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Context: As a novel SGLT1 inhibitor, SY-009 has been preliminarily confirmed in

a phase Ib clinical study for its ability to reduce postprandial blood glucose in

patients with type 2 diabetes mellitus (T2DM). However, the effects of SY-009 on

human plasma metabolomics are still unknown.

Objective: This study aimed to explore the effects of SY-009 on plasma

metabolomics in patients with T2DM and the potential metabolic regulatory

mechanism involved.

Study design: In the phase Ib study, a total of 50 participants with T2DM were

enrolled and randomly assigned to the 0.5 mg BID, 1 mg BID, 2 mg BID, 1 mg QD,

and 2 mg QD dose groups, with a 4:1 random allocation within each group to

receive either the SY-009 capsule or placebo. We conducted untargeted and

targeted metabolomics analyses on plasma samples from the phase Ib

clinical study.

Results: Untargeted metabolomics revealed that, after SY009 treatment, there

were differences in metabolic pathways, including primary bile acid biosynthesis;

biosynthesis of unsaturated fatty acid; steroid hormone biosynthesis; purine

metabolism; phenylalanine, tyrosine and tryptophan biosynthesis. In particular,

the increase in bile acid-related metabolites in the 2 mg BID group was

significantly greater than that in the placebo group, and unsaturated fatty acid-

related metabolites decreased in both the 2 mg BID group and the placebo

group, but there was no significant difference between the two groups. After

comprehensive consideration, bile acids were taken as our target for accurate

quantification via targeted metabolomics. Compared with those in the placebo

group, the levels of several bile acids were significantly greater in the SY-009-

treated groups. Moreover, the proportion of free bile acids decreased

significantly, the proportion of glycine-conjugated bile acids increased

significantly, the proportion of taurine-conjugated bile acids tended to be

stable, and PBA/SBA significantly increased after SY-009 administration.
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Conclusions: SY-009 caused a series of postprandial plasmametabolite changes

in patients with T2DM, especially significant changes in the bile acid profile, which

provides a new perspective on the mechanism by which SY-009 lowers

blood glucose.

Clinical trial registration: https://www.clinicaltrials.gov, identifier NCT04345107.
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1 Introduction

Diabetes is a common chronic metabolic disease characterized

by hyperglycaemia, with type 2 diabetes mellitus (T2DM) being the

most common form, accounting for more than 90% of all diabetes

cases worldwide. According to the statistical analysis of the

International Diabetes Federation (IDF), the number of diabetic

patients worldwide will reach 783 million in 2045 (1). The epidemic

of diabetes has become a major global issue. There is an urgent need

to explore new targets and optimize glycaemic control strategies.

Recently, the sodium-glucose cotransporter (SGLT) has

emerged as a hot new target because of its unique hypoglycaemic

mechanism. There are six main subtypes of SGLTs: SGLT1, SGLT2,

SGLT3, SGLT4, SGLT5, and SGLT6. However, only the SGLT1 and

SGLT2 subtypes have been extensively studied (2). SGLT1 is

primarily responsible for absorbing glucose and galactose in the

intestines, whereas SGLT2 is responsible for reabsorbing glucose in

the kidneys (3). Both operate through active transport mechanisms

that depend on sodium cooperative transport systems (4). In the

first stage, glucose or galactose enters the cell from the lumen

through SGLTs and accumulates. In the second stage, facilitated

diffusion occurs from the cell into the blood via glucose transporter

2 (GLUT2), which islocated in the basolateral membrane.

In recent years, SGLT2 inhibitors and SGLT1/2 dual-target

inhibitors have been marketed and approved for treating T2DM

(5, 6). Currently, SGLT2 inhibitors have become a new mainstay in

the treatment of T2DM (7), especially in combination with

cardiovascular and renal disease, where SGLT2 inhibitors offer

important benefits (8, 9). Compared with SGLT2 inhibitors alone,

SGLT1/2 dual-target inhibitors have a greater effect on lowering blood

glucose (10). SGLT1 inhibitors have not yet been marketed. However,

research on SGLT1 inhibitors continues actively. For example, a novel

nonabsorbable SGLT1 inhibitor, LX2761, which was developed by

modifying Sotagliflozin, has demonstrated the ability to delay intestinal

glucose absorption, thereby improving glycaemic control (11). In

addition, SGLT1 inhibition has been shown to delay postprandial

intestinal glucose absorption and increase the plasma levels of GLP-1

and GIP in healthy volunteers (12). In addition, for diabetic patients

with renal insufficiency, SGLT1 inhibitors that act on the intestine may

be better treatment options.
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Since it was first proposed by J.K. Nicholson et al. in 1999 (13),

