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Potential compensatory
mechanism for cognitive
impairment in type 2 diabetes
and prediabetes: altered
structure-function coupling
Weiye Lu1, Xuan Huang1, Die Shen1, Kun Wang1, Jiahe Wang1,
Ziyu Diao1 and Shijun Qiu2,3*

1The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou,
Guangdong, China, 2Department of Radiology, The First Affiliated Hospital of Guangzhou University of
Chinese Medicine, Guangzhou, Guangdong, China, 3State Key Laboratory of Traditional Chinese
Medicine Syndrome, Guangzhou, Guangdong, China
Background: Structure-function (SC-FC) coupling may be more sensitive to

detecting changes in the brain than any single modality. The aim of this study was

to investigate the effects of SC-FC coupling changes on cognition and their

interactions in patients with prediabetes and type 2 diabetes mellitus (T2DM).

Methods: A total of 493 participants (119 with normal glucose metabolism (NGM),

125 with prediabetes, and 249 with T2DM) were included in the study. Diffusion-

weighted MRI and resting state functional MRI data were used to quantify SC-FC

coupling. General linear model and linear regression analysis were used to evaluate

the relationship between glucose metabolism, SC-FC coupling, and cognition.

Mediation models were used to evaluate the mediating role of regional SC-FC

coupling between diabetes-related measures and cognition.

Results: The regional coupling strength of SC-FC varied greatly in different brain

regions, but was strongest in the ventral attention and somatmotor network areas.

Compared with NGM patients, T2DM patients had higher SC-FC coupling in the

default mode network but lower SC-FC coupling in the limbic network. In addition,

fasting glucose andHbA1c were associatedwithweaker SC-FC coupling in the limbic

network, fasting insulin with higher SC-FC coupling in the limbic network, and HbA1c

with higher SC-FC coupling in the dorsal attention network. Furthermore, through

mediated models we found that SC-FC coupling in the limbic network suppressed

the association between diabetes-related measures and cognition.

Conclusion: T2DM and diabetes-related measures were associated with

abnormal SC-FC coupling of the limbic network. The recombination of SC-FC

coupling relationships in the limbic network may indicate a potential

compensatory mechanism for cognitive decline that begins in prediabetes.
KEYWORDS

type 2 diabetes mellitus, diffusion-weighted MRI, resting state functional MRI,
structure-function coupling, cognitive impairment
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1 Introduction

The global prevalence of diabetes will continue to rise in the

future due to population aging, with increases predicted to be more

noticeable in low- and middle-income countries (1). Cognitive

impairment is widely recognized as a prevalent comorbidity of

type 2 diabetes mellitus (T2DM), with minor cognitive alterations

observed in individuals across all age categories, but more severe

stages are typically observed in older adults aged 65 years and order

(2). The exact underlying causative mechanism of cognitive decline

in T2DM patients has not been fully identified and is almost

certainly complex, involving multiple interacting variables (3).

Hyperglycemia, obesity, and insulin resistance can induce brain

microvascular dysfunction, which is already evident in adults with

prediabetes (4–7), leading to brain structural abnormalities such as

vascularized lacunae, cerebral microbleeds, perivascular spaces,

global brain atrophy, and microinfarcts (8), and there is growing

evidence that this is one of the key drivers of cognitive decline (9).

Alterations in neural connections could be a key step in

microvascular dysfunction that results in cognitive impairment

(10). An ongoing population prospective cohort study found that

functional connections between the right thalamus and the visual

network were lower in T2DM patients and was associated with

cognition (11). The Maastricht Study cohort reported reduced white

matter connections between the hippocampus and frontal lobes in

T2DM patients and was associated with memory impairment (12).

Despite these discoveries, the link between cognitive impairment

and abnormal brain structural and functional connectivity remains

controversial. Alterations in structural and functional connectivity

may contribute to cognitive dysfunction, but they may also

represent compensatory and protective mechanisms. Therefore, a

single-modal evaluation of brain connectivity is inadequate to fully

comprehend the underlying brain mechanisms of T2DM-related

cognition. Structure-function (SC-FC) coupling quantifies the

correlation between structural and functional connectivity,

indicating consistency across networks, which can serve as a

marker to detect subtle pathological abnormalities (13, 14). In

addition, SC-FC coupling is more sensitive in detecting brain

abnormalities than a single model (14), possibly due to the fact

that multimodal data integration can reduce noise or bias from a

single mode and improve the robustness of the results. The existing

literature lacks a joint analysis of multimodal MRI for diabetic

status, and the relationship between structural and functional

connections remains to be clarified.

