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based on Yi and Han
populations in Yunnan
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Ni Meng1, Dan Zhou1, Haitao Tian1, Ting Pi2, Xiaofeng Zong1,
Qing Xiong3, Zhongjuan Wang2* and Xingfang Jin1*

1Department of Cardiovascular Surgery, Yan’an Hospital Affiliated to Kunming Medical University,
Clinical Medical Research Center for Cardiovascular Disease of Yunnan Province, Kunming,
Yunnan, China, 2Department of Pharmacy, Yan’an Hospital Affiliated to Kunming Medical University,
Kunming, Yunnan, China, 3Department of Endocrinology, Yan’an Hospital Affiliated to Kunming
Medical University, Kunming, Yunnan, China
Objective: Ultra-high-performance liquid chromatography-time-of-flight mass

spectrometry (UHPLC-TOF-MS) was employed to analyze serum metabolites

and metabolic pathways associated with metabolic syndrome (MS) in the Yi and

Han populations of Yunnan.

Methods: Participants included individuals diagnosed with MS and healthy

controls from the Yi and Han populations of Yunnan. Serum nontargeted and

amino acid-targeted metabolomics analyses were conducted to identify

differential serum metabolites (DEMs) and metabolic pathways associated with

MS pathogenesis in these two ethnic groups.

Results: Nontargeted metabolomics analysis revealed 2,762 DEMs in the MS

group of the Han population, while 1,535 DEMs were identified in theMS group of

the Yi population [variable importance in projection (VIP)>1, P<0.05]. Venn

analysis highlighted common and unique DEMs between the two populations.

KEGG pathway analysis identified seven significantly enriched pathways in the

Han group and five in the Yi group, primarily involving amino acid synthesis and

metabolism. To investigate the role of amino acids in MS, serum levels of 71

endogenous amino acids were quantified. In theMS group of the Han population,

19 differential amino acids were identified, significantly enriched in pathways

related to D-glutamine and D-glutamate metabolism, as well as cysteine and

methionine metabolism. In the Yi population, six differential amino acids were

identified, with significant enrichment in D-glutamine and D-glutamate

metabolism, sulfur metabolism, and valine, leucine, and isoleucine biosynthesis.

Conclusion:Our study investigates metabolic differences in metabolic syndrome

(MS) between Yi and Han populations through nontargeted and targeted

metabolomics approaches, identifying both common and unique metabolites

and metabolic pathways associated with MS, especially amino acid metabolic
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disorders, including glycine, serine, and threonine metabolism, D-glutamine and

D-glutamate metabolism, which may play critical roles in regulating different

metabolic dysfunctions and worth further exploration in MS pathogenesis, which

might provide insights for the effective prevention and treatment of MS in

various populations.
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1 Introduction

Metabolic syndrome (MS) is a cluster of clinical conditions

defined by central obesity, insulin resistance, hypertension,

dyslipidemia, and elevated glucose levels (1). With global

population aging and significant changes in lifestyle and diet, the

prevalence and burden of MS are rising at an alarming rate (2–4).

As a constellation of cardiovascular risk factors, MS impacts

multiple organ systems, substantially increasing the risk of type 2

diabetes (T2D), coronary heart disease, stroke, and other

disabilities, thereby posing a major public health challenge (1, 5,

6). Despite its clinical significance, the pathophysiological

mechanisms of MS remain complex and poorly understood (6–9).

Current research focuses on concentric obesity, lipotoxicity, and

insulin resistance (10). However, it remains contentious whether

distinct metabolic disorders arise from separate pathologies or

represent facets of a broader, interconnected pathogenic

process (11).

Metabolomic profiling, which systematically analyzes the

metabolome, offers valuable insights into biological responses to

endogenous and exogenous stimuli, with great potential for

identifying biomarkers and elucidating disease mechanisms (12–

14). Numerous metabolites have been linked to obesity (15),

hypertension (15), T2D (16), dyslipidemia (17), and MS (18–20).

Studies consistently report abnormalities in serum metabolites and

metabolic pathways in individuals with MS, particularly those

involving serum amino acid dysregulation (21, 22). For instance,

a study in American and Japanese populations identified 18 shared

metabolites associated with MS, primarily amino acids involved in

branched-chain amino acid metabolism, glutathione synthesis,

aromatic amino acid metabolism, gluconeogenesis, and the

tricarboxylic acid (TCA) cycle (19). Similarly, research on the

Han populat ion revealed significantly higher plasma

concentrations of isoleucine, leucine, valine, tyrosine, tryptophan,

and phenylalanine in individuals with MS compared to those

without (11). Dysregulated amino acid metabolism appears to be

a critical feature in the onset and progression of MS across different

ethnic groups.

Variations in dietary patterns, lifestyles, and genetic

backgrounds among ethnic groups may contribute to disparities

in the prevalence and metabolic characteristics of MS (8, 18, 20).
02
However, the underlying mechanisms remain incompletely

understood. Cross-cultural and multiethnic studies could provide

valuable insights into the biochemical processes central to MS

etiology. Yunnan province, notable for its ethnic diversity,

includes the Yi population, which numbers approximately 5.07

million and represents the largest minority group in the region

(http://stats.yn.gov.cn/Pages_22_3951.aspx). Yi individuals, as one

of the oldest ethnic groups, predominantly adhere to a traditional

lifestyle characterized by consistent dietary habits, intra-ethnic

marriage, and genetic homogeneity. These factors make them

particularly suited for investigating the interplay of genetic,

dietary, and environmental influences on the prevalence of

metabolic diseases (9, 10). Variations in dietary patterns,

geographical environments, genetic backgrounds, and lifestyles

(23–25) contribute to differing prevalence rates of MS, overweight

and obesity, hypertension, and hypertriglyceridemia between Yi

and Han populations (8). These differences suggest potential

disparities in plasma metabolite profiles, which may underlie the

distinct pathogenesis of MS in these two groups. However, no

studies to date have specifically examined the metabolite signatures

associated with MS in the Yi and Han populations.

In this study, non-targeted metabolomics was utilized to

identify the serum metabolic signatures of MS in two ethnic

groups from Yunnan. To complement this, targeted amino acid

metabolomics was performed, enabling a comprehensive analysis of

serummetabolite profiles associated with MS across these ethnically

distinct groups. The findings aim to advance understanding

of the unique metabolic characteristics underlying MS in

different populations.
2 Materials and methods

2.1 Participants and sample collection

This study’s subjects were initially enrolled in a cross-sectional

investigation of chronic diseases conducted by our research group

in Yunnan from 2019 to 2023. The cohort included 1,250

participants: 905 Yi individuals, 307 Han individuals, and 39

from other ethnic groups (26, 27). Data on socio-demographics,

smoking and drinking history, chronic medical conditions, and
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medication use were collected during the survey. Trained personnel

performed anthropometric measurements and physical

examinations, including blood pressure assessments. Blood

samples were collected after a 12-hour fasting period and

centrifuged at 3,500 rpm for 15 minutes. Portions of the serum

samples were used for blood lipid analysis and liver and kidney

function assessments, while the remaining aliquots were stored at –

81°C. The study adhered to national regulations, institutional

policies, and the Helsinki Declaration, receiving approval from

the Research Ethics Committee of Yan’an Hospital affiliated to

Kunming Medical University (approval no. 2023-060-01). All

participants provided informed consent.
2.2 Study design

2.2.1 Inclusion and exclusion criteria
Eighty-four subjects were selected for untargeted metabolomics

analysis, including 38 individuals with MS (15 Yi [YMS] and 23

Han [HMS]) and 46 healthy controls (21 Yi [YCTR] and 25 Han

[HCTR]). Inclusion criteria required participants to (1): be aged

≥18 years, (2) reside in Yunnan Province for over five years, (3)

provide informed consent, and (4) present with three or more

metabolic disorders as defined by the 2004 criteria of the Chinese

Diabetes Society (28). These disorders included a body mass index

(BMI) ≥25.0 kg/m² (overweight/obesity), systolic blood pressure

(SBP) ≥140 mmHg or diastolic blood pressure (DBP) ≥90 mmHg,

fasting plasma glucose (FPG) ≥6.1 mmol/L, triglycerides (TG) ≥1.7

mmol/L, or high-density lipoprotein cholesterol (HDL-C) levels

<1.0 mmol/L in females or <0.9 mmol/L in males (dyslipidemia).

