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Xiaowen Wang1, Xiaojun Yang1* and Hong Zhang1*

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University,
Suzhou, Jiangsu, China, 2Department of Spinal Surgery, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
Background: Endometriosis (EMs) is a common condition that causes

dysmenorrhea, chronic pelvic pain, and infertility, affecting millions of women

worldwide. Despite the use of assisted reproductive technology, EMs patients

often experience lower embryo implantation rates and recurrent implantation

failure (RIF) due to impaired uterine endometrial receptivity. This study aims to

identify shared diagnostic genes and underlying mechanisms between EMs and

RIF using integrated transcriptomic analysis and machine learning with Gene

Expression Omnibus (GEO) datasets.

Methods: We analyzed GSE11691, GSE7305, GSE111974, and GSE103465 as

training datasets for EMs and RIF, and GSE25628 and GSE92324 as validation

datasets. Differentially expressed genes (DEGs) and Weighted Gene Co-

Expression Network Analysis (WGCNA) identified key genes specific to and

shared by EMs and RIF. Machine learning algorithms were used to determine

the shared diagnostic gene, whose performance was validated in both training

and validation datasets. Single-gene Gene Set Enrichment Analysis (GSEA)

revealed shared biological processes in EMs and RIF, while CIBERSORT analysis

highlighted similarities and differences in immune infiltration between the two

conditions. Finally, endometrial samples from healthy controls, EMs, and RIF

patients were collected, and qRT-PCR was performed to validate the

diagnostic gene.

Results:We identified 48 shared key genes between EMs and RIF. The diagnostic

gene EHF was selected through machine learning algorithms, and its diagnostic

performance was validated in both training and validation datasets. ROC curve

analysis demonstrated excellent diagnostic accuracy of EHF for both diseases.

Gene Set Enrichment Analysis (GSEA) revealed that both conditions shared

biological processes, including dysregulated extracellular matrix remodeling

and abnormal immune infiltration. Furthermore, we validated the expression of

EHF in endometrial samples from healthy controls, EMs, and RIF patients.

Additionally, we characterized the immune microenvironment in EMs and RIF,

highlighting changes in immune cell components associated with EHF.
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Discussion: The diagnostic gene EHF identified in this study may serve as a key

link between EMs and RIF. The shared pathological processes in both conditions

involve alterations in the extracellular matrix and subsequent changes in the

immune microenvironment. These findings provide novel insights into potential

therapeutic strategies for improving infertility treatment in patients with EMs.
KEYWORDS

endometriosis, recurrent implantation failure, integrated transcriptomic analysis,
machine learning, extracellular matrix
Introduction

As a complex and enigmatic gynecological disease, endometriosis

(EMs) brings dysmenorrhea, chronic pelvic pain, especially infertility to

women, which troubles millions of women worldwide (1). Among

them, about 30%-50% of patients with EMs are complicated by

infertility (2, 3). For women with combined infertility and EMs,

Assisted Reproductive Technology (ART) appears to be a promising

option (4, 5). It can retrieve oocytes directly from the ovary, avoiding

the oocytes from staying in the abdominal microenvironment of EMs,

thereby reducing the impact of EMs on the oocytes. However, even

when undergoing ART, EMs patients may still experience lower

embryo implantation rates or clinical pregnancy rates compared to

infertile patients with other causes like tubal blockages (6), and in some

cases, even recurrent implantation failure (RIF). These findings suggest

the presence of shared pathological processes between these two

conditions. Identifying these pathological processes can significantly

enhance the pregnancy rates of individuals with EMs.

Meanwhile, the mutation allele frequency (MAF) of cancer-

associated genes in endometriotic epithelium significantly increases

compared to normal endometrium, indicating a high degree of

heterogeneity (7). Endometrial cells carrying cancer-related mutations

have a selective advantage in retrograde blood flow, thereby promoting

the development of EMs. Therefore, we believe that endometrium in

EMs patients is not universally abnormal. Ectopic endometrium seems

to more accurately represent the pathological process of EMs.

Recurrent Implantation Failure (RIF) typically refers to the

inability of women under the age of 40 to achieve a viable pregnancy

after at least three cycles of fresh or frozen embryo transfer, in which

more than four high-quality embryos or two high-quality blastocysts

have been implanted (8). Current research suggests that the main

causes for RIF include embryo developmental defects, uterine

disorders, and reduced endometrial receptivity (6, 9, 10). Following

ART, local immune dysfunction in the endometrium remains one of

the major challenges in RIF, since specific immune activation at the

maternal-fetal interface is necessary for embryo invasion (11, 12).