metabolomics has become a powerful tool for screening disease

biomarkers and studying the mechanisms of disease occurrence and

development. Xing Chen et al. revealed the metabonomics-based

renoprotective mechanism of empagliflozin in obese mice for the

first time (14), which was the first application of metabolomics in

SGLT inhibitors. In addition, many studies on T2DM have been

based on metabolomics technology (15). Xiaoyi Yu et al., on the

basis of GC-MS, reported that metabolic disorders of the

tricarboxylic acid cycle (TCA) may have an important

relationship with diabetic nephropathy (16). Chang Young Ha

et al. reported that decanoyl carnitine and lysoPC (C14:0) are the

best metabolites for predicting the risk of developing T2DM via

UPLC-TOF-MS (17). Additionally, a series of potential biomarkers

have been identified, including bile acid, 3-hydroxybutyric acid with

ketogenesis, 2-hydroxybutyric acid, branched-chain amino acids,

and aromatic amino acids (18–21). In summary, diabetes

metabolomics provides researchers with a new perspective to

uncover global changes in T2DM and better understand its

pathophysiological mechanisms.

SY-009 is a novel SGLT1 inhibitor, that is not listed at home or

abroad. With the permission of Eli Lilly Company, Suzhou Yabao

Pharmaceutical Research and Development Co., Ltd., initiated the

clinical study as the sponsor. Currently, a phase Ib clinical study has

been completed, indicating that SY-009 can significantly reduce

postprandial blood glucose (22). However, research on SGLT1

inhibitors in human plasma metabolomics is currently lacking.

Therefore, this study aimed to use metabolomics technology to

clarify the effects of SY-009 on the plasma metabolome profile of

patients with T2DM, search for potential biomarkers, and explore

the potential metabolic regulatory mechanisms of SY-009 in T2DM.
2 Materials and methods

2.1 Participants and study design

In this study, plasma samples were collected from “A

randomized, double-blind, placebo-controlled, dose-escalation

Phase Ib study to evaluate the safety, tolerability, and PK/PD
frontiersin.org
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profile of SY-009 in patients with T2DM” conducted at the Nanjing

Drum Tower Hospital Phase I Clinical Trial Center.

In the phase Ib study, 50 participants with T2DM were

randomly assigned to the 1 mg, 2 mg, or 4 mg daily dose groups

(Supplementary Figure S1). The 1 mg daily dose group was divided

into two administration groups, 0.5 mg BID and 1 mg QD; the 2 mg

daily dose group was divided into two administration groups, 1 mg

BID and 2 mg QD; and the 4 mg daily dose group was administered

2 mg BID. Ten participants were enrolled in each of these dosing

groups and randomly assigned to receive SY-009 capsules or

placebo at a ratio of 4:1 to be taken orally immediately before

meals (QD before breakfast, BID before breakfast and dinner).

Subjects were first dosed before breakfast on Day 1, followed by

continuous daily dosing until dinner on Day 7.

Only blood samples from Day 1 and Day 7 were collected

(Supplementary Figure S1). The blood collection points were

10 min before administration and 10 min, 0.5 h, 1 h, 2 h, and 4 h

after administration. After blood collection, the collection tubes were

placed in a precooled low-temperature centrifuge and centrifuged at

4°C and 1500 × g for 10 min to separate the plasma. Before

metabolomics analysis, the plasma samples were stored at -80°C.
2.2 Untargeted metabolomics

2.2.1 Sample preparation
The sample preparation method was as follows: 50 mL of plasma

was taken into a centrifuge tube, followed by the addition of 150 mL
of methanol solution containing the internal standard (4-

chlorophenylalanine, 1 mg/mL). The samples were shaken for

3 min and then centrifuged at 18000 rpm for 5 min at 4°C. Next,

150 mL of the supernatant was transferred to an EP tube. The

mixture was subsequently centrifuge again in the same way, after

which 100 mL of the supernatant was transferred into a sample vial.

Subsequently, 30 ml of each sample was mixed to prepare the quality

control (QC) samples. QC samples are essential for system

regulation and quality control processes, which help to obtain

reliable and high-quality metabolomics data.

2.2.2 LC-QTOF/MS instrument conditions
Liquid chromatography coupled with a quadrupole time-of-flight

tandem mass spectrometer (AB SCIEX TripleTOF®5600 LC-QTOF/

MS, Foster City, Canada) was used to determine the changes in the

plasma metabolome before and after drug administration. The

instrument conditions were as follows: the chromatographic column

used was a Waters HSS T3 column (1.8 mm, 2.1×100 mm). The flow

rate was 0.3 mL/min, and the column temperature was 40°C.