Healthy controls exhibited no metabolic disorders. Exclusion

criteria encompassed prior use of medications for hyperglycemia,

dyslipidemia, or hypertension, being underweight (BMI<18.5kg/

m²), as well as the presence of cancer, advanced liver disease (Child–

Pugh classes B/C), significant lung conditions (chronic obstructive

pulmonary disease, chronic bronchitis, emphysema, asthma, or

pneumonia), severe heart disease (New York Heart Association

classes II–IV), renal impairment (eGFR <60 mL/min) (29–31),

hyperthyroidism or Hypothyroidism), missing too much data or

blood samples were not available. MS patients were matched with

healthy controls by age (± 3 years), gender, and geographic location,

a detailed case selection process is illustrated in Figure 1.
2.2.2 Chemicals and reagents
Methanol (LC-MS, CNW Technologies), acetonitrile (LC-MS,

SIGMA-ALDRICH), ammonium acetate (LC-MS, SIGMA-

ALDRICH), ammonium hydroxide (LC-MS, CNW Technologies),

double-distilled water (ddH2O, Watsons), acetic acid (LC-MS,

SIGMA-ALDRICH), 2-propanol (LC-MS, CNW Technologies),

acetone (LC-MS, CNW Technologies), sodium bicarbonate

(NaHCO3, LC-MS, CNW Technologies), hydrochloric acid (HCl,

LC-MS, CNW Technologies), and standard samples were used. The

instruments included a Vanquish UHPLC system (Thermo Fisher

Scientific, MA, USA), a Thermo Altis TSQ Plus mass spectrometer

(Thermo Fisher Scientific, MA, USA), a Heraeus Fresco17 centrifuge
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(Thermo Fisher Scientific), an analytical balance (BSA124S-CW,

Sartorius), an ultrasonic instrument (PS-60AL, Shenzhen Redbon

Electronics Co. Ltd.), a homogenizer (JXFSTPRP-24, Shanghai

Jingxin Technology Co. Ltd.), a freeze dryer (LGJ-10C, Sihuan

Fruike Instrument Technology Development Co. Ltd.), and a freeze

centrifugal concentrator (CV600).
2.3 Nontargeted metabolomics analysis

2.3.1 Metabolite extraction
Plasma samples were thawed at 4°C, and 50 μL of each sample

was mixed with 200 μL of an extraction solution consisting of

methanol and acetonitrile (1:1, v/v) containing deuterated internal

standards (ISs). The mixture was vortexed for 30 seconds,

sonicated for 10 minutes in a 4°C water bath, and incubated for

1 hour at -40°C. Subsequently, the samples were centrifuged at

12,000 rpm (relative centrifugal force: 13,800 × g; rotor radius:

8.6 cm) for 15 minutes at 4°C. The resulting supernatant was

transferred to fresh glass vials for analysis. A quality control (QC)

sample was prepared by pooling equal volumes of the

supernatants. The supernatants were analyzed using ultra-high-

performance liquid chromatography-tandem mass spectrometry

(UHPLC-MS/MS).

2.3.2 LC−MS/MS analysis
LC-MS/MS analyses were conducted using a Vanquish UHPLC

system (Thermo Fisher Scientific) equipped with a Waters

ACQUITY UPLC BEH Amide column (2.1 mm × 50 mm, 1.7

μm) and an Orbitrap Exploris 120 mass spectrometer (Thermo

Fisher Scientific). The mobile phase comprised 25 mmol/L

ammonium acetate and 25 mmol/L ammonium hydroxide in

water (pH 9.75) as phase A, and acetonitrile as phase B. The

autosampler temperature was maintained at 4°C, and the

injection volume was set to 2 μL. The Orbitrap Exploris 120

operated in information-dependent acquisition (IDA) mode,

controlled by Xcalibur software (Thermo), which continuously

evaluated full-scan MS spectra. Electrospray ionization (ESI)

source parameters included: sheath gas flow rate = 50 Arb,

auxiliary gas flow rate = 15 Arb, capillary temperature = 320°C,

full MS resolution = 60,000, MS/MS resolution = 15,000, collision

energy = 20/30/40 stepped normalized collision energy (SNCE), and

spray voltage = 3.8 kV (positive mode) or 3.4 kV (negative mode).

2.3.3 Data preprocessing and annotation
The metabolomics raw data were converted to the mzXML

format using ProteoWizard and processed with the R package

XCMS (v3.5, CA, USA). Before data analysis, peak pretreatment

steps included identification, alignment, extraction, and integration.

Variability in the MS platform was monitored and adjusted using

quality control (QC) spectra to ensure data reproducibility and

reliability (QC details were shown in Supplementary 1).

In this study, 21,011 peaks were initially detected, and 17,333

peaks remained after relative standard deviation (RSD) de-noising.

Missing values were imputed using half of the minimum value, and
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the internal standard normalization method was applied during

data analysis. The final dataset, containing peak numbers, sample

names, and normalized peak areas, was imported into the SIMCA

16.0.2 software package (Sartorius Stedim Data Analytics AB,

Umeå, Sweden) for multivariate analysis. Data were scaled and

log-transformed to reduce noise and the impact of high variable

variance. Principal component analysis (PCA), an unsupervised

dimensionality reduction method, was performed to visualize

sample distribution and grouping. A 95% confidence interval in

the PCA score plot was used to identify potential outliers and

evaluate metabolic feature separation among groups.

To further investigate group separation and identify significantly

altered metabolites, supervised orthogonal projections to latent

structures-discriminant analysis (OPLS-DA) was applied. A 7-fold

cross-validation was conducted to calculate R² and Q² values, where

R² reflects the explained variation and Q² indicates predictive accuracy.

Model robustness and predictive ability were assessed through a 200-

time permutation test, which evaluated the likelihood of overfitting by

examining the cross-validation-derived R² and Q² values (32, 33). A
Frontiers in Endocrinology 04
lower Q² intercept value indicated greater model reliability and reduced

risk of overfitting.