Therefore, immune cells in the endometrium, such as natural killer

cells, macrophages, and T cells, play a crucial role in regulating

endometrial receptivity and embryo implantation (13). However, the

mechanisms of immune cell infiltration in patients with RIF still

deserves further exploration.
02
In this study, we aimed to explore the potential diagnostic genes

and disease processes shared between EMs and RIF, as well as the

changes in the immunemicroenvironment of these two conditions. To

achieve this objective, we downloaded transcriptome data from GEO

and identified common hub genes in both diseases through

differentially expressed genes (DEGs) analysis and Weighted Gene

Co-Expression Network Analysis (WGCNA) respectively.

Furthermore, we employed two machine learning algorithms to

identify shared diagnostic genes, with EHF being the key gene, and

validated its diagnostic performance in the validation dataset. Finally,

the single-gene gene set enrichment analysis (GSEA) and immune

infiltration analysis showed that both diseases exhibit abnormal

extracellular matrix regulation and associated abnormal immune

infiltration. In summary, this study provides a theoretical basis for

the potential co-pathogenesis of EMs and RIF and provides a new

therapeutic direction for the treatment of infertility in EMs patients.
Materials and methods

Data collection and preparation

A Total of 6 Gene Expression Omnibus Series (GSE) Datasets

retrieved from the Gene ExpressionOmnibus database (GEO) (http://

www.ncbi.nlm.nih.gov/geo/) are included in the Study. For EMs, we

have chosen normal endometrial samples and ectopic endometrial

samples from EMs patients as our study subjects. Specifically,

GSE11691, GSE7305, and GSE25628 were selected, with GSE11691

and GSE7305 serving as the training set, and GSE25628 as the

validation set. In the case of the GSE11691 dataset, Principal

Component Analysis (PCA) results showed GSM296885 as an

outlier (Supplementary Figure S1). Consequently, this data has been

excluded from subsequent analyses.

Additionally, GSE111974, GSE103465, and GSE92324 represented

RIF data, with GSE111974 and GSE103465 serving as the training set

andGSE92324 as the validation set. Detailed information of the datasets

was provided in Table 1 and the whole workflowwas shown in Figure 1.

The “limma” R package was utilized for background correction

and normalization in each dataset to ensure uniformity in data

processing. After merging the data, a PCA was conducted to assess

whether batch effects were present among the datasets. The “sva”
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package was then employed to correct for batch effects introduced

by the different datasets.
Identification of DEGs

We utilized the “limma” R package to identify DEGs in control

and disease groups for the two diseases. The criteria for DEGs

selection were set as P < 0.05 and |logFC| > 1. The selected DEGs

were visualized using volcano plots and heatmaps created with the

“pheatmap” R package and “ggplot2” R package.
Weighted gene co-expression
network analysis

To identify hub gene with potential co-regulatory patterns in the

dataset, we employed the “WGCNA” R package to perform

hierarchical clustering. First, we clustered the samples and removed

the filtered outliers. Following that, the “pickSoftThreshold” function

was utilized to calculate the linear correlation between the changes in

gene connectivity and the number of genes at different soft-

thresholding powers. Here, we set the fit index to 0.85 to obtain the

optimal b value for subsequent calculations. Then the “adjacency”

function constructed an adjacency matrix, adjacencyExpr, and the

“TOMsimilarity” function generated the Topological Overlap Matrix

(TOM) based on the gene expression data. Hierarchical clusteringwas

performed using the dissimilarity TOM method. Set the minimum

number of genes in the module to 60, and then started dynamic

pruning module division. Gene modules were obtained, and similar

modules were merged. Finally, a heatmap showing the relationship

between traits and modules was plotted, displaying correlation

coefficients and P values.

The genes in each module were sorted according to the module

feature values, and the genes were filtered based on the gene

significance (GS) and modular membership (MM) values. In EMs

and RIF, we selected genes with |MM|>0.8 and |GS|>0.6 as hub genes.
Identification of shared gene and GO
enrichment analysis

By intersecting the DEGs and WGCNA hub genes of EMs and

RIF respectively, the key genes involved in the pathological
Frontiers in Endocrinology 03
processes of both diseases were obtained. To further identify the

biological processes these genes associated with, we conducted the

“clusterProfiler “ R package to perform Gene Ontology (GO)

enrichment analysis. The enriched pathways were visualized in a

bubble chart, displaying the top 10 enriched pathways.
Machine learning

Two machine learning methods, Support Vector Machine

Recursive Feature Elimination (SVM-RFE) and Random Forest (RF),

were used to further screen the shared genes between the two diseases.

