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and Zhengtang Liu1*

1Department of Geriatrics, Xiyuan Hospital, China Academy of Traditional Chinese Medicine,
Beijing, China, 2Faculty of Chinese Medicine, Macau University of Science and Technology, Macao,
Macao SAR, China, 3Graduate School of Beijing University of Chinese Medicine, Beijing, China
Background: Machine learning (ML) models are being increasingly employed to

predict the risk of developing and progressing diabetic kidney disease (DKD) in

patients with type 2 diabetes mellitus (T2DM). However, the performance of

these models still varies, which limits their widespread adoption and practical

application. Therefore, we conducted a systematic review and meta-analysis to

summarize and evaluate the performance and clinical applicability of these risk

predictive models and to identify key research gaps.

Methods: We conducted a systematic review and meta-analysis to compare the

performance of ML predictive models. We searched PubMed, Embase, the

Cochrane Library, and Web of Science for English-language studies using ML

algorithms to predict the risk of DKD in patients with T2DM, covering the period

from database inception to April 18, 2024. The primary performance metric for

the models was the area under the receiver operating characteristic curve (AUC)

with a 95% confidence interval (CI). The risk of bias was assessed using the

Prediction Model Risk of Bias Assessment Tool (PROBAST) checklist.

Results: 26 studies that met the eligibility criteria were included into the meta-

analysis. 25 studies performed internal validation, but only 8 studies conducted

external validation. A total of 94 ML models were developed, with 81 models

evaluated in the internal validation sets and 13 in the external validation sets. The

pooled AUC was 0.839 (95% CI 0.787-0.890) in the internal validation and 0.830

(95% CI 0.784-0.877) in the external validation sets. Subgroup analysis based on

the type of ML showed that the pooled AUC for traditional regression ML was

0.797 (95% CI 0.777-0.816), for ML was 0.811 (95% CI 0.785-0.836), and for deep

learning was 0.863 (95% CI 0.825-0.900). A total of 26 MLmodels were included,

and the AUCs of models that were used three or more times were pooled.

Among them, the random forest (RF) models demonstrated the best

performance with a pooled AUC of 0.848 (95% CI 0.785-0.911).
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Conclusion: This meta-analysis demonstrates that ML exhibit high performance

in predicting DKD risk in T2DM patients. However, challenges related to data bias

during model development and validation still need to be addressed. Future

research should focus on enhancing data transparency and standardization, as

well as validating these models’ generalizability through multicenter studies.

Systematic Review Registration: https://inplasy.com/inplasy-2024-9-0038/,

identifier INPLASY202490038.
KEYWORDS
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1 Introduction

Diabetic kidney disease (DKD) is one of the major

microvascular complications of type 2 diabetes mellitus (T2DM),

characterized by both structural and functional renal impairment

resulting from chronic hyperglycemia. The global incidence of

T2DM has shown a marked increase, which has been paralleled

by a rising prevalence of DKD (1, 2). It is estimated that

approximately 20% to 40% of individuals with diabetes will

eventually develop DKD (1, 3). DKD remains a leading cause of

end-stage renal disease (ESRD) worldwide (4–6). The presence and

severity of DKD have been demonstrated to significantly elevate the

risk of adverse health outcomes, including premature mortality, in

patients with T2DM (7). This poses a substantial challenge to global

public health. Consequently, the early identification of individuals

at high risk for DKD is critical for implementing targeted

interventions and improving clinical prognosis.

Conventional risk prediction models for DKD, such as linear

regression, estimate risk by calculating a weighted sum of known risk

factors (8–10). While these models are effective when a limited

number of variables or predictors are involved, they face significant

limitations in capturing the complex nonlinear relationships and

interactions among multidimensional risk factors (11, 12). In

contrast, ML methods that leverage big data or multidimensional

datasets offer substantial promise in improving predictive accuracy

(13). Recently, machine learning (ML) has demonstrated considerable

advantages in the early detection and effective management of diseases

(14–18). On one hand, ML can efficiently process vast amounts of data

at relatively low costs; on the other hand, it can analyze these datasets

to generate hypotheses and uncover latent patterns. Specifically, ML

techniques have the capacity to extract common features from diverse

data sources, such as text, images, behavioral data, and physiological

indicators, thereby unveiling the intricate relationships between DKD

and various contributing factors (19).