Our study performed the first comprehensive analysis of

cerebral abnormalities combined with structural and functional

connections in individuals with prediabetes and T2DM. We

aimed to investigate differences in populations with different

glucose metabolism statuses by measuring SC-FC coupling levels

and their characteristic relationship with cognitive function. We

hypothesize that abnormalities in SC-FC coupling similar to T2DM

are already present in prediabetes to a lesser extent, and that this

abnormality mediates or compensates for the decline in

cognitive function.
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2 Materials and methods

2.1 Participants

A cross-sectional and observational study was done on 600

participants who were recruited from outpatient and inpatient

diabetes clinics at the Guangzhou University of Traditional

Chinese Medicine between 2020 and 2023. The inclusion criteria

were right-handedness and age 30-70 years. 566 of the 600

participants had MRI scans available. Among the 566 participants

with accessible MRI measures, 493 with complete clinical data and

images (Supplementary Figure S1). Committee approval (NO. K-

2013-146) was obtained from Guangzhou University of Traditional

Chinese Medicine’s First Affiliated Hospital for the study. All were

asked to sign a written informed consent prior to participating in

the study.
2.2 Prediabetes and T2DM status

Patients with a history of diabetes mellitus were tested for fasting

plasma glucose (FPG), a standardized 2-h 75-g oral glucose tolerance

test, and HbA1c levels. Participants without a history of diabetes were

tested for FPG and HbA1c levels. All trials were completed at the First

Hospital of Guangzhou University of Traditional Chinese Medicine.

The classification of prediabetes and T2DMwas determined based on

the diagnostic criteria provided by the American Diabetes

Association in 2021 (15). Participants were classified as having

prediabetes if their FPG was between 5.6~6.9 mmol/L and/or

HbA1c was between 5.7~6.4%. The diagnosis of T2DM was

confirmed by a self-reported history of diabetes, use of

hypoglycemic drugs, FPG ≥7.0 mmol/L, 2-h postload glucose

≥11.1 mmol/L, or HbA1c ≥6.5%. Normal glucose metabolism

(NGM) is defined as FPG and HbA1c within the normal range.
2.3 MRI and image preprocessing

The 64-channel 3.0T MRI scanner (Prisma, Siemens, Germany)

was used to obtain 3D T1-weighted imaging, diffusion-weighted

MRI (dMRI) and resting-state functional MRI (fMRI), and the

scanning parameters are shown in Supplementary Table S1. All

neuroimaging data underwent a thorough visual examination to

rule out artifacts and inaccurate segmentation and registration. If

the head movement was more than 3 mm in three dimensions or 3

degrees in rotation, images were not included. The preprocessing of

fMRI data was using SPM 12 software. The processing steps

included removing the first 10 time points, correcting for slice

timing and head motion, normalizing to Montreal Neurological

Institute coordinates using the DARTEL method, applying spatial

smoothing with Gaussian kernels of 6 mm full width at half

maximum (FWHM), linear detrending, and regressing global

signal, cerebrospinal fluid signals, white matter, and Friston-24

head motion parameters. Ultimately, the impacts of high-frequency
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physiological noise and low-frequency drift were mitigated by using

a bandpass filter with a frequency range of 0.01 to 0.08 Hz.

The DTI data underwent preprocessing and analysis using the

PANDA v1.3.1 toolbox (http://www.nitrc.org/projects/panda).