Firstly, we employed the “RandomForest” R package to identify

important genes using the RF algorithm. We constructed a RF

model with 500 trees on the training dataset and determined the

optimal number of trees through cross-validation error. Finally,

genes were ranked according to their importance, and the top 30

most important genes were plotted.

Next, SVM-RFE was employed for further gene selection.

Recursive Feature Elimination (RFE) is a backward selection

method that starts with all features and recursively removes the

least important ones based on the performance of the model. Using

the “e1071,” “kernlab,” and “caret” R packages, all 48 genes were

initially included in the model, and the optimal number of genes to

include in the model was determined through ten-fold cross-

validation. SVM-RFE removes one feature each time and

calculates Root Mean Square Error (RMSE), which is used to

evaluate the error between model predictions and actual

observations. The green points in the figure indicated that when

the RMSE reaches the minimum value, the corresponding feature

subset is considered the best feature set.
Receiver operating characteristic
(ROC) curve

With the “pROC” R package, we generated ROC curves to

assess the diagnostic performance of the shared diagnostic genes in

both the training and validation datasets. Sensitivity and specificity

of these genes were calculated respectively. The sensitivity was

plotted on the vertical axis, while specificity was plotted on the

horizontal axis. The area under the curve (AUC) was calculated to

measure the model performance. A higher AUC value indicates

better performance.
TABLE 1 Datasets information.

GSE number Platform Samples Disease Group

GSE11691 GPL96 8 patients and 9 controls Endometriosis Discovery

GSE7305 GPL570 10 patients and 10 controls Endometriosis Discovery

GSE25628 GPL571 9 patients and 6 controls Endometriosis Validation

GSE111974 GPL17077 24 patients and 24 controls RIF Discovery

GSE103465 GPL16043 3 patients and 3 controls RIF Discovery

GSE92324 GPL10558 10 patients and 8 controls RIF Validation
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Single-gene gene set enrichment analysis

First, we divided the data sets of the two diseases into EHF high

expression and low expression groups according to the median

expression of the shared diagnostic gene EHF, and then compared

the differences between the two groups and get the logFC of each
Frontiers in Endocrinology 04
individual gene. All genes were then ranked based on their logFC

values. Subsequently, “clusterProfiler” R package was used to

perform GSEA on the sorted genes, with gene sets obtained from

the MSigDB database (c5.go.v2023.1.Hs.symbols.gmt). Finally, the

top 5 pathways enriched in each group were displayed using the

“enrichplot” R package.
FIGURE 1

Work flow chart of the entire design. EMs, endometriosis; RIF, Recurrent Implantation Failure; GSE, Gene Expression Omnibus Series; LIMMA, Linear
Models for Microarray Data; DEGs, Differentially Expressed Genes; WGCNA, Weighted Gene Co-expression Network Analysis; SVM-RFE, Support
Vector Machine- Recursive Feature Elimination; GSEA, Gene Set Enrichment Analysis; ROC curve, The Receiver Operating Characteristic
(ROC) curve.
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Immune cell abundance analysis

CIBERSORT analysis was performed on each sample in the two

diseases. This analysis was based on the principle of linear support

vector regression to deconvolve the expression matrix of human

immune cell subtypes, so that we can obtain the proportion of

immune cells in each sample. LM22 gene expression dataset, which

includes data for 22 distinct immune cell types was used to estimate

the relative proportions of different immune cell types within

complex mixed samples. This dataset can be obtained from the

CIBERSORT website (https://cibersort.stanford.edu/).

Following the analysis with the “CIBERSORT” function, we

obtained the proportions of 22 immune cell types for each sample.

Samples with P < 0.05 were used for subsequent analysis. We then

used the “corrplot” R package to visualize the proportions of

different immune cells in each sample with bar charts.

