(54). The stronger performance of our study further underscores its

potential for confident implementation in healthcare facilities.
Frontiers in Endocrinology 07
A study that developed 300 prediction models using 30 machine

ML algorithms demonstrated that medication adherence in patients

with type 2 diabetes was predicted with greater precision as the

volume of input data increased (54). While further research is

needed to assess the potential of ML-based techniques for

measuring adherence in patients with chronic infectious diseases,

these methods have shown promise for evaluating medication

adherence in patients with noncommunicable diseases (3, 33, 55).
Strengths and limitations of this study

This study lays a critical foundation for leveraging technology to

improve healthcare and has significant potential for scalability. The

innovative use of machine learning to develop a medication

adherence system could revolutionize diabetes management in

Ethiopia, with the ability to enhance patient outcomes and inform
c d

e f

a b

FIGURE 3

The performance of the 1DCNN model while tuning parameters (a) accuracy vs batch size, (b) recall vs batch size, (c) loss vs batch size, (d) accuracy
vs epoch, (e) recall vs epoch and (f) loss vs epoch.
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public health strategies. Moreover, the collected data on medication

adherence provides valuable insights that can be used to improve

patient care, shape public health policies, and guide future research.

However, it is important to note that the data used in this study

do not represent the national population, and the findings should be

interpreted with caution. Additionally, medication adherence was

assessed using a self-reported tool that combines both subjective

and objective measures, which may impact the overall adherence

outcome. Self-reported data can sometimes introduce biases, such

as overreporting or underreporting of adherence, which must be

considered when evaluating the results. Furthermore, while

machine learning algorithms provide valuable insights, all

decisions are supervised by human experts, ensuring that the

results are interpreted and applied responsibly. Therefore, the

findings should be approached with caution, and future research

should focus on expanding the sample to better represent the

national population and exploring additional data collection

methods to minimize biases.
TABLE 3 The accuracy, precision, recall, F1 score, and AUC_ROC scores of the developed models after data class balancing and parameter tuning.

Models Performance evaluation report

Accuracy Precision Recall F1-score AUC_ROC

Logistic Regression 0.9822 0.9739 0.9898 0.98183 0.9992

Support Vector Classifier 0.9935 0.9903 0.9969 0.99357 0.9998

K Neighbors Classifier 0.9709 0.9635 0.9785 0.97036 0.9981

Decision Tree Classifier 0.9903 0.9902 0.9907 0.99042 0.9906

Random Forest Classifier 0.9951 0.9938 0.9962 0.99502 0.9998

Gradient Boosting Classifier 0.9596 0.9543 0.9637 0.95895 0.9805

Multilayer Perceptron Classifier 0.8419 0.7387 0.7838 0.7579 0.8484

1D convolutional neural network 0.9951 0.9968 0.9932 0.9949 0.9996
FIGURE 4

The confusion matrix score of each model after applying SMOTE and parameter tuning.
FIGURE 5

The ROC curve of the optimized models.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1486350
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Kassaw et al. 10.3389/fendo.2025.1486350
Implications for research, practice,
and policy

Research implications
This study provides a foundation for future research on the

application of machine learning (ML) in healthcare, specifically in

monitoring medication adherence in patients with type 2 diabetes.

Future research should aim to include larger, more diverse patient

populations to better assess the generalizability of ML models across

various demographics, settings, and healthcare environments.
Frontiers in Endocrinology 09
Additionally, exploring the integration of digital tools, such as

mobile applications and wearable devices, with ML models could

further enhance their ability to track and predict medication

adherence patterns, leading to improved patient outcomes.
Practice implications
In clinical practice, implementing ML models, such as the

support vector machine used in this study, offers an innovative

approach to accurately monitor medication adherence in patients
FIGURE 6

The overview of the developed monitoring system, the home page, the login page, the demographic data entry page, the GMAS data entry page,
and the monitoring window page.
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with diabetes. Healthcare providers can leverage these technologies

to identify non-adherence early, personalize treatment plans, and

intervene promptly to improve patient compliance. Furthermore,

the automated monitoring and data collection systems can reduce

clinician workload, streamline the management of chronic

conditions, and enhance the overall efficiency of diabetes care.

Policy implications
The findings highlight the potential of ML-driven solutions to

improve medication adherence, which could be integrated into

national or regional healthcare policies for managing chronic

diseases like diabetes. Policymakers should promote the inclusion

of digital health tools and ML models into routine clinical practices,

particularly in low-resource settings such as Ethiopia. Investments

in healthcare infrastructure that supports digital applications could

address barriers to medication adherence, reduce healthcare costs,

and improve public health outcomes. To ensure equitable access to

these technologies, policymakers should also focus on addressing

potential barriers such as data privacy concerns, training for

healthcare professionals, and infrastructure limitations in

underserved regions.
Conclusion

While all the developed models performed well in classifying

medication adherence levels in patients with type 2 diabetes, the

SVM model outperformed the others based on its recall and AUC

scores, both before and after applying the SMOTE data balancing

method. This suggests that SVM may be the most effective model

for predicting medication adherence in this context. Therefore, ML

models, particularly SVM, should be further investigated and

implemented in the Ethiopian healthcare system to optimize

medication adherence for patients with chronic diseases like

diabetes. However, nationally representative data, including

diverse patient populations from various regions of the country, is

essential to better validate the role of these technology-assisted

models and ensure their applicability across different healthcare

settings. Future research should also explore practical

considerations for integrating these models into routine clinical

practice, including infrastructure, training for healthcare providers,

and policies that support digital health solutions.
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