The mobile phase was A: aqueous phase (0.1% formic acid-water)

and B: organic phase (acetonitrile). The organic phase gradient elution

procedure was as follows: 0-1.5 min, 5% B; 1.5-6 min, 5%-60% B; 6-

9.5 min, 60%-95% B; 9.5-12 min, 95% B; 12-12.5 min, 95%-5% B; 12.5-

15.5 min, 5% B. In the mass spectrometry detection, Turbo V

electrospray ionization (ESI) was used for scan analysis. The

parameters were set as follows: ion source gas 1 (GS1), 60 psi; ion
Frontiers in Endocrinology 03
source gas 2 (GS2), 60 psi; curtain gas (CUR), 35 psi; temperature

(TEM), 550 °C; ionSpray voltage floating (ISVF), 5500 V in positive ion

mode and -4500 V in negative ion mode; declustering potential (DP),

60 V in positive ion mode and -60 V in negative ion mode; collision

energy (CE), 35 eV in positive ion mode and -10 eV in negative ion

mode; and mass spectrum scanning range, 50-1200 Da.

2.2.3 Data processing
On the basis of the untargeted raw metabolomics data (wiff

format) obtained via LC-QTOF-MS, we used MSConvet and R

(version 4.2.3) to convert and process the data, respectively. The

steps were as follows: First, the primary mass spectrum (MS1)

information of the raw data was converted to MZxml format by

MSConvert, and the secondary mass spectrum (MS2) information

was converted to mgf format. Then, using TidyMass package

developed by Shen Xiaotao’s team (23), a series of operations,

such as peak area extraction and alignment, noise signal removal,

missing value filling, and metabolite identification, were carried out.

The missing values were filled by the KNNmethod, and metabolites

were identified on the basis of the KEGG and HMDB databases.

Finally, the cleaned peak area data were calibrated with the

MetNormalizer package for further analysis.
2.3 Targeted metabolomics

2.3.1 Sample preparation
First, 16 bile acids, including cholic acid (CA), glycocholic acid

(GCA), taurocholic acid (TCA), chenodesoxycholic acid (CDCA),

glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid

(TCDCA), deoxycholic acid (DCA), glycodesoxycholic acid (GDCA),

taurodeoxycholic acid (TDCA), ursodeoxycholic acid (UDCA),

glycoursodeoxycholic acid (GUDCA), tauroursodeoxycholic acid

(TUDCA), hyodeoxycholic acid (HDCA), glycohyodeoxycholic acid

(GHDCA), taurohyodeoxycholic acid (THDCA) and lithocholic

acid (LCA) were processed for the drawing of standard curves. The

mass−charge ratio (m/z) was determined according to previous

methods (24).

The bile acid standard mixture and plasma samples were

processed similarly. Fifty-microlitre samples were added to 200

mL of methanol solution containing an internal standard (0.1 mg/
mL 2,2,4,4-D4-cholic acid, taurocholic-2,2,4,4-D4 acid, and

glycocholic-2,2,4,4-D4 acid). Then, the mixture was shaken for

3 min and centrifuged at 18000 rpm for 5 min at 4°C. Next, 150

mL of the supernatant was transferred into an EP tube. The mixture

was subsequently centrifuged again in the same way, and 100 mL of

the supernatant was transferred to a sample vial. Finally, 5 ml of the
sample was injected for targeted detection.

2.3.2 LC-MS/MS instrument conditions
An ultra-performance liquid chromatography system with a

5500 mass spectrometer (AB Sciex, Toronto, Canada) was used to

determine the changes in bile acids before and after drug

administration. A Waters Atlantis T3 column (2.1×100 mm, 3
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mm) was used for chromatographic separation. The mobile phase

consisted of aqueous phase A and organic phase B. A: 0.1% formic

acid: water, and B: methanol with the following gradient: 0-2 min

60% B, 2-10 min 60%-90% B, 10-15 min 90% B, 15-15.1 min 90%-

60% B, 15.1-20 min 60% B.

2.3.3 Data processing
After the plasma samples were analysed by LC-MS/MS, Analyst

software® 1.7.1 was used to identify peaks corresponding to bile

acids in the samples. The bile acid concentrations were

subsequently obtained on the basis of standard curves and the

concentrations of internal standard compounds.
2.4 Statistical analysis

For untargeted metabolomics analysis, principal component

analysis (PCA) was used to detect the stability of the QC samples

to determine whether the metabolic data were reliable. Partial least

squares discrimination analysis (PLS-DA), which provides better

separation than PCA does, was used to understand the difference in

the total metabolites before and after administration. In addition,

we combined the fold change (FC) values of metabolites before and

after administration with the variable importance in projection

(VIP) values obtained from PLS-DA for the preliminary screening

of differentially abundant metabolites. The default criteria were as

follows: VIP > 1, FC ≥ 1.5 or FC ≤ 0.67, and P < 0.05. Hierarchical

cluster analysis (HCA) was performed to evaluate the similarities

and differences among the potential biomarkers. Metabolic pathway

enrichment analysis was performed via the KEGG database.