Rigid-body transforms were performed on the b0 images to

correct eddy current distortions and head motion artefacts. The

Diffusion Toolkit was used to estimate diffusion tensor models at

each voxel using the linear least-squares fitting approach. The

Diffusion Toolkit’s Fiber Assignment by Continuous Tracking

technique was applied to track whole brain fibers in native

diffusion space. Streamlines tracking was stopped when the angle

between the current and the previous path segment surpassed 45° or

the FA was less than 0.2.
2.4 Construction of functional connectivity

In order to measure the strength of functional connectivity

(FC), we calculated the Pearson correlation between the average

time series of each pair of brain areas, utilizing the Human

Brainnetome Atlas (16). As a result, each participant has a

246×246 FC matrix with a Gaussian distribution after Fisher’s Z

transformation. The components of negative correlations were set

to zero due to the contentious physiological interpretation of

negative correlations (17, 18).
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2.5 Construction of structural connectivity

In order to obtain structural connectivity (SC), we defined each

region of interest (ROI) as a network node in the Human

Brainnetome Atlas. The Human Brainnetome Atlas from the

MNI space was registered to the individual’s native space via

inverse transformations. In native diffusion space, structural

connectivity was considered to be present if streamlines were

present in at least 80% of participants in each pair of brain

regions. We calculated the weight of each edge by taking the

mean FA values of all the fibers.

In order to analyze the alterations in the SC-FC coupling at the

network level, we implemented the classic seven-network

parcellation according to Yeo atlas (19), which includes the visual

network (VIS), somatomotor network (SOM), ventral attention

network (VEN), dorsal attention network (DOR), limbic network

(LIM), frontoparietal network (FPN), and default mode network

(DMN). Subcortical regions were included in the eighth network.

The procedure for constructing the network is outlined in Figure 1.
2.6 SC-FC coupling analysis

Correlation coefficients between structural and functional

connectivity are used to measure SC-FC coupling. This

correlation was limited for each participant by the edges of non-
FIGURE 1

Presentation of the SC-FC coupling process. The Human Brainnetome Atlas divides the cortical and subcortical brain regions into 246 regions of
interest. SC matrix reconstructs white matter fibers by deterministic tracing algorithm. The FC matrix was constructed by measuring the Pearson
correlation between the mean time series of each pair of brain regions. The SC-FC coupling value was obtained by measuring the Spearman
correlation coefficient between non-zero SC and corresponding FC.
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zero structural connection. To be more precise, a vector of

structural connectivity values was formed by extracting non-zero

structural connectivity edges, and a corresponding vector was

created by extracting functional connectivity. The SC-FC coupling

values were then obtained by measuring the correlation coefficient

between the two priori vectors using Spearman’s correlation. Lastly,

tractography algorithms are known to underestimate connectivity

across different hemispheres. Consequently, we also compute the

SC-FC coupling inside a hemisphere.
2.7 Statistical analysis

The characteristics of the participants were expressed as mean ±

SD (continuous variables) and percentage (categorical variables).

Comparisons between glucose metabolism status were conducted

using statistical analyses appropriate for the type of data. ANOVA

was used for continuous variables that followed a normal

distribution; the Kruskal-Wallis test was used for continuous

variables that exhibited a skewed distribution; and the categorical

variables were analyzed using the Pearson c2 test. A post hoc test

was then performed, using two-sample t tests for means and c2 test
for proportions. If the SC-FC coupling values conform to the

normal distribution, a general linear model (GLM) is used for

statistical analysis; otherwise, a non-parametric permutation test is

used, followed by a post hoc test (P <.05). The analyses were

controlled for potential confounding variables, specifically age,

sex, and education level (model 1). Additional adjustments were

made for cardiovascular disease risk factors, including BMI, office

systolic blood pressure, the ratio of total cholesterol to HDL, lipid-

modifying medication, antihypertensive medication, and history of

cardiovascular disease (model 2). The variance inflation factor was

used to test for multicollinearity of the independent variables.

Interaction terms for sex * glucose metabolism status were added
Frontiers in Endocrinology 04
to explore the interaction. The analyses were conducted using SPSS

(IBM, SPSS, version 27).

To investigate the association between diabetes-related

measures, regional SC-FC coupling, and the Montreal Cognitive

Assessment (MoCA) score (20), and to explore whether the brain

SC-FC coupling acts as a potential mediator in the association

between diabetes-related measures and MoCA score, we adopted a

two-stage statistical analysis. In the first stage, multiple linear

regression analysis was used to examine the relationship between

glucose metabolism status, diabetes-related measures, and regional

SC-FC coupling. Dummy variables were then used to evaluate

regression coefficients for different glucose metabolism groups.