DKD is clinically diagnosed based on the albuminuria and the

estimation of glomerular filtration rate (eGFR). However, DKD often

has an insidious onset, with many patients being diagnosed only after

irreversible renal damage has already occurred (4, 20). Recent studies
02
have demonstrated that DKD is associated with a variety of

metabolites, including those found in plasma, serum, urine, and

mitochondria (21). Additionally, genetic variants linked to diabetes

are frequently correlated with an increased risk of developing DKD

(22). Retinal microvascular changes, such as retinopathy, vascular

stenosis, dilation, and tortuosity, have also been shown to be

associated with DKD (23). The potential of ML lies in its ability to

integrate and analyze multidimensional data from diverse domains,

including clinical, genetic, proteomic, metabolomic, and imaging

information (24, 25). This capability holds significant promise for

enhancing the accuracy of DKD risk prediction. Previous studies have

demonstrated the feasibility of employing ML techniques to utilize

various date types for identifying and predicting the risk of DKD in

T2DM patients (26, 27).

In summary, ML algorithms hold potential value in predicting

DKD risk. However, considering the diversity of ML algorithms, the

initial differences in dataset characteristics, and the variations in sample

sizes, the heterogeneity among studies cannot be overlooked.

Moreover, although ML has garnered significant attention within the

medical field, its robustness in clinical practice remains uncertain, and

its widespread adoption and application are somewhat constrained.

Therefore, in this systematic review and meta-analysis, we aimed to

comprehensively integrate and evaluate the performance and clinical

applicability of published ML-based models for predicting the DKD

risk in T2DM patients. And hope to provide more reliable reference for

clinical practice.
2 Materials and methods

2.1 Study design

This systematic review and meta-analysis were conducted in

accordance with the guidelines recommended by the Cochrane

Collaboration and the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies

(PRISMA-DTA) statement (28). The Checklist for Critical Appraisal

and Data Extraction for Systematic Reviews of Prediction Modelling
frontiersin.org
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Studies (CHARMS) was employed to define the objectives of this

systematic review and meta-analysis (29). The protocol for this

systematic review and meta-analysis has been registered a priori at

the International Platform of Registered Systematic Review and

Meta-analysis Protocols (INPLASY) (30). (Registration:

INPLASY202490038, https://doi.org/10.37766/inplasy2024.9.0038).
2.2 Date sources and search strategy

We aimed to compile predictive models for the DKD risk in

T2DM patients based on ML algorithms, with the goal of evaluating

their performance. With the assistance of information specialists,

we conducted a comprehensive search across the following

databases: PubMed, Embase, Cochrane Library, and Web of

Science Core Collection. We included all relevant English-

language publications up to April 18, 2024. Both controlled

vocabulary terms (MeSH terms in Embase and PubMed) and

free-text terms were employed using Boolean operators. The

detailed search strategy is outlined in Supplementary Table 1.
2.3 Inclusion criteria

We included studies that evaluated the predictive performance

of ML algorithms in assessing the DKD risk in T2DM patients,

focusing on those that met the “PICOS” inclusion criteria.

2.3.1 Participants
The participants were diagnosed with T2DM (31), with no

eligibility restrictions based on gender, age, ethnicity, or

geographical location. Studies focusing on other types of diabetes

were excluded from this review.

2.3.2 Intervention
Studies were included if they explicitly specified the application of

clinical prediction models based on ML algorithms in T2DM patients.

This included all relevant synonyms andmethodologies related toML,

such as “supervised machine learning”, “unsupervised machine

learning”, “deep learning”, “neural networks” and “support vector

machines”. Consequently, studies that did not employ ML algorithms

or those where ML was applied in nonclinical settings were excluded.

2.3.3 Comparators
We included studies that compared ML algorithms with other

ML algorithms, traditional statistical analyses, clinical scoring tools,

and manual diagnoses with or without clinical scoring tools. Studies

that solely used traditional statistical prediction tools or relied

exclusively on unaided clinical performance were excluded.