A paired t test was used to compare differences before and after drug

administration. Multiple comparisons were performed via one-way

analysis of variance (ANOVA) to analyse the differences between the

SY-009 and placebo groups. Statistical analysis and data visualization

were performed viaMetaboAnalyst 6.0 (https://www.metaboanalyst.ca/),

MetWare Cloud (https://cloud.metware.cn), Genes Cloud (https://

www.genescloud.cn), Omic Studio (https://www.omicstudio.cn/tool),

GraphPad Prism 9, and SPSS 27. All the data are presented as the

means ± standard deviations, and P < 0.05 was considered

statistically significant.
2.5 Study approval

This study was approved by the Ethics Committee of Nanjing

Drum Tower Hospital with the ethics number 2022-187-02. The

Phase Ib clinical study was registered on the website of

ClinicalTrials.gov (https://www.clinicaltrials.gov/) with the

identifier: NCT04345107. This study strictly complied with the

Declaration of Helsinki and relevant policies and regulations, and

all participants provided written informed consent before

undergoing the study procedure. The criteria for inclusion and

exclusion, as well as the demographic data of the participants, are

presented in the Supplementary Materials, and the demographic
Frontiers in Endocrinology 04
and baseline characteristics were generally balanced among

the groups.
3 Results

3.1 SY-009 induced changes in plasma
metabolites in patients with T2DM, as
determined via untargeted metabolomics

3.1.1 Pattern recognition analysis revealed
significant changes in the plasma metabolites of
patients with T2DM after SY-009 administration

For the untargeted metabolomics analysis, the representative

total ion chromatograms (TICs) are shown in Supplementary

Figure S2. After R Studio processing, firstly, PCA diagrams were

first generated using the metabolic data of the QC samples and

some of the plasma samples to assess data reliability. The tight

clustering observed among the QC samples confirmed the accuracy

and stability of the instrument (Supplementary Figure S3). Given

that the hypoglycaemic effect of SY-009 is dose-dependent, with 2

mg BID showing the most pronounced effect (22), we initially

focused on the highest-dose group, the 2 mg BID group. As shown

in Figure 1, the PLS-DA results indicated a significant separation

trend on Days 1 and 7 at 1h or 2h postadministration of SY-009

compared with preadministration levels, and there was no

“overfitting” phenomenon. The model parameters are shown in

Supplementary Table S1. These results suggest that SY-009 had a

significant effect on the plasma metabolism profile of patients

with T2DM.

3.1.2 A series of differentially abundant
metabolites were observed after SY-
009 administration

Next, volcano plots of the 2 mg BID group were constructed to

observe the changes in the metabolites. As shown in Supplementary

Figure S4, on Days 1 and 7, changes in the contents of many

metabolites occurred 1 h or 2 h after administration. After

identification via the KEGG and HMDB databases, screening of

differentially abundant metabolites was conducted basis of the

following conditions: VIP>1, FC≥1.5 or FC ≤ 0.67, and P<0.05.

As shown in Supplementary Table S2, Supplementary Table S3, the

contents of 64 and 57 metabolites changed on Days 1 and 7,

respectively. Among them, 25 and 36 metabolites with P < 0.05

were considered potential biomarkers.

3.1.3 Metabolic pathways were significantly
altered after SY-009 administration

MetaboAnalyst was utilized for metabolic pathway enrichment

analysis of potential biomarkers on Days 1 and 7. As shown in

Figures 2A, B, the biosynthesis of unsaturated fatty acids and

primary bile acid biosynthesis were the two most important

pathways on both Day 1 and Day 7. Therefore, these two

metabolic pathways were the focus of subsequent analyses.
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3.1.4 Compared with the placebo, SY-009
significantly changed the metabolic profile of
patients with T2DM

In the placebo group, differentially abundant metabolite

screening and identification (Supplementary Tables S4, S5) and

metabolic pathway enrichment analysis (Figures 2C, D) were also

performed. Figures 3A–D show the Venn diagrams for the placebo

group and the 2 mg BID group, as well as bar charts depicting the

number of upregulated and downregulated metabolites. The results

of the metabolic pathway enrichment analysis (Figures 2C, D)

revealed that the biosynthesis of unsaturated fatty acids and

primary bile acid biosynthesis were also enriched in the

placebo group.

As shown in Figures 3E, F, on both Day 1 and Day 7, the

increase in bile acid-related metabolites in the 2 mg BID group was

greater than that in the placebo group. Heatmaps (Figures 3G, H)

also showed the clustering of bile acid-related metabolites together,
Frontiers in Endocrinology 05
indicating that they had similar trends of change. Furthermore, as

shown in Figures 4A–C, the upregulation of three primary bile acids

(CA, GCA, and TCA) was statistically significant between the 2 mg

BID group and the placebo group at 1 h or 2 h after administration

on Days 1 and 7. Other secondary bile acids (DCA, GDCA, and

TDCA) showed the same trend (Figures 4D–F). These changes

suggested that the hypoglycaemic effect of SY-009 might be closely

related to changes in the bile acid profile.

However, the metabolites involved in the biosynthesis of

unsaturated fatty acids were downregulated in both the 2 mg BID

group and the placebo group, and the decrease was not statistically

significant (Figures 4G–L). Therefore, the changes in this metabolic

pathway were not considered an effect of taking SY-009 capsules,

and the same was true for several other metabolic pathways

associated with unsaturated fatty acids.