Additionally, the abundance of each immune cell between the

normal group and the disease group in the two diseases was

calculated, which was displayed by the violin plot of the “vioplot”

R package. Finally, the correlation between each immune cell and

the shared diagnostic gene EHF was calculated by spearman test,

and the results were presented through lollipop charts created with

the “ggplot2” R package.
Human endometrial samples

All endometrial samples were obtained from the First Affiliated

Hospital of Soochow University. Ectopic endometrium samples were

obtained from EMs patients through laparoscopic procedures. These

surgeries were conducted based on clinical indications for the

diagnosis and management of endometriosis. The inclusion criteria

for this study were as follows: (1) Laparoscopic diagnosis of grade III

or IV EMs; (2) Aged 20-40 years old; (3) No hormonal treatment

received in the three months preceding sample collection; (4)

Exclusion of other uterine or endocrine disorders. RIF samples

were collected from secretory phase endometrium of patients who

had undergone at least two cycles of IVF, ICSI, or frozen embryo

transfers, with a cumulative transfer of at least four high-quality

cleavage-stage embryos or two high-quality blastocysts and still failed

to implant. PCOS and other uterine or endocrine disorders were

excluded. Normal endometrial samples were sourced from healthy

women aged 20-40 during the secretory phase of the menstrual cycle.

The collected endometrial samples were processed using Trizol

(Vazyme, Nanjing, China) for RNA extraction and then reverse-

transcribed into cDNA using HiScript III 1st Strand cDNA

Synthesis Kit (Vazyme, Nanjing, China). Subsequently,

quantitative real-time polymerase chain reaction (qRT-PCR) was

employed to assess the relative expression levels of EHF in each

sample. The primer of the genes we used were showed in

Supplementary Table S1.

The results of the qRT-PCR were presented as DDCT values for

each sample. The comparison between the two groups was

performed using a t-test, and the results were displayed as the

mean ± standard error of the mean (SEM). P < 0.05 was considered

statistically significant.
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Results

Data collection and preparation

After performing background correction and normalization on

each data set respectively, we merged the data and corrected for

batch effects. The PCA results showed the data before and after

correcting for batch effects in EMs (Figures 2A, B) and RIF

(Figures 2C, D).
Identification of differentially
expressed genes

The “limma” R package was utilized to analyze DEGs between

the ectopic endometrium of EMs patients and the normal group.

The criteria for DEGs selection were set as P< 0.05 and |logFC| > 1.

A total of 708 DEGs were identified, consisting of 406 upregulated

genes and 302 downregulated genes. Additionally, there were 304

DEGs in the RIF dataset, of which 187 genes were up-regulated, and

117 genes were down-regulated. The overall profiles of these DEGs

were depicted through volcano plots and heatmaps (Figures 2E–H),

highlighting their significant role in the progression of both EMs

and RIF disease.
Identification of key WGCNA modules

To further identify key genes associated with the disease,

WGCNA was employed to identify the most disease-relevant

modules in the two groups.

In EMs group, an optimal soft threshold of 5 (R2 = 0.85) was

selected for constructing a scale-free network, based on calculations

of scale-independence and average connectivity (Figure 3A).

Subsequently, an adjacency matrix was generated using the

adjacency function. As shown in Figure 3B, hierarchical clustering

was performed using the TOM dissimilarity measure. The genes were

clustered based on their expression correlation and divided into

different groups, resulting in a total of 10 gene modules. As shown in

Figure 3C, with a significance level of P < 0.05, genes in the Green,

Brown, Black, and Turquoise modules were positively correlated with

clinical features of the control group and negatively correlatedwith the

EMs group. However, the Purple, Pink, and Red modules exhibited a

negative correlation with clinical features of the control group and a

positive correlation with the EMs group.

As for RIF group, the selected optimal soft threshold for power

was 10 (R2 = 0.85) (Figure 3D). After performing hierarchical

clustering using the TOM (Figure 3E), a total of 14 modules were

identified. As shown in Figure 3F, with a significance level of P <

0.05, genes in the Darkgray, Darkturquoise, Gray60, Ligntcyan,

Greenyellow, and Lightgreen modules were positively correlated

with clinical features of the control group and negatively correlated

with the RIF group. However, the Darkgreen and Brown modules

exhibited a negative correlation with clinical features of the control

group and a positive correlation with the RIF group.
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Among the selected key modules, a total of 709 genes were

identified in the EMs group and 290 genes in the RIF group,

satisfying the criteria of |MM| > 0.8 and |GS| > 0.6.
GO enrichment analysis of shared genes

To explore the shared pathological mechanisms between EMs

and RIF, we have identified overlapping genes from DEGs and key

modules obtained through WGCNA. As shown in Figures 4A and

B, it appears that there were 7 genes shared between the DEGs, and

41 genes shared between the key modules identified by WGCNA.

To further investigate the biological processes associated with

these genes, we conducted Gene Ontology (GO) enrichment

analysis (Figure 4C). The results indicated that these genes are

primarily enriched in biological processes related to regulation of

peptidase activity and extracellular matrix structural constituent,

suggesting that alterations in extracellular matrix structural

components play a significant role in both EMs and RIF.
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Identification of shared diagnostic gene

To further identify the genes that serve as potential biomarkers

for disease diagnosis or classification, we applied RF and SVM-RFE

algorithms to each group.