The variable importance in projection (VIP) score of the first

principal component in OPLS-DA summarized each variable’s

contribution to the model. Metabolites with VIP > 1 and p < 0.05

(unpaired two-sided Student’s t-test) were identified as significantly

altered. Remaining peaks were annotated by comparing retention

time and mass-to-charge ratio (m/z) indices with the HMDB

(www.hmdb.ca), KEGG (www.kegg.jp), and an in-house Biotree

DB (V3.0) library (33, 34).
2.4 Targeted metabolomics analysis of
amino acids

In total, 22 patients with MS and 22 CTR subjects from Yi and

Han populations matched by age (± 3 years) and gender (1:1) were

selected for targeted metabolomics analysis of amino acids. This

analysis identified 71 endogenous amino acids.
FIGURE 1

Flowchart of the study design. Figure was created with BioRender.
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2.4.1 Metabolite extraction
After thawing the samples in an ice-water bath and vortexing

for 30 seconds, 15 mL of each sample was combined with 35 mL of

water and 200 mL of extraction solution (methanol: acetonitrile, 1:1

[v/v], containing deuterated internal standards, precooled to -40°C).

The mixture was vortexed for 30 seconds, ultrasonicated for 15

minutes in a 4°C water bath, and incubated at −40°C for 1 hour. The

samples were then centrifuged at 12,000 rpm (RCF = 13,800 × g,

radius = 8.6 cm) for 15 minutes at 4°C. The supernatant was

collected and evaporated to dryness. The dried residue was

reconstituted in 100 mL of 50% methanol, followed by the

addition of 100 mL of derivatizing agent and 50 mL of 1 M

NaHCO3. After mixing, the sample was incubated at 40°C for 1

hour in a water bath. Once cooled to room temperature, 50 mL of 2

M HCl was added, and the sample was evaporated to dryness again.

The final residue was re-dissolved in 200 mL of methanol and

transferred to a fresh glass vial for analysis.

2.4.2 Standard solution preparation
Stock solutions were prepared by dissolving or diluting each

standard to a final concentration of 10 mmol/L. Aliquots of these

solutions were combined in a 10-mL flask to create a mixed working

standard solution. Absolute quantification was performed using

isotope internal standard correction (Supplementary Table S1).

Calibration standard solutions were prepared by serial dilution of

the mixed working standard, ensuring isotopically labeled internal

standards matched the sample concentrations.

2.4.3 UHPLC-multiple reaction monitoring-MS
analysis

Ultra-high-performance liquid chromatography (UHPLC)

separation was performed on a Thermo Vanquish UHPLC

System (Thermo Fisher) with a Waters ACQUITY UPLC BEH

C18 column (100 mm × 2.1 mm, 1.7 mm). The mobile phases

consisted of 5 mM ammonium acetate in water (A) and acetonitrile

(B). The column temperature was maintained at 45°C, the

autosampler at 4°C, and the injection volume was 2 mL.
Mass spectrometric analysis was conducted using a Thermo

Altis TSQ Plus Mass Spectrometer (Thermo Fisher, USA) with an

electrospray ionization (ESI) interface. Key ion source parameters

included a spray voltage of -3300 V, sheath gas at 40 Arb, auxiliary

gas at 10 Arb, sweep gas at 1 Arb, ion transfer tube temperature at

325°C, and vaporizer temperature at 350°C.

MRM parameters for targeted analytes were optimized using

flow injection analysis. Standard solutions of individual analytes

were injected into the mass spectrometer’s atmospheric pressure

ionization (API) source. For each analyte, the most sensitive and

selective Q1/Q3 transitions were designated as “quantifiers” for

quantitative monitoring, while additional transitions were used as

“qualifiers” to verify analyte identity.

Supplementary Figure S1 presents the extracted ion

chromatograms (EICs) for the targeted analytes from a standard

solution (Supplementary Figure S1A) and a sample (Supplementary

Figure S1B) under optimal conditions. The EICs demonstrate (i)
Frontiers in Endocrinology 05
symmetrical peak shapes for all analytes, (ii) baseline separations,

and (iii) consistent retention times and peak shapes between the

standard and the sample.

Supplementary Table S2 details the lower limits of detection

(LLODs) and quantitation (LLOQs) for all analytes. The LLODs

ranged from 0.33 to 604.36 nmol/L, and the LLOQs ranged from 0.65

to 1208.72 nmol/L. Correlation coefficients (R²) for regression fitting

exceeded 0.9933 for all analytes, confirming a robust quantitative

relationship between MS responses and analyte concentrations,

suitable for targeted metabolomics. Supplementary Table S3

summarizes the analytical recoveries and relative standard

deviations (RSDs) for quality control (QC) samples, measured over

five technical replicates. Recoveries ranged from 81.0% to 109.0%,

with RSDs below 6.6%, indicating that the method provides accurate

quantitation of targeted metabolites within the specified

concentration range.

2.4.4 Data preprocessing and annotation
Calibration solutions were analyzed using UPLC-MRM-MS/MS

methods as described. Supplementary Table S10 outlines calibration

curve parameters, where y represents the ratio of the analyte peak

area to its corresponding internal standard, and x represents the

analyte concentration (nmol/L). Regression fitting was performed

using the least-squares method with 1/x weighting, which provided

the highest accuracy and correlation coefficients (R²). Calibration

levels were excluded if their accuracy fell outside the 80–120%

range. Detailed calibration curves for individual analytes are

provided in Supplementary Table S10.

Stepwise dilution of the calibration standard solution, with a

dilution factor of 2, was performed for UHPLC-MRM-MS analysis.

Signal-to-noise ratios (S/N) were used to define LLODs and LLOQs,

corresponding to S/N values of 3 and 10, respectively, in accordance

with US FDA guidelines for bioanalytical method validation.

Quantitation precision was assessed by calculating the RSD of

replicate QC sample injections. Quantitation accuracy was

determined as the analytical recovery of spiked QC samples,

calculated as [(mean observed concentration)/(spiked

concentration)] × 100%.

In the sample detection process, the final concentration (CF,

nmol/L) equals the calculated concentration (CC, nmol/L)

measured by the instrument, multiplied by the dilution factor.

The concentration of the target metabolite (CM, nmol/L) in the

sample is equal to the amount of CF times the final volume of the

sample (VF, m L), divided by the sample volume (VS, m L), which is

expressed as nmol/L. The following calculation formula was used:

cM½nmol · L−1� = CF ½nmol · L−1� · VF ½mL�
Vs½mL�

MRM data processing was performed using Skyline, while data

acquisition utilized Xcalibur (version 4.4.16.14, Thermo Fisher).

Metabolites with P<0.05 (unpaired two-sided Student’s t-tests) were

identified as significantly altered. Pathway enrichment analysis of

these metabolites was conducted using the KEGG database (http://

www.genome.jp/kegg/).
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2.5 Statistical analysis

Statistical analyses were performed using SPSS software

(version 29.0, IBM). Continuous variables were assessed for

normality with the Shapiro-Wilk test. Normally distributed

variables are presented as mean ± standard deviation (SD) and

compared using the Student’s t-test. Non-normally distributed

variables are expressed as median (P25–P75) and analyzed with

the Mann-Whitney U test. Categorical variables are reported as n

(%) and compared using the c² test. All statistical tests were two-
tailed, with P<0.05 considered statistically significant.
3 Results

3.1 Characteristics of participants

The present study enrolled 84 participants, comprising 36 Yi

individuals and 48 Han individuals, with no significant differences

in age or sex between the two groups (P>0.05). The average age of

the Han participants was 57.6 ± 7.9 years, while the Yi participants

had an average age of 57.0 ± 11.9 years. MS patients in both

populations exhibited higher body weight, BMI, total cholesterol

(TC), LDL-C, TG, and uric acid (UA) levels compared to healthy

counterparts (P<0.05). Among Yi subjects with MS, fasting plasma

glucose (FPG), alanine transaminase (ALT), and heart rate were

significantly elevated compared to healthy subjects (P<0.05).