2.3.4 Outcomes
The primary outcome indicator is the risk of developing DKD

in T2DM patients (1). Included studies must report model

performance metrics, specifically area under the receiver

operating characteristic curve (AUC).
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2.3.5 Study
Cohort studies, case-cohort studies, case-control studies and

nested case-control studies.
2.4 Exclusion criteria

We excluded studies in the form of review articles, meta-

analysis, case reports, conference abstracts, guidelines, editorials,

commentaries, expert opinions, letters, and animal studies.

Additionally, studies employing simple algorithms instead of ML

were excluded. We also excluded studies that merely analyzed

influencing factors without constructing a ML risk mode.

Furthermore, studies that used ML exclusively for image

recognition without developing a predictive model were excluded.

In case where multiple studies used the same or overlapping patient

datasets, only the most recent study was included.
2.5 Study selection

Firstly, the retrieved studies were imported into EndNote

software for reference management where duplicate references

were identified and removed. Secondly, two independent

reviewers (Y.H. Li and N. Jin) performed a preliminary screening

of the titles and abstracts of the included studies. This screening

focused on selecting only those studies pertinent to the use of ML

algorithms for risk prediction of DKD in T2DM patients. Note that

two reviewers are required to independently evaluate the full

research report and apply predefined inclusion and exclusion

criteria to determine eligibility. Additionally, we manually

searched the references of the included studies to identify any

other potentially eligible studies. In cases of disagreement

regarding the inclusion of a study during the screening process,

consensus was achieved through discussion or by consulting a third

independent reviewers (Q.Z. Zhan) for arbitration.
2.6 Date extraction

We employed the CHARMS checklist and the Transparent

Reporting of a multivariable prediction model for Individual

Prognosis or Diagnosis (TRIPOD) guidelines to develop

standardized forms for data extraction (29, 32). Two independent

reviewers (Y.H. Li and N. Jin) extracted data from the studies that

were ultimately included. Notably, during the extraction process, if

a single study reported multiple performance outcomes for the

same ML model, we selected the best result. Additionally, if a study

included two or more models, we extracted performance metrics for

each model. Specifically, the following information was extracted

from each study: first author, year of publication, country, data

source, study design, research objectives, sample size, participant

characteristics, age, gender distribution, type of prediction, type of

ML model, category of predictive factors, model development and

validation processes, and model performance metrics. The primary
frontiersin.org
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performance metrics of the included models typically included the

area under the AUC, C-statistic, sensitivity, specificity, accuracy, F1

score, positive predictive value (PPV), and negative predictive value

(NPV). In our study, AUC and the associated 95% confidence

intervals (CI) were primarily used as the key metrics for evaluating

model performance. If necessary, we attempted to contact the study

authors for additional detailed information.
2.7 Risk of bias assessment

We assessed the risk of bias in the prediction models using the

Prediction Model Risk of Bias Assessment Tool (PROBAST) (33),

which is specifically designed for studies involving multivariable

prediction models for individual prognosis or diagnosis. This tool

assesses four domains: participants, predictors, outcomes, and

statistical analysis. Each domain includes 2 to 9 key questions,

with responses categorized as “Yes”/”Probably Yes”, “No”/

”Probably No”, or “Unclear”. If at least one question within a

domain is rated as “No” or “Probably No” the domain is considered

high risk. Conversely, if all questions are rated as “Yes” or “Probably

Yes” the domain is deemed low risk. When all domains are assessed

as low risk, the overall risk of bias is categorized as low. If at least

one domain is considered high risk, the overall risk of bias is rated

as high. If the assessment is uncertain, the overall risk is marked as

unclear. Similarly, this section was evaluated by two independent

reviewers (Y.H. Li and N. Jin), who cross-checked their results. In

cases of disagreement, a third reviewer (Q.Z. Zhan) was consulted

to make the final decision.
2.8 Statistical analysis

We conducted a meta-analysis, pooling the AUC values and

their 95% CIs from individual studies, and performed stratified

analyses based on study design, model type, and other relevant

factors. If the AUC did not report a 95% CI or standard error (SE),

we estimated the SE and 95% CI using the Hanley and McNeil

formula (34–36). Given the high heterogeneity among the included

studies due to variations in study design, ML models, predictive

factors, and parameters, we used the Der Simonian and Laird

random-effects model to pool the AUCs in the meta-analysis (37).