48 candidate genes were input into the RF algorithm, and the

genes were ranked based on their importance scores, as shown in

Figure 5A. Subsequently, when screening the 48 candidate genes for

EMs using SVM-RFE, it was observed that the RMSE was

minimized when the number of genes was set to 22 (Figure 5B).

The top 10 genes in the RF ranking were then intersected with the

22 genes selected by SVM-RFE, resulting in a set of 10 overlapping

genes (CAV2, RAD51AP1, PAX2, HGD, CWH43, VCAM1, GAS1,

NFIB, EHF, MAP2K6) (Figure 5C).

Similarly, for RIF, the RF algorithm results displayed the genes

ranked by their importance scores, as depicted in Figure 5D. The

SVM-RFE algorithm was applied to the 48 candidate genes, resulting

in the identification of 6 hub genes (Figure 5E). The intersection of the

top 10 genes from the RF ranking and the 6 genes selected by SVM-
FIGURE 2

Data preparation and DEGs identification in EMs and RIF. (A, B) PCA plots showed the expression pattern before batch correction (A) and after batch
correction (B) in GSE11691 and GSE7305 of EMs group. (C, D) PCA plots showed the expression pattern before batch correction (C) and after batch
correction (D) in GSE103465 and GSE111974 of RIF group. (E, F) Volcano plot showed the DEGs (P < 0.05 and |logFC| > 1) in EMs group (E) and RIF
group (F). Blue showed the down-regulated genes and red showed the up-regulated genes. (G, H) Heatmap showed the DEGs (P < 0.05) in EMs
group (G) and RIF group (H). Blue showed the down-regulated genes and red showed the up-regulated genes.
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RFE yielded a set of 6 overlapping genes, specifically ATXN3,

NDUFA9, EHF, TRIAP1, MUC1, and XPA (Figure 5F).
Validation of shared diagnostic genes in
training and validation datasets

To further understand the shared physiological processes, we

took the intersection of the most diagnostically valuable genes
Frontiers in Endocrinology 07
obtained from EMs and RIF (Figure 6A). We found that the

diagnostic gene shared between the two conditions was EHF (Ets

homologous factor).

Next, we assessed the expression levels of EHF in both EMs and

RIF. The results revealed that in EMs, the expression of EHF was

significantly lower than that in control group (P < 0.001), while in RIF,

the expression of EHF was significantly higher than that in control

group (P < 0.001) (Figures 6B, C). Additionally, to assess the diagnostic

sensitivity and specificity of EHF, ROC analysis was performed
FIGURE 3

Weighted gene co-expression network analysis of EMs and RIF. (A) Determination of soft-threshold power in the WGCNA of EMs group. (B)
Clustering dendrograms showing modules of highly connected genes within the EMs group. (C) Heatmap of the correlation between the modules
and traits of EMs group. Red indicates positive correlations, blue represents negative correlations, and the correlation coefficients and P values are
displayed within the individual grid cells. (D) Determination of soft-threshold power in the WGCNA of RIF group. (E) Clustering dendrograms
showing modules of highly connected genes within the RIF group. (F) Heatmap of the correlation between the modules and traits of RIF group.
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separately for EMs and RIF. The results indicated that the AUC for

EMs and RIF were 0.959 and 0.844, respectively (Figures 6D, E).

Moreover, we conducted external validation for the expression

levels and diagnostic efficacy of EHF in both diseases. For EMs, we

utilized the GSE25628 dataset, where the expression of EHF was

significantly lower than in the control group (P < 0.001), consistent

with the trend observed in the training dataset (Figure 6F).

Regarding RIF, we employed the GSE92324 dataset, where the

expression of EHF was significantly higher than in the control

group (P < 0.05), aligning with the training dataset’s trend

(Figure 6G). Subsequently, we also verified the sensitivity and

specificity of EHF diagnostic performance in these two validation

sets. The results demonstrated AUC values of 1.0 for EMs and 0.760

for RIF (Figures 6H, I). These results indicated that EHF is

concurrently involved in the development of both EMs and RIF,

with excellent diagnostic efficacy in both conditions.
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Single-gene GSEA of EHF

Subsequently, we performed Single-Gene GSEA enrichment

analysis on EHF separately for EMs and RIF (Figures 7A, B). The

results revealed that the immune response and collagen containing

extracellular matrix pathways were activated in both two diseases.
Immune infiltration analysis of shared
diagnostic genes