Conversely, no significant differences in FPG levels were observed

between Han MS subjects and healthy control subjects (P>0.05).

Table 1 summarizes the demographic, anthropometric, and

biochemical characteristics of the participants.
3.2 Nontargeted metabolomics analysis

3.2.1 Multivariate statistical analysis
A nontargeted LC-MS/MS metabolomics analysis was

performed to investigate metabolic differences between the MS

and CTR groups in the Yi and Han populations. PCA revealed

significant distinctions between the CTR and MS groups within

both ethnic groups (Figures 2A, B). OPLS-DA and its VIP scores

identified key DEMs between the MS and CTR groups in both

populations (Figures 2C, D). Similar to PCA, the OPLS-DA results

demonstrated notable differences in metabolic profiles between the

two groups. A permutation test confirmed the robustness of the

OPLS-DA model, indicating no overfitting (P < 0.05). For the Han

population, the R²Y and Q² intercepts were 0.9 and -0.8,

respectively, while for the Yi population, these values were 0.82

and -0.57, respectively (Figures 2E, F). These results confirmed the

high quality and reliability of the OPLS-DA model.

A total of 21,011 peaks were detected, and 17,333 metabolites

were retained after de-noising based on relative standard deviation

within the MS and CTR groups of the Han and Yi populations.

Using the criteria VIP > 1 and P < 0.05, 2,762 and 1,535 significant

DEMs were identified in the Han and Yi populations, respectively.
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In the Han population, 900 metabolites were upregulated and 1,862

were downregulated in the MS group (Figure 3A, Supplementary

Table S4). Of these, 266 DEMs were matched using the KEGG and

HDMB databases. The identified DEMs were categorized into 19

groups, with predominant classes including lipids and lipid-like

molecules (23.68%), organic acids and derivatives (12.41%),

organoheterocyclic compounds (10.53%), benzenoids (8.27%),

and fatty acids (8.27%; Figure 3B). In the Yi population, 587

metabolites were upregulated and 948 were downregulated in the

MS group (Figure 3C, Supplementary Table S4). Among these, 280

DEMs were matched using the KEGG and HDMB databases, with

major categories comprising organic acids and derivatives (19.63%),

organoheterocyclic compounds (15.34%), lipids and lipid-like

molecules (12.88%), benzenoids (6.75%), and fatty acids

(6.75%; Figure 3D).

3.2.2 Common and unique DEMs of MS in the
two populations

Venn analysis was performed to explore the common and

unique DEMs in the MS groups of the two populations. In total,

90 DEMs were changed in both MS groups of the two populations,

including 46 upregulated metabolites and 44 downregulated

metabolites (Figures 4A, B, Supplementary Table S5). These

common DEMs were mainly organic acids and derivatives

(24.44%), lipids and lipid-like molecules (18.89%), and

organoheterocyclic compounds (13.33%) (Figure 4C).

In the Han population, there were 176 DEMs in the MS group,

including lipids and lipid-like molecules (30.68%), organic acids

and derivatives (12.5%), organoheterocyclic compounds (11.93%),

and benzenoids (10.80%) (Figure 4D, Supplementary Table S5). In

the Yi popula t ion , there were 73 DEMs, inc lud ing

organoheterocyclic compounds (23.29%), organic acids and

derivatives (17.81%), benzenoids (9.59%), and lipids and lipid-like

molecules (8.22%) (Figure 4E, Supplementary Table S5). Compared

with the CTR groups, the serummetabolites in the MS groups in the

two populations changed to varying degrees, with the three main

metabolites that changed being organic acids and derivatives, lipids

and lipid-like molecules, and organoheterocyclic compounds.

3.2.3 Metabolic enrichment analysis and pathway
analysis

KEGG functional enrichment analysis of the metabolites

indicated that 41 metabolic pathways may be involved in the

pathogenesis of MS in the Han population. Most of these DEMs

were predominantly enriched in amino acid synthesis and

metabolism pathway (25%), followed by protein digestion and

absorption (15.91%), ABC transporters (15.91%), and 2-

oxocarboxylic acid (13.64%) (Figure 5A, Supplementary Table

S6). Differential abundance (DA) score analysis was performed to

determine the overall changes in all DEMs enriched in the same

pathway. Galactose metabolism, protein digestion and absorption,

2-monocarboxylic acid metabolism, pantothenic acid metabolism,

and CoA biosynthesis metabolism were significantly upregulated,

while glycine, serine, and threonine metabolism, arginine synthesis

metabolism, alanine, aspartic acid, and glutamic acid metabolism,
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cancer center carbon metabolism, mineral metabolism, amino acid

synthesis metabolism, ABC transporter, thiamine metabolism, b-
alanine metabolism, purine and pyrimidine metabolism, and amino

acyl-tRNA biosynthesis metabolism were downregulated

(Figure 5B, Supplementary Table S6).

For the Yi population, 35 metabolic pathways may be involved

in the pathogenesis of MS. Most of these DEMs were predominantly

enriched in amino acid synthesis and metabolism pathway (24%),

followed by protein digestion and absorption (20%), biosynthesis of

cofactors (20%), glycine, serine, and threonine metabolism,

galactose metabolism, mineral metabolism, aminoacyl-tRNA

biosynthesis, and cancer center carbon metabolism (16%)

(Figure 5C, Supplementary Table S6). DA score analysis showed

that pathways of phenylalanine and tryptophan synthesis
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metabolism, galactose metabolism, protein digestion and

absorption, glycosylphosphatidylinositol anchor synthesis

metabolism, pathogenic Escherichia coli infection, and autophagy

were upregulated, while glycine, serine, and threonine metabolism,

tryptophan metabolism, and mineral metabolism were

downregulated (Figure 5D, Supplementary Table S6).

Bioinformatics reduction and metabolic pathway enrichment

analysis showed that seven pathways were significant (P<0.05)

among the 39 metabolism pathways in the MS group in the Han

population (Figures 6A, B, Table 2, Supplementary Table S7).

Similarly, five pathways were significant (P<0.05) among the 35

metabolism pathways in the MS group in the Yi population

(Figures 6C, D, Table 3, Supplementary Table S7). Metabolic

pathways enrichment analysis in the different ethnic groups
TABLE 1 Demographic data and biochemical index of the Yi and Han populations.