The correction for confounding variables is consistent with the

above. Secondly, based on the significant association between

exposure (diabetes-related measures) and mediator (regional SC-

FC coupling), as well as the association between the mediator and

the outcome (MoCA score), we performed the mediation analysis to

examine whether brain SC-FC coupling metrics mediated the

association between exposure and outcome. To calculate bias-

corrected 95% CIs, we used bootstrapping (5000 samples) and the

PROCESS statistical package for SPSS (21).
3 Results

3.1 Population characteristics

Table 1 displays the baseline demographic information. Out of

493 people who were part of the study, 119 were NGM, 125 were

prediabetes, and 249 were T2DM. The average age was 50.6 years,

and 50.1% were female. Participants with prediabetes and T2DM

were significantly older and had higher cardiovascular risks than

NGM individuals (Table 1).
TABLE 1 Characteristics of the population.

NGM Prediabetes T2DM P

Demographics

Age (years) 47.0 ± 7.0 52.9 ± 8.5 51.1 ± 8.6 <0.001

Female sex (%) 59.7 64.8 38.2 <0.001

Education (years) 10.4 ± 5.0 9.1 ± 4.2 10.9 ± 4.1 <0.001

Glucose metabolism

Fasting glucose (mmol/L) 4.9 ± 0.4 5.3 ± 0.5 9.3 ± 3.0 <0.001

HbA1c (%) 5.5 ± 0.3 5.9 ± 0.2 8.7 ± 2.3 <0.001

Diabetes duration (years) 6.0 ± 5.8 – – –

Fasting insulin (mIU/mL) 8.8 ± 4.3 11.6 ± 11.1 10.1 ± 8.9 0.033

Cardiovascular risk factors

BMI (kg/m2) 23.3 ± 3.5 24.1 ± 3.1 24.2 ± 3.2 0.003

Systolic BP (mmHg) 118.2 ± 14.8 128.8 ± 18.9 127.8 ± 16.1 <0.001

(Continued)
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3.2 Spatial variation of SC-FC coupling

Figure 2 illustrates the average SC-FC coupling among 493

unrelated individuals. Regional SC-FC coupling varied substantially

between subcortical and cortical regions but was generally positive at
Frontiers in Endocrinology 05
the group level. In comparison to the other networks, the SC-FC

coupling in the ventral attention and somatomotor areas was generally

higher (0.29 ± 0.40 and 0.23 ± 0.20, respectively). In contrast, the

coupling in the subcortical and dorsal attention areas was significantly

weaker (-0.06 ± 0.16 and -0.12 ± 0.23, respectively) (Figure 2).
TABLE 1 Continued

NGM Prediabetes T2DM P

Cardiovascular risk factors

Diastolic BP (mmHg) 77.9 ± 10.2 83.8 ± 11.6 84.2 ± 10.9 <0.001

Hypertension (%) 5.0 24.0 29.3 <0.001

Ratio of total to HDL cholesterol 3.6 ± 1.2 3.9 ± 1.1 4.6 ± 1.5 <0.001

Triglycerides (mmol/L) 1.3 ± 1.4 1.5 ± 0.9 2.3 ± 2.3 <0.001

History of cardiovascular disease (%) 4.2 9.6 12.4 0.044

Medication use

Insulin use (%) 46.2 – – –

Antihypertensive medication (%) 9.2 23.2 37.8 <0.001

Lipid-modifying medication (%) 7.6 15.2 40.6 <0.001

MoCA 25.5 ± 3.6 25.2 ± 4.3 25.1 ± 3.1 0.653

Lifestyle factors

Alcohol consumption (%) 15.1 16.0 22.9 0.118

Smoking status (%), never/
former/current

67.2/22.7/10.1 69.6/21.6/8.8 63.5/20.5/16.0 0.284
Data are presented as mean ± SD or percentage. ANOVA and c2 tests compare continuous and categorical variables, respectively. BP, blood pressure; MoCA, Montreal Cognitive Assessment.
FIGURE 2