In addition, as shown in Figure 2 and Figures 3G, H, other

metabolic pathways, including steroid hormone biosynthesis, purine
FIGURE 1

(A–H) are PLS-DA in positive or negative ion mode on day 1. (I–P) are PLS-DA in positive or negative ion mode on day 7.
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metabolism, and phenylalanine, tyrosine and tryptophan

biosynthesis, also differed between the 2 mg BID group and the

placebo group. The level of cholesterol sulfate, which is involved in

steroid hormone biosynthesis, was significantly greater in the 2 mg

BID group than in the placebo group. Allantoin, a metabolite

involved in purine metabolism, was significantly upregulated in the

placebo group compared with the 2 mg BID group. Phenylalanine,

tyrosine and tryptophan biosynthesis was the specific pathway of the

placebo group, and the metabolite involved in this pathway, L-

phenylalanine, was significantly upregulated.

The differentially abundant metabolite tables (Supplementary

Tables S6-S13), metabolic pathway enrichment plots (Supplementary

Figures S5, S6A, B), and Venn diagrams (Supplementary Figures

S6C, D) of the other dose groups, including 0.5 mg BID, 1 mg BID,

1 mg QD, and 2 mg QD, revealed that no special important pathways

or metabolites were present. Therefore, on the basis of the results of

untargeted metabolomics, we comprehensively considered bile acids as

our target metabolites for accurate quantitation, focusing on the effects

of SY-009 on the bile acid profile.
Frontiers in Endocrinology 06
3.2 SY-009 significantly altered the bile
acid profile according to
targeted metabolomics

3.2.1 SY-009 caused increases in bile acids in
patients with T2DM

For the targeted metabolomics analysis, a representative

chromatogram of bile acids is shown in Supplementary Figure

S7A. After quantitative analysis of the common bile acids of all

the samples via LC-MS/MS, as shown in Figure 5, in the 2 mg BID

group, CA, CDCA, DCA, HDCA, GCA, GCDCA, GDCA, GHDCA,

GUDCA, TCA, TCDCA, and TDCA significantly increased 1 h or

2 h after drug administration, whereas UDCA, LCA, THDCA, and

TUDCA did not significantly change. Moreover, in the placebo

group, GCA, GCDCA, and TCDCA significantly increased on Day

1 and Day 7. The levels of some bile acids also slightly but not

significantly increased. In addition, only UDCA was downregulated

in the placebo group, but there was a trend towards recovery after

SY-009 capsules were taken. The changes in the 1 mg BID group
frontiersin.o
FIGURE 2

(A, B) are the differential metabolite pathway enrichment maps of the 2 mg BID group on day 1 and day 7, respectively. (C, D) are the differential
metabolite pathway enrichment maps of the placebo group on day 1 and day 7, respectively.
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and 0.5 mg BID group tended to be similar to those in the 2 mg BID

group, but the degree of change was not as large as that in the 2 mg

BID group. The changes in the 1 mg QD and 2 mg QD groups after

drug treatment are shown in Supplementary Figures S7B–E, and no

special conditions were observed.
Frontiers in Endocrinology 07
The BID dose group and the placebo group were subsequently

selected to plot the percentage change in bile acid levels compared

with the baseline levels (Figure 6). The results revealed that the levels

of LCA, THDCA, and TUDCA in each SY-009 group remained

stable after administration, with no significant difference compared
FIGURE 3

(A, B) Venn diagram of 2 mg BID group and placebo group on day 1 and day 7. (C, D) Histogram of the number of upregulated or down-regulated
metabolites in the 2 mg BID group and placebo group on day 1 and day 7. (E, F) Multicomponent difference scatter plot of SY-009 before and after
administration in positive and negative ion modes. (G, H) Heat maps of the 2 mg BID group and the placebo group, with dots on the right of the
heat maps indicating whether the difference between the two groups was statistically significant. A red dot means P<0.05, and a blue dot
means P≥0.05.
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with those in the placebo group. However, CA, CDCA, DCA, HDCA,

UDCA, GCA, GCDCA, GDCA, GHDCA, GUDCA, TCA, TCDCA,

and TDCA increased after treatment and peaked at 1 h or 2 h, with

the degree of increase being dose-dependent. The increases in these

bile acids in the 2 mg BID group was significantly greater than that in

the placebo group. Some bile acids in the 1 mg BID group also

showed a similar effect to that of the 2 mg BID group or even slightly

exceeded it. This might have been due to individual differences, or the

1 mg BID dose possibly achieve maximum efficacy in certain cases.

Furthermore, some bile acids tended to increase on Day 7 compared

with Day 1, which might be related to continuous medication.