Variables

Han (n=48) Yi (n=36)
P-
valueAll (n=48) HCTR

(n=25)
HMS
(n=23)

Ph-
value

All (n=36) YCTR
(n=21)

YMS (n=15) PY-
value

Age (years) 57.63 ± 7.92 57.48 ± 8.07 57.78 ± 7.94 0.90 57.06 ± 11.98 55.81 ± 12.54 58.8 ± 11.33 0.468 0.805

Female (%) 30 (62.5%) 17 (56.7%) 13 (43.3%) 0.412 24 (66.7%) 16 (66.7%) 8 (33.3%) 0.151 0.693

Smoking (%) 11 (22.9%) 6 (54.5%) 5 (45.5%) 1.00 6 (16.7%) 3 (50%) 3 (50%) 0.677 0.48

Drinking (%) 8 (16.7%) 4 (50%) 49 (50%) 1.00 9 (25%) 4 (44.4%) 5 (55.6%) 0.443 0.347

Height (m) 1.59 ± 0.08 1.59 ± 0.08 1.58 ± 0.08 0.87 1.59 ± 0.09 1.61 ± 0.08 1.56 ± 0.1 0.099 0.876

Weight (kg) 62.08 ± 12.88 54.15 ± 7.2 70.69 ± 12.2 <0.001 58.93 ± 11.76 52.2 ± 5.92 68.36 ± 11.51 <0.001 0.254

BMI (kg/m2) 24.77 ± 5.34 21.48 ± 2.44 28.35 ± 5.37 <0.001 23.51 ± 5.15 20.19 ± 2.48 28.15 ± 4.24 <0.001 0.278

SBP (mmHg) 108.21 ± 31.26 98.03 ± 22.97 119.27 ± 35.59 0.02 131.93 ± 22.9 119.36 ± 13.56 149.53 ± 21.89 <0.001 <0.001

DBP (mmHg) 81.53 ± 13.95 74.12 ± 10.29 89.96 ± 12.87 <0.001 83.44 ± 15.24 74.91 ± 9.26 95.4 ± 13.99 <0.001 0.554

Heart rate 59.06 ± 27.12 55.28 ± 25.36 63.17 ± 28.91 0.32 74.3 ± 12.15 72.9 ± 13.05 76.17 ± 10.98 0.439 0.001

AST (U/L) 26.68 ± 12.32 25.68 ± 12.77 27.77 ± 12 0.56 25.11 ± 8.94 24.25 ± 8.29 26.31 ± 9.94 0.504 0.518

ALT (U/L) 28.52 ± 19.2 23.7 ± 16.27 33.75 ± 21.07 0.07 18.06 ± 5.92 14.55 ± 4.09 22.97 ± 4.41 <0.001 0.001

TB (mmol/L) 13.98 ± 5.59 14.43 ± 6.1 13.5 ± 5.07 0.57 11.57 ± 4.96 12.08 ± 4.7 10.86 ± 5.38 0.473 0.043

IB (mmol/L) 9.73 ± 3.87 9.77 ± 4.21 9.69 ± 3.55 0.95 7.92 ± 3.66 8.16 ± 3.2 7.59 ± 4.31 0.648 0.033

UREA (mmol/L) 5.72 ± 1.48 6.27 ± 1.44 5.12 ± 1.3 0.01 5.06 ± 1.74 4.88 ± 1.58 5.31 ± 1.97 0.466 0.065

Cr (mmol/L) 69.39 ± 13.98 68.44 ± 14.69 70.41 ± 13.41 0.63 68.06 ± 13.56 64.33 ± 10.23 73.29 ± 16.12 0.071 0.665

TC (mmol/L) 5.1 ± 0.92 4.56 ± 0.7 5.68 ± 0.78 <0.001 5.2 ± 1.05 4.51 ± 0.57 6.17 ± 0.75 <0.001 0.62

LDL-C (mmol/L) 3.05 ± 0.77 2.55 ± 0.46 3.59 ± 0.67 <0.001 2.88 ± 0.84 2.4 ± 0.48 3.56 ± 0.76 <0.002 0.357

TG (mmol/L) 2.16 ± 1.74 1 ± 0.3 3.43 ± 1.78 <0.001 1.85 ± 1.87 1.03 ± 0.35 3.01 ± 2.47 0.008 0.439

HDL (mmol/L) 1.35 ± 0.42 1.57 ± 0.41 1.11 ± 0.28 <0.001 1.55 ± 0.42 1.66 ± 0.42 1.4 ± 0.37 0.061 0.031

UA (mmol/L) 343.46 ± 101.21 301.41 ± 66.84 389.16 ± 113.23 <0.001 319.25 ± 129.98 263.91 ± 60.55 396.73 ± 161.15 0.007 0.34

FPG (mmol/L) 5.26 ± 2.07 4.28 ± 0.56 6.32 ± 2.55 <0.001 5.86 ± 3.1 4.67 ± 0.63 7.53 ± 4.28 0.022 0.289

FT4 (pmol/L) 15.74 ± 2.24 15.59 ± 2.28 15.9 ± 2.24 0.63 13.89 ± 2.88 13.76 ± 2.83 14.08 ± 3.03 0.749 0.001

FT3 (pmol/L) 4.44 ± 0.52 4.39 ± 0.49 4.49 ± 0.56 0.51 4.33 ± 0.65 4.21 ± 0.49 4.51 ± 0.82 0.165 0.415

TSH (mIU/L) 2.8 ± 1.61 2.6 ± 1.55 3.02 ± 1.68 0.37 3.8 ± 4.81 4.05 ± 4.68 3.44 ± 5.15 0.712 0.239
fronti
BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low density lipoprotein; TG, triglyceride; HDL, high density lipoprotein; FPG,
fasting plasma glucose; CREA, serum creatinine; UA, uric acid; HCTR, Control of Han population; HMS, MS of Han population; YCTR, Control of Yi population; YMS, MS of Yi population; Ph-
value: HMS group versus HCTR; PY-value: YMS group versus YCTR; P-value: Han population versus Yi population.
The bold index in the table refers to P<0.05 compared with MS groups.
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identified three common metabolic pathways (P<0.05) in both Yi

and Han populations, including glycine, serine, and threonine

metabolism, nitrogen metabolism, and cyanoamino acid

metabolism, representing potential metabolic pathways for further

research on MS in different ethnic groups.
3.3 Targeted metabolomics analysis
between the CTR and MS groups in the Yi
and Han populations

Nontargeted metabolomics analysis revealed that the differential

metabolic pathways between the MS and CTR groups, irrespective of

ethnicity, predominantly involved amino acid synthesis pathways. To

further investigate these findings, targeted amino acid metabolomics
Frontiers in Endocrinology 08
was performed to identify amino acid profiles significantly associated

with MS in the Yi and Han populations of Yunnan Province.

3.3.1 Multivariate statistical analysis
PCA analysis further demonstrated clear separation between

the CTR and MS groups in both populations (Figures 7A, B).

Consistent with PCA results, the OPLS-DAmodel distinguished the

MS and CTR groups effectively (Figures 7C, D). The permutation

test again confirmed the model’s robustness, with no overfitting

observed (P < 0.05). For the Han population, R²Y and Q² values

were 0.37 and -1.27, respectively, while for the Yi population, these

values were 0.9 and -0.55, respectively (Figures 7E, F). These results

validated the reliability of the OPLS-DA model. Differential amino

acid metabolites were identified between the CTR and MS groups in

both populations.
FIGURE 2

PCA and OPLS-DA score plots for the MS and CTR groups according to the nontargeted metabolic analysis. (A, B) PCA score plots for the MS and
CTR groups in both populations. (C, D) OPLS-DA score plots for the MS and CTR groups in both populations. (E, F) Permutation tests for the OPLS-
DA model.
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A total of 71 amino acid metabolites were detected in plasma

samples. We applied rigorous data management processes,

retaining only metabolites with no more than 50% missing values

in a single group or across all groups. Missing values were imputed

using the minimum observed value multiplied by a random factor

(0.1–0.5). After preprocessing, 52 metabolites were retained. Based

on a screening criterion of P<0.05, 19 significantly altered amino

acid metabolites were identified in the MS group of the Han

population, including 13 upregulated and 6 downregulated

metabolites. In the Yi population’s MS group, 6 significantly

altered metabolites were identified, comprising 5 upregulated and

1 downregulated metabolite (P<0.05), as shown in Tables 4 and 5.