Spatial differences in SC-FC coupling. (A) SC-FC coupling in cortical and subcortical regions of the study population. (B) Distribution of SC-FC
coupling in eight different networks. (C) The t-statistics for pairwise comparisons of SC-FC coupling between networks, calculated as the y-axis vs
the x-axis. FDR-corrected comparisons with p > 0.05 were represented by ns. VIS, visual; SOM, somatomotor; DOR, dorsal attention; VEM, ventral
attention; LIM, limbic; FPN, frontoparietal; DMN, default mode; SUB, subcortical.
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3.3 Association of prediabetes and T2DM
with regional SC-FC coupling

T2DM was significantly associated with weaker regional SC-FC

coupling in the limbic areas (b = -0.110; 95% CI: -0.196 to -0.024;

P = 0.012) and higher coupling in the default mode areas (b = 0.093;

95% CI: 0.028 to 0.158; P = 0.005) after full adjustment. The

regression coefficients for the relationship between prediabetes

and coupling in the limbic and default mode areas were roughly

one-third to two-thirds of the coefficient for T2DM. There were no

correlations between T2DM or prediabetes and SC-FC coupling in

the remaining domains (Table 2).
3.4 Relationship between diabetes-related
measures and regional SC-FC coupling

After full adjustment, fasting glucose and HbA1c were

associated with weaker regional SC-FC coupling in the limbic

areas (b = -0.095; 95% CI: -0.189 to -0.001; P = 0.049; and b =

-0.106; 95% CI: -0.201 to -0.011; P = 0.029). Fasting insulin was

associated with higher coupling in the limbic areas (b = 0.115; 95%

CI: 0.021 to 0.209; P = 0.017), and fasting insulin contributed the

most to the change of coupling. In addition, HbA1c was associated

with higher coupling in the dorsal attention areas (b = 0.113; 95%

CI: 0.018 to 0.209; P = 0.020) (Table 3).
Frontiers in Endocrinology 06
3.5 Mediating role of cerebral regional SC-
FC coupling in the relationship between
diabetes-related measures and
MoCA score

Considering the association of “diabetes-related measures—

regional SC-FC coupling” and “regional SC-FC coupling—MoCA

score” (Supplementary Table S2), we estimated the single mediating

effect of SC-FC coupling levels in limbic areas on the association of

“diabetes-related measures—MOCA score”. The study revealed that

the suppressing effect of SC-FC coupling in limbic areas on the

relationship between fasting insulin and MoCA score was strongest

(bindirect effect = -0.019, 95% CI: -0.034, -0.001), with a suppressing

effect of 25.3%. In addition, significant indirect effects could also be

found in fasting glucose (bindirect effect = 0.018, 95% CI: 0.001, 0.040)

and HbA1c (bindirect effect = 0.018, 95% CI: 0.002, 0.039),

corresponding to a suppressing effect of 9.8% and 8.9%,

respectively (Figure 3, Supplementary Table S3).
3.6 Additional analyses

Tractography algorithms are recognized to underestimate

connections between the two hemispheres. When we consider the

unilateral brain separately, we found differences in SC-FC coupling

regions only in the dominant brain (left brain); T2DM was
TABLE 2 Association of prediabetes and T2DM with SC-FC coupling after multivariate adjustment.

Brain network Prediabetes, b (95% CI) P T2DM, b (95% CI) P

Visual

Model 1 0.019 (-0.024, 0.062) 0.379 -0.021 (-0.059, 0.016) 0.262

Model 2 0.005 (-0.040, 0.051) 0.819 -0.029 (-0.071, 0.013) 0.178

Somatomotor

Model 1 -0.018 (-0.073, 0.037) 0.521 -0.022 (-0.067, 0.023) 0.331

Model 2 -0.018 (-0.075, 0.040) 0.547 -0.020 (-0.071, 0.030) 0.425

Dorsal Attention

Model 1 0.009 (-0.053, 0.072) 0.772 0.045 (-0.010, 0.099) 0.110

Model 2 0.001 (-0.066, 0.067) 0.982 0.048 (-0.014, 0.109) 0.129

Ventral Attention

Model 1 -0.008 (-0.117, 0.102) 0.893 0.022 (-0.068, 0.112) 0.630

Model 2 -0.027 (-0.143, 0.088) 0.640 0.027 (-0.073, 0.127) 0.593

Limbic

Model 1 -0.040 (-0.128, 0.049) 0.380 -0.106 (-0.183, -0.029) 0.007

Model 2 -0.038 (-0.131, 0.055) 0.419 -0.110 (-0.196, -0.024) 0.012

Frontoparietal

Model 1 -0.004 (-0.080, 0.072) 0.924 0.001 (-0.064, 0.067) 0.974

Model 2 0.003 (-0.077, 0.084) 0.940 0.010 (-0.063, 0.083) 0.780

(Continued)
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TABLE 2 Continued