3.2.2 SY-009 caused a decrease in free bile acids
and an increase in glycine-conjugated bile acids
and PBA/SBA

The proportion of bile acids in the 2 mg BID group and

placebo group were subsequently analysed. Figures 7A–C shows

that after administration, the levels of free bile acids, glycine-

conjugated bile acids, and taurine-conjugated bile acids were
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significantly greater in the 2 mg BID group than in the placebo

group. However, regarding the proportions of the three types of

bile acids, in both the 2 mg BID group and the placebo group, the

proportion of free bile acids in the total bile acid content

decreased, the proportion of glycine-conjugated bile acids

increased, and the proportion of taurine-conjugated bile acids

tended to remain stable (Figure 7D). In addition, the degree of

decrease in free bile acid and the degree of increase in glycine-

conjugated bile acid in the 2 mg BID group were significantly

greater than those in the placebo group, and there was no

significant difference in the taurine-conjugated bile acid ratio

between the two groups (Figures 7E–G).

Moreover, the concentrations of primary bile acid (PBA) and

secondary bile acid (SBA) in the 2 mg BID group were significantly

greater than those in the placebo group at 1 h or 2 h after

administration (Figures 7H, I). Furthermore, the PBA/SBA ratio

in the 2 mg BID group also increased, and the degree of increase in

the ratio was significantly greater than that in the placebo group,

especially on Day 7 (Figure 7J).
FIGURE 4

(A–F) Primary bile acid biosynthesis-related metabolite changes. (G–L) Biosynthesis of unsaturated fatty acids-related metabolite changes. *P < 0.05, **P < 0.01
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3.2.3 Bile acid profiles are strongly correlated
with the T2DM phenotype

Preliminary clinical studies have shown that SY-009 can reduce

postprandial blood glucose but does not affect fasting blood glucose

(22). Data on C-peptide and other indices related to T2DM have

been obtained. Changes in these indices were also accompanied by

changes in bile acid levels. Therefore, we selected the data 2 hours

after the seventh day of administration and analysed the correlation

between the percentage change in bile acid levels compared with

baseline levels and the change in these indices. The results revealed
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that the free or conjugated status of bile acids in the bile acid pool

was closely related to HOMA-b (Figure 8).
4 Discussion

Metabolomics can reflect the dynamic changes in metabolites

throughout the body. T2DM is a common metabolic disease, and

investigating the pathophysiological and metabolic regulatory

mechanisms of T2DM using metabolomics technology is highly
FIGURE 5

On day 1 or day 7, the changes of bile acids before and after administration in 2 mg BID group, 1 mg BID group, 0.5 mg BID group, and placebo group.
(A) 2 mg BID_Day 1; (B) 2 mg BID_Day 7; (C) 1 mg BID_Day 1; (D) 1 mg BID_Day 7; (E) 0.5 mg BID_Day 1; (F) 0.5 mg BID_Day 7; (G) Placebo_Day 1;
(H) Placebo_Day 7. *P < 0.05, **P < 0.01, ns P≥0.05.
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important. Therefore, this study was based mainly on untargeted

and targeted metabolomics technologies to analyse subjects’ plasma

samples obtained from patients in the SY-009 phase Ib clinical

study, aiming to reveal the effect of SY-009 on T2DM.

In the untargeted metabolomics analysis, after SY-009

administration, a series of metabolic pathways, including primary

bile acid biosynthesis, biosynthesis of unsaturated fatty acids,
Frontiers in Endocrinology 10
steroid hormone biosynthesis, purine metabolism, and

phenylalanine, tyrosine and tryptophan biosynthesis, were altered.

Among them, the unsaturated fatty acid-related metabolic pathways

and the bile acid-related metabolic pathways in the 2 mg BID group

were among the key metabolic pathways enriched. However, there

were no significant differences in unsaturated fatty acids, including

palmitic acid, oleic acid, linoleic acid, alpha-linolenic acid,
FIGURE 6

Percentage change from baseline after administration of 16 bile acids: CA(A), GCA(B), TCA(C), CDCA(D), GCDCA(E), TCDCA(F), DCA(G), GDCA(H),
TDCA(I), HDCA(J), GHDCA(K), THDCA(L), UDCA(M), GUDCA(N), TUDCA(O), LCA(P). *P < 0.05, **P < 0.01, ns P≥0.05. The LSD method was used to
perform multiple comparisons.
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docosahexaenoic acid, or arachidonic acid, between the 2 mg BID

group and the placebo group, suggesting that the changes in these

unsaturated fatty acids may not be attributable to the effects of SY-

009. Unlike the increase in unsaturated fatty acids, the increase in

bile acids, including CA, GCA, TCA, DCA, GDCA, and TDCA, in

the 2 mg BID group was significantly greater than that in the

placebo group. Many studies have shown a close correlation

between bile acids and T2DM. For example, Alessandro

Mantovani et al. reported significant differences in bile acid

profiles between T2DM patients and non-T2DM patients (25).