Additionally, we calculated the 95% prediction interval (PI) to

characterize the degree of heterogeneity among studies and to

assess the potential range of the predictive model’s performance

in future studies. The results were presented in the form of a forest

plot. Moreover, we assessed the degree of heterogeneity between

studies using the Cochrane Q test and I² statistic to determine the

suitability of a fixed-effects model (P < 0.10 or I² > 25%) (38). It is

important to note that when the 95% CI or PI of the pooled AUC

includes 0.5, we consider there to be insufficient evidence to

demonstrate statistically significant discriminatory ability of the

prediction model for DKD occurrence in the populations included

in the meta-analysis. AUC values were classified as follows: <0.60 as

inadequate, 0.60–0.70 as moderate, 0.70–0.80 as acceptable, and

>0.80 as excellent. All statistical analyses were conducted using
Frontiers in Endocrinology 04
STATA version 18. Statistical significance was defined as a P-value

less than 0.05, with a threshold of 0.10 for heterogeneity testing.
3 Results

3.1 Study selection

In this study, two independent reviewers (Y.H. Li and N. Jin)

conducted a comprehensive screening and integration of the data.

The inter-rater reliability was assessed using the Kappa coefficient,

which indicated substantial agreement between the two reviewers

(kappa = 0.82).

A total of 1260 studies were identified through a systematic

search of the predetermined electronic databases, based on the

established search strategy. Specifically, we retrieved 218 records

from PubMed, 174 records from the Cochrane Library, 494 records

from Web of Science, and 374 records from Embase. Additionally,

we identified 9 studies through reference list reviews. Subsequently,

after removing duplicates, 877 studies remained. We screened these

studies by reviewing titles and abstracts, excluding 754 studies that

either reported irrelevant topics or lacked predefined outcomes. The

remaining 123 studies were further assessed through full-text

review. Finally, 26 studies meeting the inclusion and exclusion

criteria were included for meta-analysis (26, 27, 39–62). A flowchart

of the study search and selection process is detailed in Figure 1, and

search information from each electronic database is provided in

Supplementary Table 1.
3.2 Study characteristics

Among the 26 studies included, 14 were from China (39–41, 43,

48, 49, 51–53, 55, 59, 60), 4 from the United States (42, 50, 56, 58), 3

from Singapore (26, 44, 45), 3 from Iran (46, 47, 54), and 1 each from

Italy (27) and Bangladesh (57). Only one study was published in 2013

(61), while the rest were published in the past five years. All studies

were predominantly retrospective, comprising 14 cohort studies (26,

41, 42, 46, 48–52, 55, 56, 58, 61, 62), 9 cross-sectional studies (39, 40,

45, 47, 53, 54, 57, 59, 60), and 3 case-control studies (27, 43, 44). The

basic characteristics of each study are detailed in Table 1.

Most of the data were obtained from electronic health record

systems (EHRs) in hospitals, with a smaller proportion sourced

from specialized disease research public databases, such as the

Singapore Eye Disease Epidemiology Study Database and the

Diabetic Retinopathy Comprehensive Project (26, 44, 45, 54). The

included variables typically encompass demographic information

(e.g., gender, age), disease characteristics (e.g., medical history,

disease duration, complications), lifestyle factors (e.g., smoking,

alcohol consumption), physical examination measures (e.g., height,

weight), and clinical laboratory test results (e.g., blood and urine

analysis). Additionally, some studies incorporated circulating

metabolites (26, 45) and genetic parameters (26, 56) as variables.

Furthermore, some studies used unstructured data, such as renal

pathology images (39), retinal color fundus photographs (26, 44,

60), and renal ultrasound images (48).
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Regarding the types of predictive models, 18 studies focused on

diagnostic models (39–41, 43–45, 47–49, 51–54, 57–60, 62), while

the remaining 8 were prognostic models (26, 42, 46, 50, 55, 56, 61).