The distribution of these differential amino acids is visualized

through volcano plots and heatmaps for both populations

(Figures 8A–D), highlighting metabolites such as D-glutamine, L-

citrulline, and symmetric dimethylarginine (SDMA).

3.3.2 Association between metabolites and
cardiometabolic risk factors

To further clarify the mutual regulatory relationship between

metabolites andMS, Spearman’s correlation analysis was performed
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to reveal the synergy of changes between metabolites and several

cardiometabolic risk factors. 1-Methyl-L-histidine, D-aspartic acid,

D-citrulline, D-methionine, D-valine, and L-2,4-aminobutyric acid

were negatively correlated with BMI, BP, TC, TG, and LDL-C but

positively correlated with HDL-C. The other differential amino

acids were positively correlated with BMI, BP, TC, TG, and LDL-C

but negatively correlated with HDL-C (Figures 9A, B,

Supplementary Table S8).

3.3.3 Metabolic enrichment analysis and pathway
analysis of the CTR and MS groups in the Yi and
Han populations

KEGG functional enrichment pathway analysis indicated that

25 metabolic pathways may be involved in the pathogenesis of MS

in the Han population (Supplementary Table S9). Most of these

amino acids were predominantly enriched in D-amino acid

metabolism (55.56%), biosynthesis of amino acids (33.33%), 2-

oxocarboxylic acid metabolism, biosynthesis of cofactors, glycine,

serine, and threonine metabolism, and cysteine and methionine

metabolism (22.22%) (Figure 10A, Supplementary Table S9). DA

score analysis showed that alanine, aspartate, and glutamate
FIGURE 3

DEMs in the MS and CTR groups. (A, C) Volcano plot analysis of DEMS with VIP>1 and P<0.05 in both populations. (B, D) Distribution of all DEMs in
both populations.
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metabolism was significantly downregulated, while the other

pathways were upregulated, except for 2-oxocarboxylic acid

metabolism and glycine, serine, and threonine metabolism

(Figure 10B, Supplementary Table S9).

For the Yi population, KEGG pathway analysis identified the

involvement of 16 metabolic pathways in the pathogenesis of MS.

Most of these amino acids were predominantly enriched in the

biosynthesis of amino acids (80%), 2-oxocarboxylic acid

metabolism (40%), glycine, serine, and threonine metabolism

(40%), and the other metabolic pathways (20%) (Figure 10C). DA

score analysis showed that all pathways were significantly

upregulated, except for 2-oxocarboxylic acid metabolism, glycine,

serine, and threonine metabolism (Figure 10D, Supplementary

Table S9).

The significant differential amino acid metabolites were

enriched to further analyze the metabolomic pathways involved

in MS. There were two significant pathways (P<0.05) among the 25

metabolism pathways in the MS group in Han population,

including D-glutamine and D-glutamate metabolism, as well as

cysteine and methionine metabolism, as shown in Table 6 and

Figures 11A, B. For the Yi population, there were three significant

pathways (P<0.05) among the 16 metabolic pathways, namely,

namely, D-glutamine and D-glutamate metabolism, sulfur
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metabolism, and valine, leucine, and isoleucine biosynthesis

(Figures 11C, D, Table 6). Notably, D-glutamine and D-glutamate

metabolism was significantly enriched in the MS group of both

populations, suggesting that these targets should be further

explored to investigate the pathological mechanism underlying MS.
4 Discussion

As a cluster of cardiac metabolic risk factors, the pathogenesis of

MS remains unclear. It is associated with genetic predisposition,

lifestyle, diet, and other contributing factors. The epidemiological

characteristics of MS may be different among people with different

eating habits and genetic backgrounds (8, 18, 20). Amino acids are

essential components of the human body, as protein precursors,

amino acids participate in various physiological activities and

metabolism of the human body and play an important role in the

progression of many diseases (35). In the early stage of metabolic

disease, the imbalance of metabolic activity in the body may lead to

changes in the levels of some specific amino acids, and in-depth

study of MS metabolites in different ethnic groups. Identifying

similarities as well as differences in associations between alterations

in the serum metabolome and metabolic syndrome across ethnic
FIGURE 4

Analysis of DEMs in both populations. (A) Venn analysis in the MS group between the two populations. (B) Hierarchical cluster analysis heatmap of
common DEMS in the MS groups in the two populations. (C) Distribution of common DEMs in the MS group of the two populations. (D) Distribution
of DEMs only in the MS group in the Han Population. (E) Distribution of DEMs only in the MS group in the Yi Population.
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groups is helpful for us to understand the commonness and

characteristics of the disease, which could provide insights for the

effective prevention and treatment of MS in various populations.

Identifying common DEMs and metabolic pathways across

populations enhances our understanding of disease mechanisms

under differing genetic backgrounds, offering a foundation for novel

clues in preventing and managing risk factors such as obesity,

hypertension, dyslipidemia, and glucose abnormalities in diverse

populations. In our study, nontargeted metabolomics analysis

identified three common metabolic pathways in both Yi and Han

populations, including glycine, serine, and threonine metabolism,

nitrogen metabolism, and cyanoamino acid metabolism. Betaine,

glycine, L-Homoserine and L-Asparagine are several differential

metabolites the above metabolic pathways hit and all showing

decreased levels in MS groups across both ethnic groups. Betaine

is the source of methyl donor, which provides methyl to convert

Hcy to methionine, reducing the accumulation of HCY and the

availability of fatty acid substrate (acetyl CoA) (36). Previous studies

have shown that plasma betaine is negatively correlated with body

mass index (BMI), body fat percentage and waist circumference

(37). Betaine could also activate AMPK pathway, regulating the

expression of PPARa and its downstream fatty acid oxidation

related genes, thereby increasing the activity of carnitine

palmitoyl transferase 1, promoting the b oxidation of atty acids in

mitochondria, negatively regulating fat synthesis, and improving

lipid accumulation and islet resistance in HFD-induced obese mice

(38). Abnormal metabolism of glycine, serine, and threonine is
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closely associated with obesity, insulin resistance, and various

cardiac metabolic diseases (39, 40). Glycine is primarily

synthesized in the liver and kidney from choline, oxalate, betaine,

and glucose (10), contributes to the production of creatine,

glutathione, purines, glucose, and collagen. Circulating glycine

deficiency has been implicated in metabolic dysfunction-related

fatty liver disease, atherosclerosis, myocardial infarction, and MS

(41, 42). Under insulin-resistant conditions, hepatocytes prioritize

glycine and serine for glucose synthesis, leading to decreased

circulating levels of these amino acids (22, 39). Additionally,

glutathione synthesis is upregulated in response to oxidative stress

during insulin resistance, further depleting glycine and serine (43).