Bingting Chen et al. revealed that GUDCA may play a

hypoglycaemic role by regulating bile acid metabolism (26). With
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respect to other metabolic pathways affected by SY-009, some

relevant studies have investigated the metabolites involved in

these pathways. The level of cholesterol sulfate involved in the

steroid hormone biosynthesis pathway was significantly greater in

the 2 mg BID group than in the placebo group. Cholesterol sulfate,

which is abundant in the gut (27), is an important regulatory

molecule and acts as an endogenous regulator of cholesterol

synthesis (28). Dongke Xu et al. reported that cholesterol sulfate

promotes cholesterol synthesis in colon epithelial cells to relieve

ulcerative colitis (29). Bile acids are produced by cholesterol, and

the changing trend of cholesterol sulfate is consistent with that of

bile acids, suggesting that the change in bile acids may be related to
FIGURE 7

(A–C) Changes and differences in the concentration of free bile acids, glycine-conjugated bile acids, and taurine-conjugated bile acids in the 2 mg
BID group and placebo group. (D) Changes in the ratio of free bile acids, glycine-conjugated bile acids, and taurine-conjugated bile acids in the 2
mg BID group and placebo group. (E–G) Difference in proportion of three types of bile acids between the 2 mg BID group and the placebo group.
(H, I) Changes and differences in the concentration of PBA and SBA in the 2 mg BID group and placebo group. (J) The difference of PBA/SBA
between the 2 mg BID group and the placebo group. *P < 0.05, **P < 0.01, ns P≥0.05.
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the promotion of cholesterol sulfate by SY-009. In addition,

Xueping Zhang et al. proposed that cholesterol sulfate may have a

protective effect on b-cells (30). Therefore, the increase in

cholesterol sulfate caused by SY-009 may be important. With

respect to the metabolic pathways of phenylalanine, tyrosine and

tryptophan biosynthesis, the increase in phenylalanine in the

placebo group was mitigated to some extent by SY-009. In

previous studies, phenylalanine-related aromatic amino acids have

been reported as potential biomarkers of T2DM in several studies

(21, 31, 32). Qian Zhou et al. reported that phenylalanine impairs

insulin signalling and inhibits glucose uptake by modifying insulin

receptor beta (33). These studies suggest that SY-009 may

ameliorate T2DM by affecting the metabolism of aromatic amino

acids. In addition, the level of allantoin in the placebo group was

significantly greater than that in 2 mg BID group. However, both

Junnan Ma et al. (34) and Hyeon-Kyu Go et al. (35) reported the

antiglucose effect of allantoin on diabetic mice. This contradicts our

experimental results and requires further consideration.

Given the limited number of plasma samples, bile acids were

selected as our targeted quantitative metabolites to reveal the effect

of SY-009 on the bile acid profile because bile acids play an

important role in regulating systemic metabolism and

inflammation to affect diabetes, and they are key regulators and

novel treatment targets in T2DM (36). In particular, GUDCA can

regulate bile acid levels and alter gut microbiota to attenuate

diabetes (26). Moreover, modulating bile acids is also a

mechanism by which metformin exerts its glucose-lowering effect

(37). Thus, targeting bile acid metabolism is a potential strategy for

treating T2DM.
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In the targeted metabolomics results, after SY-009

administration, in addition to LCA, THDCA, and TUDCA, other

bile acids, including CA, CDCA, DCA, HDCA, UDCA, GCA,

GCDCA, GDCA, GHDCA, GUDCA, TCA, TCDCA, and TDCA

were significantly increased compared with those in the placebo

group, and these increases were dose-dependent. In addition, in the

whole bile acid pool, the proportions of free, glycine-conjugated,

and taurine-conjugated bile acids also changed greatly. Compared

with those in the placebo group, in the SY-009 group, the

proportion of free types decreased significantly, the proportion of

glycine-conjugated types increased significantly, and the proportion

of taurine-conjugated types tended to be stable. Moreover, PBA/

SBA also showed a significant upward trend.

At present, increasing evidence shows that the coregulation of

the intestinal flora and bile acids may mediate host metabolism and

affect the occurrence and development of diabetes (26, 38, 39). In

the bile acid synthesis pathway in humans, the metabolism of

cholesterol produces primary bile acids, including CA and CDCA,

in the liver. Besides, free bile acids are usually combined with

glycine or taurine to form conjugated bile acids. Then, the primary

bile acids enter the intestine and are deconjugated by bacterial bile

salt hydrolase (BSH) and dehydroxylated by bacterial 7a-

dehydroxylase to form DCA and LCA. A small amount of CDCA

is converted to UDCA, and LCA can be converted to HDCA by

intestinal 6a- and 6b-hydroxylase (40).
According to the results of our study, the increase in primary

bile acid content after the consumption of SY-009 suggests that SY-

009 may promote the conversion of cholesterol to primary bile

acids. In addition, DCA significantly increased after drug treatment,
FIGURE 8

On day 7, spearman correlation analysis of percentage changes of various bile acids at 2h after administration with C-peptide and other indicators.
*P < 0.05, **P < 0.01.
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suggesting that BSH and 7a-dehydroxylase are likely to be