Since both EMs and RIF exhibit activated immune response-

related pathways, we conducted an analysis of the abundance of

immune cells in each sample using CIBERSORT. Figures 8A and B

displayed the relative abundance of 22 types of immune cells in each
FIGURE 4

Identification of shared gene functions. (A) Intersection of DEGs from EMs and RIF. The specific information of the intersection gene is displayed in
the box. (B) Intersection of key modules from EMs and RIF. The specific information of the intersection gene is displayed in the box. (C) GO function
enrichment analysis of shared genes within boxes from panels A and (B) The X-axis stands for count of genes. The Y-axis represents the
enriched pathways.
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sample, revealing significant differences in macrophages, NK cells,

and mast cells between EMs and RIF.

Compared to the control group, the EMs group exhibited a

significant increase in plasma cells, M2 macrophages, and activated

mast cells, while T cell follicular helper, Tregs, NK cells, and
Frontiers in Endocrinology 09
dendritic cells showed a significant decrease (Figure 8C). Notably,

T cells follicular helper, NK cells, monocytes, dendritic cells, B cells

memory, and macrophages M1 were significantly positively

correlated with EHF expression (P < 0.05), whereas macrophages

M2, plasma cells, mast cells, and neutrophils showed a significant
FIGURE 5

Machine learning screens for shared diagnostic genes. (A) Importance ranking of top 30 genes in random forest from EMs. The X-axis stands for the
importance score of genes calculated by the Gini coefficient method. The Y-axis represents the names of genes. (B) SVM-RFE algorithm screened
22 diagnostic markers in EMs. The X-axis represents the number of genes included in the model. The Y-axis represents the RMSE value calculated
each time a gene is deleted. (C) Intersection of genes selected from RF and SVM-RFE algorithm in EMs. The specific information of the intersection
gene is displayed in the box. (D) Importance ranking of top 30 genes in random forest from RIF. (E) SVM-RFE algorithm screened 6 diagnostic
markers in RIF. (F) Intersection of genes selected from RF and SVM-RFE algorithm in RIF.
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negative correlation with EHF expression (P < 0.05) (Figure 8D). In

the case of RIF, T cells CD4 memory showed a significant increase

compared to the control group, while T cells follicular helper, T cells

gamma delta, and dendritic cells exhibited a significant decrease

(Figure 8E). Notably, T cell CD4 memory and mast cells were

significantly positively correlated with EHF expression (P < 0.05),

whereas dendritic cells, macrophages M2, NK cells, T cells follicular

helper, and T cells gamma delta were significantly negatively

correlated with EHF expression (P < 0.05) (Figure 8F). These

results indicate that immune cells play a crucial role in the

pathogenesis of both EMs and RIF and are significantly associated

with EHF.
Validation of EHF in clinical sample

Furthermore, ectopic endometrial samples were obtained from

patients with EMs, and secretory-phase endometrial samples were
Frontiers in Endocrinology 10
collected from patients with RIF and healthy controls. The

expression of EHF in these tissues was analyzed using qRT-PCR,

and the results were consistent with the above data analysis.

Compared to the control group, EHF expression was significantly

decreased in the EMs group and significantly increased in the RIF

group (Figures 9A, B).
Discussion

While it is now clear that the primary defects in EMs-related

infertility are in the ovaries and oocyte quality, further studies have

shown that the uterine endometrial receptivity in EMs may also be

compromised (6). Prapas et al. conducted a study in which oocytes

from the same donor were implanted into women with and without

EMs. By eliminating the confounding effects of EMs on oocyte

quality, they found a significant reduction in implantation rates

among EMs patients (6). Therefore, it is necessary to explore why
FIGURE 6

Diagnostic efficacy and verification of shared diagnostic genes. (A) Intersection of diagnostic genes selected from EMs and RIF. (B, C) EHF expression
in EMs (B) and RIF (C) training group. (D, E) ROC curve of EHF in EMs (D) and RIF (E) training group. The X-axis represents specificity and the Y-axis
represents sensitivity. (F, G) EHF expression in EMs (F) and RIF (G) validation group. (H, I) ROC curve of EHF in EMs (H) and RIF (I) validation group. *P
< 0.05, ***P < 0.001.
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FIGURE 7

GSEA for EHF in EMs and RIF. (A) GSEA enrichment analysis for EHF in EMs. The X-axis represents the sorted genes, and the Y-axis represents the
corresponding Running Enrichment Score (ES). (B) GSEA enrichment analysis for EHF in RIF.
FIGURE 8

Immune infiltration analysis of EMs and RIF. (A) Relative abundance of 22 immune cell types in each sample of EMs. (B) Relative abundance of 22
immune cell types in each sample of RIF. (C) Relative expression of each immune cell in the control group and EMs group. (D) Correlation score
between EHF and immune cells in EMs group. (E) Relative expression of each immune cell in the control group and RIF group. (F) Correlation score
between EHF and immune cells in RIF group.
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the endometrial receptivity of patients with EMs is poor and its

similarities and differences with the endometrium of patients

with RIF.