In obesity, serine serves as a precursor for sphingolipid synthesis,

promoting the accumulation of bioactive lipid ceramides in insulin-

sensitive tissues such as the liver and muscle, thereby exacerbating

insulin resistance (39). In targeted metabolomics analysis, D-

glutamine and D-glutamate metabolism emerged as a significantly

enriched pathway in both groups, and D-glutamine, L-citrulline,

SDMA, and L-2,4-diaminobutyric acid were common differential

amino acids. Glutamine is vital in glutathione production, redox

homeostasis, and intracellular acid-base balance (44). Following the

conversion of glutamate to a-KG, a-KG enters the tricarboxylic

acid (TCA) cycle and serves as a substrate for intracellular

glutathione (GSH) synthesis and turnover. GSH is further

converted to ammonia by g-glutamyl transpeptidase (GGT) and

recycled as glutamate (45). Under pathological conditions

associated with insulin resistance, such as non-alcoholic fatty liver
FIGURE 5

KEGG enrichment analysis of DEMs in the MS and CTR groups according to the nontargeted metabolic analysis. (A, C) Enrichment analysis of DEMs.
(B, D) DA score analysis of DEMs. Each dot represents a metabolic pathway. The X-axis is the DA score, and the Y-axis is the ID number of the KEGG
metabolic pathway. * represents significance (*P<0.05, **P<0.01, and ***P<0.001).
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disease (NAFLD), obesity, and MS, altered mitochondrial

metabolism and increased energy demand in the liver elevate

transaminase levels and glutamate release (46, 47). Serum

glutamine levels in the prediabetic MS group are 4.8 times higher

than those in the control group, while glutamine levels in MS group

patients with normal blood glucose are 3.5 times higher than those

in control group subjects, underscoring the connection between

glutamine, blood glucose, and MS (48). D-glutamine and D-
Frontiers in Endocrinology 12
glutamate metabolism, arginine biosynthesis, glutathione

metabolism, and phenylalanine and lysine degradation pathways

have been reported to be significantly affected in MS (48).

Compared with non-progressive individuals, those who progress

to pre-T2D within 5 years exhibit higher baseline levels of four polar

amino acids (aspartic acid, asparagine, glutamine, and glutamic

acid) and one aromatic amino acid (phenylalanine), which are

critical predictors of T2D (49).
FIGURE 6

KEGG pathway analysis of DEMs in the MS and CTR groups. (A, C) Bubble plot analysis of pathways. Each related metabolic pathway is shown as a
circle, in which the size and color are based on the pathway impact value and P-value, respectively. (B, D) Treemap plot analysis of pathways. Each
related metabolic pathway is shown as a rectangle, in which the size and color are based on the pathway impact value and P-value, respectively.
TABLE 2 Seven differential metabolic pathways in the MS group of the Han population.

Pathway Total Hits P-value Impact Hits DEMs

Glycine, serine, and
threonine metabolism

48 4 0.017509 0.33266
Betaine; Glycine; Sarcosine; L-Homoserine

Beta-Alanine metabolism 28 3 0.020221 0.28022 Beta-Alanine; Uracil; 4-Aminobutyraldehyde;

Arginine and proline metabolism 77 5 0.021882 0.15694
L-Glutamine; Ornithine; Citrulline; Sarcosine;
4-Aminobutyraldehyde;

Pantothenate and CoA biosynthesis 27 3 0.018324 0.14652 Beta-Alanine; Alpha-ketoisovaleric acid; Uracil

Pyrimidine metabolism 60 4 0.036451 0.09193 L-Glutamine; Uridine; Uracil; Beta-Alanine

Nitrogen metabolism 39 4 0.0085119 0.00763 L-Tyrosine; L-Asparagine; L-Glutamine; Glycine;

Cyanoamino acid metabolism 16 2 0.04371 0 L-Asparagine; Glycine;
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Furthermore, focusing on the unique metabolites and pathways

associated with metabolic syndrome in individuals from different

living environments and genetic backgrounds, may offer insights for

personalized prevention and treatment of metabolic syndrome
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across diverse ethnic groups. In targeted metabonomic analysis,

Sulfur metabolism, Cysteine and methionine metabolism and

Valine, leucine and isoleucine biosynthesis changed significantly

in MS of Yi nationality, L-tryptophan and L-Isoleucine were higher
TABLE 3 Five differential metabolic pathways in the MS group of the Yi population.

Pathway Total Hits P-value Impact Hits DEMs

Glycine, serine, and threonine metabolism 48 4 0.0041626 0.28293 Betaine; Glycine; L-Homoserine; L-Tryptophan;

Nitrogen metabolism 39 4 0.0019252 0.00763 L-Tyrosine; L-Tryptophan; L-Asparagine; Glycine;

Aminoacyl-tRNA biosynthesis 75 4 0.019865 0 L-Asparagine; Glycine; L-Tryptophan; L-Tyrosine;

Cyanoamino acid metabolism 16 2 0.020536 0 L-Asparagine; Glycine;

Thiamine metabolism 24 2 0.04403 0 L-Tyrosine; Glycine;
FIGURE 7

PCA and OPLS-DA score plots for the MS and CTR groups according to the targeted metabolic analysis. (A, B) PCA score plots for the MS and CTR
groups in both populations. (C, D) OPLS-DA score plots for the MS and CTR groups in both populations. (E, F) Permutation tests for the OPLS-
DA model.
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than those in the control group of Yi population. Increased levels of

plasma BCAAs (leucine, isoleucine, and valine) and AAAs

(phenylalanine, tyrosine, and tryptophan) are associated with

visceral obesity, insulin resistance, glucose metabolism, lipid

metabolism, diabetes, and CVD (11, 50). As direct activators of

mammalian target of rapamycin (mTOR) signal transduction,

BCAAs activate the mTORC protein kinase to enhance

phosphorylation of insulin receptor substrate-1 on inhibitory

sites, leading to blunted phosphatidylinositol-3-kinase activation

and downstream insulin signaling (42). The plasma levels of BCAAs

in T2D patients with poor blood glucose control are approximately

40% higher than those in controls (51), and the levels of these three

amino acids are positively correlated with the levels of FPG and TG
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(50). There is a significant change in Cysteine and methionine

metabolism in Han MS, which is closely related to the synthesis of

GSH. Glutathione levels were markedly increased in the MS group

of the Han 464 population, GSH scavenges ROS and is reversibly

oxidized to oxidized glutathione (GSSG), which plays an important

role in the process of antagonizing oxidative stress, while oxidative

stress is closely related to metabolic syndrome (55, 56). At the same

time, we found that the levels of D-threonine, D-serine, L-

Methionine and Glutamic acid in the MS group were also

significantly higher than those in the CTR group in the Han

population were found in MS of Han nationality, and the above

metabolites were closely related to the metabolism of GSH (55, 57).

These changes may result from mitochondrial dysfunction and
TABLE 4 Differential amino acids between HMS and HCTR by targeted metabolic analysis.