Brain network Prediabetes, b (95% CI) P T2DM, b (95% CI) P

Default

Model 1 0.046 (-0.025, 0.117) 0.205 0.087 (0.029, 0.146) 0.003

Model 2 0.030 (-0.045, 0.105) 0.426 0.093 (0.028, 0.158) 0.005

Subcortical

Model 1 0.007 (-0.033, 0.047) 0.740 -0.001 (-0.036, 0.034) 0.949

Model 2 0.003 (-0.039, 0.045) 0.874 -0.010 (-0.049, 0.029) 0.607
F
rontiers in Endocrinology
 07
Normal glucose metabolism as a reference. Mean differences in networks of patients with prediabetes or T2DM compared with NGM are expressed as regression coefficients and 95% CIs.
Boldface type indicates P < 0.05.
TABLE 3 Multivariable-adjusted associations between diabetes-related measures, structural-functional connectivity coupling, and MoCA score.

Fasting glucose P HbA1c P Fasting insulin P

Visual

Model 1 -0.017 (-0.108, 0.074) 0.710 -0.036 (-0.127, 0.054) 0.429 0.024 (-0.065, 0.113) 0.593

Model 2 -0.032 (-0.128, 0.063) 0.504 -0.046 (-0.142, 0.049) 0.343 0.002 (-0.093, 0.097) 0.965

Somatomotor

Model 1 0.010 (-0.080, 0.100) 0.827 -0.009 (-0.099, 0.081) 0.841 0.008 (-0.080, 0.096) 0.861

Model 2 0.015 (-0.079, 0.109) 0.759 -0.007 (-0.102, 0.088) 0.885 0.007 (-0.087, 0.101) 0.877

Dorsal Attention

Model 1 0.063 (-0.028, 0.154) 0.173 0.107 (0.017, 0.198) 0.020 0.038 (-0.052, 0.127) 0.408

Model 2 0.061 (-0.035, 0.156) 0.213 0.113 (0.018, 0.209) 0.020 0.023 (-0.072, 0.119) 0.634

Ventral Attention

Model 1 0.020 (-0.071, 0.110) 0.668 0.015 (-0.075, 0.105) 0.743 0.030 (-0.059, 0.119) 0.506

Model 2 0.009 (-0.086, 0.103) 0.852 0.007 (-0.088, 0.103) 0.877 0.027 (-0.067, 0.122) 0.568

Limbic

Model 1 -0.093 (-0.183, -0.002) 0.044 -0.112 (-0.202, -0.022) 0.015 0.106 (0.017, 0.194) 0.019

Model 2 -0.095 (-0.189, -0.001) 0.049 -0.106 (-0.201, -0.011) 0.029 0.115 (0.021, 0.209) 0.017

Frontoparietal

Model 1 0.002 (-0.089, 0.092) 0.971 0.020 (-0.070, 0.111) 0.656 0.054 (-0.034, 0.143) 0.229

Model 2 0.021 (-0.074, 0.115) 0.665 0.044 (-0.051, 0.139) 0.365 0.070 (-0.024, 0.164) 0.146

Default

Model 1 0.028 (-0.062, 0.119) 0.538 0.043 (-0.047, 0.133) 0.347 0.026 (-0.062, 0.114) 0.564

Model 2 0.019 (-0.076, 0.113) 0.700 0.044 (-0.050, 0.139) 0.358 0.022 (-0.072, 0.116) 0.643

Subcortical

Model 1 0.048 (-0.042, 0.137) 0.296 0.057 (-0.031, 0.146) 0.204 -0.056 (-0.143, 0.031) 0.208

Model 2 0.029 (-0.064, 0.122) 0.546 0.048 (-0.045, 0.142) 0.313 -0.077 (-0.169, 0.016) 0.104