As for the cause of EMs, the theory of menstrual reflux

proposed by Sampson et al. in 1922 is still recognized by most

scholars. Takayuki et al. have demonstrated the heterogeneity of the

genomic structure of endometrial epithelium by sequencing single

endometrial glands (7). Furthermore, through whole-exome

sequencing of ovarian endometriotic and normal uterine

endometrial epithelium, they observed a significant increase in

the mutant allele frequency (MAF) of cancer-related genes within

endometrial ectopic epithelium (7). Their findings suggest that

endometrial cells already carrying cancer-associated mutations

have a selective advantage in retrograde flow at ectopic sites,

thereby contributing to the development of EMs. Inversely,

Taylor et al. demonstrated that by implanting GFP-labeled mouse

uterine endometrial cells into the abdominal cavity of recipient

mice, GFP fluorescence also appeared around the eutopic

endometrium blood vessels of the recipient mice (14). This

finding provides evidence that some ectopic endometrium may

potentially be re-implanted into the uterine cavity through

circulation, thus affecting the local microenvironment in the

uterus. These studies all suggest the dispersion and mobility of

eutopic EMs lesions. Hence, we hypothesize that eutopic

endometrium in EMs patients is not universally abnormal.

Ectopic endometrium appears to more accurately represent the

pathological process of EMs.

It is well known that endometriosis lesions are characterized by

significant infiltration of immune cells and secretion of large amounts

of extracellular matrix due to the menstrual cycle, implantation of

foreign tissues and repeated damage and repair of the endometrium at

these sites, eventually leading to fibrosis (15). Also, during the

endometrial preparation process for embryo implantation, several
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key events, such as endometrial decidualization, trophoblast

chemotaxis, attachment, migration and invasion processes, all

involved the transformation of the extracellular matrix. When any

issues arise during these processes, it can substantially impact uterine

receptivity, leading to RIF. Consistent with these established

viewpoints, our intersection of hub genes in these two diseases

revealed significant enrichment related to the regulation of peptidase

activity and extracellular matrix component composition, which are

closely associated with alterations in extracellular matrix components

and collagen accumulation. Furthermore, recent studies have suggested

that endometrial scratching may improve implantation rates in RIF

patients by promoting endometrial receptivity and enhancing

extracellular matrix remodeling (16). This finding aligns with our

results, highlighting the potential role of extracellular matrix regulation

in RIF.

ETS homologous factor (EHF) is primarily expressed in

glandular organs and plays a crucial role in the proliferation and

differentiation of epithelial cells (17). Currently, the role of EHF in

tumor progression has been relatively well-studied. For example,

the loss of EHF has been found to promote epithelial-mesenchymal

transition and cell migration in conditions such as prostate cancer

(18, 19), lung cancer (20, 21), pancreatic cancer, and esophageal

squamous cell carcinoma. On the other hand, in gastric cancer (22),

thyroid cancer, and ovarian cancer (23), EHF has been shown to

promote cell proliferation. Meanwhile, the role of EHF in normal

tissues has also been reported. In a study involving whole-body EHF

knockout mice, it was found that the EHF transcription factor plays

a crucial role in maintaining the homeostasis of normal epidermal

and intestinal epithelial cells (24). However, the role of EHF in

endometrial epithelial cells is still a subject for future research.

Given the excellent diagnostic efficiency of EHF for EMs and RIF,

further exploration of the relationship between EHF and these

conditions led us to perform single-gene GSEA for EHF in both
FIGURE 9

Validation of EHF expression in EMs and RIF. (A) The relative mRNA expression levels of EHF in normal (n=3) and EMs patients (n=4). (B) The relative
mRNA expression levels of EHF in normal (n=3) and RIF patients (n=4). **P < 0.005, ***P < 0.001.
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diseases. The results showed that the Collagen containing

extracellular matrix pathway was downregulated in both diseases.