Compound name HCTR HMS VIP P-value Q-value FC

D-Histidine 101.30235 165.37735 1.78165 1.05339E-05 0.00040 1.63251

D-Tryptophan 151665.0767 197859.8625 1.77498 1.55337E-05 0.00040 1.30458

D-Serine 82690.20814 114246.5619 1.70320 0.00013 0.00229 1.38162

1-Methyl-L-histidine 245838.3513 195245.6494 1.71766 0.00118 0.01533 0.79420

L-2,4-diaminobutyric acid 893810.9686 787367.9074 1.72313 0.00299 0.02384 0.88091

L-Citrulline 132291.7693 152622.9844 1.26414 0.00378 0.02384 1.15368

3-Methyl-histidine 484299.2402 566218.7364 1.04375 0.00438 0.02384 1.16915

L-Cysteic acid 338.35029 443.07422 1.37148 0.00453 0.02384 1.30951

D-Citrulline 2862.56029 2251.235 1.51243 0.00455 0.02384 0.78644

L-Carnosine 1029.9879 1577.37128 1.66086 0.00458 0.02384 1.53145

Symmetric dimethylarginine 4246.02696 5877.41343 1.42537 0.00527 0.02426 1.38421

D-Glutamine 283865.3487 416106.9714 1.53709 0.00600 0.02426 1.46586

D-Valine 51029.92716 45227.29353 1.36884 0.01179 0.04716 0.88629

D-Aspartic acid 166151.0925 145853.6741 1.50783 0.01482 0.05416 0.87784

L-Methionine 49306.05255 56401.3001 0.99058 0.01649 0.05416 1.14390

D-Methionine 68.53971 45.69313 1.07876 0.01761 0.05416 0.66667

D-Threonine 432.19373 602.16059 1.22138 0.01771 0.05416 1.39327

D-Glutamic acid 423.88578 733.10020 1.18977 0.02335 0.06747 1.72948

Glutathione 44714.59716 49089.82069 1.07600 0.03186 0.08719 1.09785
TABLE 5 Differential amino acids between YMS and YCTR by targeted metabolic analysis.

Compound name YCTR YMS VIP P-value Q-value FC

3-Methyl-histidine 431876.5823 541785.3277 1.65865 0.04481 0.38839 1.25449

D-Glutamine 230295.1667 272940.3297 1.71560 0.03099 0.38839 1.18518

L-2,4-diaminobutyric acid 899996.084 776029.251 1.64883 0.04281 0.38839 0.86226

L-Citrulline 122926.7417 147458.6497 1.71998 0.01795 0.35996 1.19957

L-Homoserine 47183.37367 59302.66733 1.71992 0.02077 0.35996 1.25686

L-Isoleucine 3077.47533 5047.80833 1.82529 0.01180 0.35996 1.64024
frontiersin.org

https://doi.org/10.3389/fendo.2025.1488099
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ji et al. 10.3389/fendo.2025.1488099
altered metabolism in MS, which elevates glutamate levels, while

oxidative stress intensifies the demand for GSH. These findings

align with those of previous reports (11, 43, 48). In addition, the

levels of D-Tryptophan, histidine, valine and other amino acids also

changed in the MS group of Han population (Table 4). Tryptophan

is composed of b-carbon connected to an indole group, and it is

catabolized in the proinflammatory state to produce various signal

substances through the canine uric acid, hydroxycanine, indole, and

5-hydroxytryptamine pathways (52, 53). The serum levels of

tryptophan and tyrosine in MS patients with prediabetes are

significantly higher than those in healthy controls (48). The

serum levels of tryptophan and its two downstream products

(canine uric acid and xanthurenic acid) are increased in patients

with MS, and the ratio of tryptophan to canine uric acid is higher
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(54). High levels of valine also produce the 3-hydroxyisobutyrate

(3-HIB) metabolite, which can activate the transport of fatty acids

across endothelial cells, resulting in local tissue lipid accumulation

and lipotoxicity, ultimately compromising insulin signaling (42,

55). Arginine is the precursor of urea, polyamine, proline, nitric

oxide, creatine, glutamic acid, and agmatine (56). symmetric

dimethylarginine (SDMA)is a derivative of L-arginine generated

by the posttranslational methylation of arginine residues, such as its

isomer, and SDMA may interfere with the use of the L-arginine

enzyme substrate, which diminishes NO bioavailability (53). The

increase of free 1-methylhistidine is associated with higher SBP and

DBP in African Americans (57). Histidine is an essential amino acid

that has been demonstrated to have antioxidant properties, reduce

inflammatory burden, and reduce oxidative stress, and it is closely
FIGURE 8

Differential amino acid metabolites in the MS and CTR groups. (A, B) Volcano plot analysis of DEMs with P<0.05 in both populations. (C, D)
Hierarchical cluster analysis heatmap of the upregulated and downregulated differential amino acid metabolites in both populations.
FIGURE 9

Correlation analysis of differential amino acids and metabolic components. (A) Heatmap of the correlation analysis in the Han population. (B)
Heatmap of the correlation analysis in the Yi population. The color of each cell represents the Spearman’s correlation coefficient. Red indicates a
positive correlation, and blue indicates a negative correlation.
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related to insulin sensitivity, obesity, and MS (58, 59). Histidine

supplementation has been found to improve insulin resistance,

blood lipid levels and inflammation, and delay the development

of atherosclerosis in rodent models of diabetes and metabolic

syndrome (60).

Oxidative stress is closely related to the occurrence of metabolic

syndrome (61). GSH production is a key defense against oxidative

stress, but its balance is frequently disrupted in metabolic diseases

(19). In our study, serum metabolomics analysis of MS in two

distinct ethnic groups highlights the pivotal role of amino acid

metabolic disorders in MS pathogenesis. Notably, no matter the

glycine-serine-threonine pathway, significantly enriched in non-

targeted metabolomics, or the D-glutamine and D-glutamate

pathway, cysteine and methionine metabolism identified in
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targeted metabolomics, are closely linked to glutathione synthesis,

which suggested that the imbalance of oxidative stress may be a

common and potential driver of MS across ethnic groups. However,

as our study was cross-sectional with a limited sample size, the

causal relationship between serum amino acids and the risk of MS

cannot be clarified, further research is required to validate the roles

of these DEMs and pathways in MS.
5 Conclusions

Our study investigates metabolic differences in metabolic

syndrome (MS) between Yi and Han populations through

nontargeted and targeted metabolomics approaches, identifying
FIGURE 10

KEGG enrichment analysis of differential amino acid metabolites in the MS and CTR groups according to the nontargeted metabolic analysis. (A, C)
Enrichment analysis of DEMs. (B, D) DA score analysis of amino acid metabolites. Each dot represents a metabolic pathway. The X-axis is the DA
score, and the Y-axis is the ID number of the KEGG metabolic pathway. * represents significance (*P<0.05, **P<0.01, and ***P<0.001).
TABLE 6 Significant pathways between MS and CTR by targeted metabolic analysis in two distinct populations.

Ethnic Pathway Total Hits P-value Impact Hits DEMs

Han population D-Glutamine and
D-glutamate metabolism

11 2 0.00052 0.49732 D-Glutamine;
D-Glutamic acid

Cysteine and methionine metabolism 56 2 0.01361 0.04541 L-Methionine; Glutathione;

Yi population D-Glutamine and
D-glutamate metabolism

11 1 0.01817 0.17112 D-Glutamine

Sulfur metabolism 18 1 0.02960 0.0378 L-Homoserine

Valine, leucine and
isoleucine biosynthesis

27 1 0.044147 0.01325 L-Isoleucine
frontiersin.org

https://doi.org/10.3389/fendo.2025.1488099
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ji et al. 10.3389/fendo.2025.1488099
both common and unique metabolites and metabolic pathways

associated with MS, especially amino acid metabolic disorders,

including glycine, serine, and threonine metabolism, D-glutamine

and D-glutamate metabolism, which may play critical roles in

regulating different metabolic dysfunctions and worth further

exploration in MS pathogenesis, which might provide insights for

the effective prevention and treatment of MS in various populations.
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