MoCA

Model 1 -0.149 (-0.225, -0.073) <0.001 -0.146 (-0.222, -0.070) <0.001 0.038 (-0.037, 0.114) 0.318

Model 2 -0.171 (-0.250, -0.092) <0.001 -0.185 (-0.264, -0.106) <0.001 0.056 (-0.024, 0.137) 0.167
Boldface type indicates P < 0.05.
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significantly associated with higher coupling in the default mode

areas (b = 0.150; 95% CI: 0.073 to 0.227; P <0.001) compared with

NGM (Supplementary Table S4). No associations between

prediabetes and T2DM were found with regional SC-FC coupling

in the nondominant brain (right brain) (Supplementary Table S5).

Finally, we found similar results when we used diabetic status

instead of diabetes-related measures to assess whether SC-FC

coupling mediates the relationship between diabetic status and

cognition (Supplementary Table S6).
4 Discussion

This population-based study suggests that there are differences

in SC-FC coupling between different brain networks. Thus, our

results support the notion that information processing in the

cerebral cortex involves the existence of interactions and

hierarchies between distributed regions (19, 22). In contrast to

what we found, recent HCP research in young populations has

shown strongest SC-FC coupling in the subcortical and visual

region (23). This may be due to racial and age differences in the
Frontiers in Endocrinology 08
sample population, as the HCP study population was a young

cohort, and there is evidence that early visual areas are strongly

functionally coupled to each other, with little correlation to areas

outside of the visual cortex (19). In addition, the HCP quantifies SC-

FC coupling by calculating Spearman’s correlations between each

region and other regions in the same network, whereas we are

extracting the vector of non-zero structural connectivity values first

and then the corresponding vector of functional connectivity for

Spearman correlation. Future studies will need to include different

age groups and multi-center sample populations to test

this hypothesis.

Compared with NGM, T2DM patients had lower coupling of

the limbic network and higher coupling of the default mode

network. When we divided the brain into left and right

hemispheres for separate analysis, we found higher SC-FC

coupling of the default mode network in T2DM patients than in

NGM only on the dominant cerebral side, which we hypothesized

to be due to the presence of interhemispheric lateralization in

T2DM-associated brain injuries (24) or to underestimation of

cross-hemispheric connectivity by neural tractography algorithms

(25). In this study, a general linear model was used to validate brain
FIGURE 3

The SC-FC coupling metrics of the limbic network suppress the association between diabetes-related measures and the MoCA score.
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coupling progression from NGM to prediabetes to T2DM. In fact,

the increase in prediabetic brain coupling abnormalities is about

one-third to two-thirds that of T2DM. These findings suggest that

changes in the brains of people with prediabetes have already

occurred prior to the clinical diagnosis of T2DM. Therefore,

prediabetes treatment should be considered as a potential

intervention target to prevent complications of T2DM. To my

knowledge, this is the first research in the realm of diabetes to

discuss SC-FC coupling. Therefore, this paper extends the previous

results by describing SC-FC coupling in the network region.

Our study observed significant correlations of diabetes-related

measures with limbic network SC-FC coupling and MoCA. For

example, for every 1 unit increase in HbA1c, MoCA decreased by

0.146 (95% CI: 0.070, 0.222), and the SC-FC coupling level of the

limbic network decreased by 0.106 (95% CI: 0.011, 0.201). These

associations suggest that diabetes-related measures may affect the

normal SC-FC coupling and cognitive function. Although this is the

first article to explore the correlation between diabetes-related

measures and cerebral coupling, a large body of research suggests

that abnormal structural and functional connectivity may be caused

by hyperglycemia and insulin resistance (26, 27). Therefore, we

speculate that the SC-FC coupling will also change correspondingly.