activated. The stable trend of LCA after taking the drug may be

due to the inhibition of other unknown channels or because LCA is

conjugated with sulfate and excreted in the stool and urine rather

than entering the bloodstream (Chiang and Ferrell 2020). The

intestinal environment has a strong influence on bile acid

deconjugation and conjugation. Besides, BSH activity is restricted

to the genera Clostridium, Enterococcus, Bifidobacterium,

Bacteroides, and Lactobacillus, while 7a-dehydroxylase activity

mainly originates from Clostridium XIVa clusters (41, 42). All

BSH reactions rely on the hydrolysis of amide bonds to release

taurine or glycine (43–46). Moreover, the intestinal flora has

different preferences for glycine-conjugated BAs and taurine-

conjugated BAs. For example, in Bifidobacterium, three types of

BSH have been found, two of which have high activity. They all

prefer glycine-conjugated BAs to taurine-conjugated BAs (47).

Moreover, after SY-009 capsules were taken, secondary bile acids,

including HDCA and UDCA, tended to bind to glycine rather than

taurine and were associated with the gut microbiota. In addition,

the significant increase in PBA/SBA is also worth paying attention

to. At present, studies in other fields have shown the importance of

changes in the bile acid ratio. For example, Tianlu Chen et al. chose

the bile acid glycine: taurine ratio as a biomarker to monitor the

progression of liver disease (48). Tingting Gao et al. reported that

the primary/secondary bile acid ratio was a serum diagnostic

marker for the need for surgery in infants with necrotizing

enterocolitis (49). Taken together, although the effect and

mechanism of the change in the plasma bile acid ratio after SY-

009 administration have not been clarified, modulating the gut

microbiota composition may be a possible mechanism by which

SY-009 affects diabetes.

Importantly, the nuclear farnesoid X receptor (FXR) and the

membrane Takeda G protein-coupled receptor 5 (TGR5) are

currently the most important receptors mediating the regulation

of bile acids (50). The effect of intestinal FXR on liver metabolism

was first reported by Sayin et al. (51). Yangfeng Hou et al. also

conducted a systematic review of the multi-pathway regulation of

blood glucose by FXR (52). The important role of TGR5 in the

occurrence and development of metabolic syndrome, such as

diabetes, has also been reviewed and reported by Xianmei Gou

et al. (53). Therefore, whether SY-009 has an effect on FXR and

TGR5 is a future research direction.

SY-009, a novel SGLT1 inhibitor, is difficult to absorb orally, and

SGLT1 receptors are abundantly distributed in the intestine (4). In the

phase Ib clinical study, after SY-009 was taken, the drug concentration

in plasma was below the limit of quantitation (LOQ), and PK

parameters were not available (22). The characteristic of unrelated

PK/PD may be that SY-009 is not directly absorbed into the digestive

tract and instead acts on SGLT1 locally. Our results showed that SY-

009 significantly modulated the composition of bile acids. There is a

bidirectional relationship between the intestinal microbial community

and bile acids (54). Themicrobial flora closely regulates themetabolism

and synthesis of bile acids, and the composition of the bile acid pool

affects the diversity and homeostasis of the intestinal flora. However,

whether SY-009 can directly modulate the activities of enzymes

responsible for cholesterol metabolism and bile acid synthesis or
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regulate the intestinal flora is unclear. The results of our

metabolomics study suggest that the coregulation of bile acids and

the intestinal flora may be an important part of the hypoglycaemic

mechanism of SY-009. Further studies can be conducted in the future if

there is an opportunity to obtain stool samples from patients after

taking the drug.

Considering various conditions, such as manpower, material

resources, and limited blood samples, we only quantified bile acids

based via targeted metabolomics, which is a limitation of this study.

However, the untargeted metabolomics results suggest that SY-009,

and even other SGLT1 inhibitors, may affect on more metabolic

pathways related to T2DM, which needs to be clarified. Furthermore,

the specific mechanisms of SY-009 need to be further investigated.
5 Conclusion

In summary, our results revealed that there are significant

changes in plasma metabolomics in patients with T2DM after

taking SY-009 capsules. In particular, a series of bile acids,

including CA, CDCA, DCA, HDCA, UDCA, GCA, GCDCA,

GDCA, GHDCA, GUDCA, TCA, TCDCA, and TDCA, were

increased significantly, and the bile acid ratios, including free bile

acids, glycine-conjugated bile acids and PBA/SBA, were also

significantly affected by SY009. These changes in the bile acid

profile provide a new perspective on the hypoglycaemic effect of

SY-009. This study is the first application of metabolomics for

SGLT1 inhibitors, which is highly important for understanding the

pathogenesis, progression, prognosis, and treatment of T2DM.
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