Similarly, Peng Hou et al. (24) observed that overexpression of EHF

in MGC803 cells (a kind of gastric cancer cells) led to a significant

upregulation of MMP-2, -7, -9, and -14, along with decreased E-

cadherin expression and increased vimentin expression. This

suggests that EHF may contribute to the remodeling of the

extracellular matrix (ECM) through the regulation of MMPs,

while also influencing the epithelial-to-mesenchymal transition

(EMT) process. However, how EHF regulates the ECM in the

endometrium remains to be further investigated. Further research

is required to investigate the impact of EHF on EMT in EMs ectopic

lesions and its role in decidualization in RIF. We propose that EHF

could serve as a biomarker for identifying patients at higher risk of

implantation failure and as a potential target for therapeutic

interventions aimed at improving uterine receptivity. Moreover,

the differences in EHF expression between normal endometrium

and the endometrium of patients with endometriosis remain to be

further explored.

The immune microenvironment system also plays a role that

cannot be ignored in EMs (25). Our results indicate an increase in

plasma cells within EMs ectopic lesions, suggesting a heightened

autoimmune response at the lesion site, which is related to the high

recurrence of EMs. Epidemiological studies also showed that

patients with EMs have a higher incidence of other autoimmune

diseases (26, 27). Tregs have immunosuppressive properties,

typically inhibiting or downregulating the induction and

proliferation of effector T cells. Studies have suggested that IL-33

derived from endometriotic stromal cells may induce type 2

immune response by stimulating Treg cells to secrete Th2

cytokines and promote lesion progression and local fibrosis

formation (28). Additionally, other studies have shown that the

abundance of Treg cells is reduced in endometriotic lesions

compared to normal endometrium, which exacerbates local

inflammation and angiogenesis, and is similarly associated with

the progression of endometriotic lesions (29). This finding is

consistent with our results. The immune microenvironment

influences various stages of disease onset and progression. Further

studies are needed to investigate the role of Treg cells in the

development of endometriotic lesions. Previous studies have

shown that NK cell activity is decreased in EMs patients (30),

primarily manifested by reduced cytotoxicity of NK cells from their

peripheral blood and peritoneal fluid toward K562 cells (31–33).

The main contributing factor may be an increase in the expression

of certain inhibitory NK cell receptors (31, 34). In the present study,

we found a decreased abundance of NK cells in endometriotic

lesions, which may partially explain the survival of ectopic

endometrium colonization and impaired elimination. Alongside

the reduction in NK cells, M2 macrophages also play a crucial role

in the survival of endometriotic implants (35). Due to the decrease

in the M1/M2 ratio, there is insufficient cytotoxicity for eliminating

endometriotic lesions and a promotion of angiogenesis (36–38).

The aberrant infiltration of these immune cells collectively

contributes to the abnormal extracellular matrix in the local

lesions of EMs, promoting the fibrotic formation of local lesions.
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Furthermore, it further affects the intrauterine microenvironment,

resulting in decreased implantation and pregnancy rates for

EMs patients.

The endometrium undergoes a series of complex changes

during the menstrual cycle to prepare for embryo implantation,

a process that requires precise coordination between the embryo

and the endometrium (39, 40). Immune factors, including various

immune cell populations and their intricate signaling pathways,

are involved in the establishment of immune tolerance or

inflammation at the maternal-fetal interface, which can regulate

endometrial receptivity and implantation (41). Previous studies

have shown that Treg cells were significantly reduced in both

peripheral blood and endometrium of patients with RIF. Human

chorionic gonadotropin (hCG) can regulate the differentiation of

Tregs, thereby affecting the pregnancy outcome in RIF women

(42). Furthermore, dendritic cells and Tregs are closely

interconnected and mutually influential (43). In our study,

however, no significant difference in Tregs expression was

observed between normal endometrium and RIF endometrium,

while dendritic cells were significantly reduced. Any alteration in

these cells can affect other immune cell populations, ultimately

disrupt ing immune homeostas is and normal embryo

implantation. Therefore, phenotypic balance within the immune

cell population is critical for establishing endometrial receptivity

to implantation (39). From this point of view, the eutopic

endometrium of EMs needs further study, which is also our

future research direction.
Conclusions

In conclusion, our study has identified the shared diagnostic

gene EHF in EMs and RIF. We have also explored the common

pathological changes in these two diseases, which include

alterations in the extracellular matrix and the subsequent changes

in the immune microenvironment. Our analysis further deepened

the understanding of the underlying pathogenic mechanisms

shared between EMs and RIF, offering novel therapeutic avenues

for addressing infertility in EMs patients.
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