Interestingly, this study found that only limbic network SC-FC

coupling was linked with cognition. It is well known that limbic

network areas such as the prefrontal cortex, hippocampus, and

basolateral amygdala are closely related to learning processes and

memory (28), which is consistent with previous findings of

abnormal functional and structural connections of limbic regions

in T2DM (12, 29). We further estimated whether the limbic

network coupling could mediate the association of “diabetes-

related measures—MoCA.” However, we found that the indirect

and direct effects of this mediation model were in opposite

directions, suggesting that the mediating variable (SC-FC

coupling of the limbic regions) suppressed the association

between T2DM and cognitive decline. In other words, decreased

SC-FC coupling of the limbic regions may be a potential

compensatory mechanism for T2DM associated with cognitive

dysfunction. In additional analysis, we found that the limbic

network coupling of T2DM with normal cognition (MoCA ≥26)

was weaker than that of T2DM with cognitive impairment (MoCA

< 26), with values of 0.03 ± 0.33 and 0.08 ± 0.34, respectively

(Supplementary Figure S2). Our hypothesis posits that the limbic

network region underwent rearrangement in order to compensate

for impaired cognitive function, resulting in changes in the link

between structural and functional connectivity. Neuroplasticity

mechanisms can help explain the observed potential

compensatory phenomena described above. Neuroplasticity refers

to the capacity of the nervous system to adapt and restructure its

organization and functioning in response to stimuli originating

from within or outside the body (30, 31). Hyperglycemia and

hyperinsulinemia can affect neuroplasticity pathways (32, 33),

thus affecting learning and memory (34, 35). Another study

suggests that variations in memory processes may be caused by
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decreased synaptic communication resulting from changes in the

dendritic arborization and the number of dendritic spines in limbic

areas such as the prefrontal cortex and hippocampus (28).

The strength of this study is that we conducted a comprehensive

analysis of brain SC-FC coupling in patients with T2DM and

prediabetes using multimodal MRI, which for the first time

provides data on the association between glucose metabolism

status and SC-FC coupling. Second, our mediation model allows

us to address the question of whether diabetes-related measures are

independently associated with observed compensation for cognitive

function, extending our current understanding of the pathogenesis

of T2DM. There are some limitations to this study. We assessed

prediabetes and normal glucose metabolic status by FPG and HbA1c

markers, which may have led to the misclassification of participants

with impaired glucose tolerance status. Second, it is hard to

investigate casual associations because the study was designed in

a cross-sectional way. Therefore, future longitudinal research is

required to determine whether hyperglycemia precedes the

development of reported abnormalities in SC-FC coupling.
5 Conclusion

We observed a significant relationship between T2DM,

diabetes-related measures, and cerebral SC-FC coupling. In

addition, we provide preliminary evidence that the level of limbic

network coupling may have a suppressing effect on the relationship

between diabetic-related measures and cognitive function. These

findings support the concept that the relationship between limbic

network functional and structural connectivity reorganizes to

compensate for impaired cognitive function and that this

phenomenon may begin with prediabetes. These findings will

enhance comprehension of cognitive mechanisms in T2DM and

prediabetes and aid in the development of therapies to prevent

neurological illnesses associated with diabetes.
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22. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, et al. Hierarchy of
transcriptomic specialization across human cortex captured by structural neuroimaging
topography. Nat Neurosci. (2018) 21:1251–9. doi: 10.1038/s41593-018-0195-0

23. Gu Z, Jamison KW, Sabuncu MR, Kuceyeski A. Heritability and interindividual
variability of regional structure-function coupling. Nat Commun. (2021) 12:4894.
doi: 10.1038/s41467-021-25184-4

24. Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: A comparative
perspective. Physiol Rev. (2020) 100:1019–63. doi: 10.1152/physrev.00006.2019

25. Gutierrez CE, Skibbe H, Nakae K, Tsukada H, Lienard J, Watakabe A, et al.
Optimization and validation of diffusion MRI-based fiber tracking with neural tracer
data as a reference. Sci Rep. (2020) 10:21285. doi: 10.1038/s41598-020-78284-4

26. Soleymani Y, Batouli SAH, Ahangar AA, Pourabbasi A. Association of
glycosylated hemoglobin concentrations with structural and functional brain changes
in the normoglycemic population: A systematic review. J Neuroendocrinol. (2024) 36:
e13437. doi: 10.1111/jne.13437

27. Chen YC, Jiao Y, Cui Y, Shang SA, Ding J, Feng Y, et al. Aberrant brain
functional connectivity related to insulin resistance in type 2 diabetes: a resting-state
fMRI study. Diabetes Care. (2014) 37:1689–96. doi: 10.2337/dc13-2127
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