Among the prognostic models, the study by Leung et al. (61) had

the longest median follow-up period of 7.8 years, whereas the study

by Song et al. (50) had a follow-up period of only 1 year.

Twenty-five studies conducted internal validation, using either

holdout validation sets or K-fold cross-validation. The total sample

size across all internal validation was 319,190 participants.

However, there was substantial variation in sample sizes among

the studies, with Nicolucci et al. (27) having the largest sample size

of 147,664, and Maniruzzaman et al. (57) having the smallest with

133. External validation was performed in 8 studies (27, 39, 44–46,

52, 56, 58). 4 studies employed external validation using datasets
Frontiers in Endocrinology 05
independent of the training set (27, 39, 44, 45). 3 studies used a

temporal split method, dividing data chronologically into training

and external validation sets, with earlier data used for training and

later data for external validation (46, 52, 58). For instance, Hosseini

Sarkhosh et al. (46) used data from 2012-2016 as the training set

and data from 2017-2021 as the external validation set.

Additionally, while the internal and external validation sets in the

study by Allen et al. (56) were derived from the same large dataset,

the external validation set consisted solely of clinical data, which

was independent of the training set. 7 of those external validation

had a combined external validation sample size of 37,944. One

study conducted external validation across 5 different centers (27),

with reported cohort sizes ranging from 3,912 to 200,007, though

specific sample sizes for the other centers were not provided.
FIGURE 1

Study search and selection flowchart. Flowchart according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA
2020). n= number of studies/records/reports.
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TABLE 1 Characteristics of studies included in the systematic review and meta-analysis.

Predictors
Machine
Learning

Performance
Evaluation

Validation

MH+LE LR AUC, Accuracy,
Sensitivity, Jordan index

INV+EXV

DC+LE+CI BN, BN-wopi, NB,
RF, DT

AUC,
Sensitivity, Specificity

INV

MH+LE LASSO AUC, Precision score,
Recall score, Accuracy

INV

DC+LE+SH SVC, GBDT, ET,
AdaBoost, RF, LR

AUC INV

MH+LE+CI DT, RF AUC, sensitivity,
specificity, accuracy,
recall, precision

INV

DC+MH
+LE+RP

DL AUC, sensitivity,
specificity, PPV, NPV

INV+EXV

DC+MH+DD
+PD+SH+LE

LASSO, GBDT, LR AUC,
sensitivity, specificity

INV+EXV

DD+MH+CI LR AUC, accuracy,
precision, f1score

INV+EXV

DC+DD
+LE+PE

DT sensitivity, spec-
ificity, accuracy

INV

RS DL ROC, accuracy,
specificity, sensitivity,

PPV, NPV

INV

MH+DD+PD
+PE+LE

XGB, RF, DT, LR AUC-ROC, Accuracy INV

(Continued)
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Study Country
Study
Type

model Sample Size
Male/
Female

Age

Zhao et al. (2023) (39) China Cross DI Total: 678
Training:202

Internal validation:87
External validation:389

467/211 54.1 ± 11.8

Liu et al. (2020) (40) China Cross DI Total: 1485(10-fold cross)
Training:

Internal validation:

N/A N/A

Hui et al. (2023) (41) China Cohort DI Training:241 100/141 52.57 ± 10.65

Momenzadeh et al.
(2022) (42)

USA Cohort PR Total: 10468
Training:8388

Internal validation: 2097

5067/5401 57.7(48.3-68.3)

Cai et al. (2024) (43) China Case DI Total: 210
Training:147

Internal validation:63

87/123 57.42 ± 8.15

Betzler et al. (2023) (44) Singapore Case DI Training:13284(5-fold cross)
Internal validation (5-fold cross); External
validation: SEED:1969; SMART2D:712

6758/6526
1047/922
380/332

64.1 ± 10.8
64.0 ± 9.2
57.4 ± 10.7

He et al. (2024) (45) Singapore Cross DI Total: 2772(5-fold cross)
Training:2219

Internal validation:553
External validation:5843

1411/1361
3753/2090

61.7(53.5-69.4)
61.0(55.0-65.0)

Hosseini Sarkhosh et al.
(2023) (46)

Iran Cohort PR Total: 1907
Training:1526

Internal validation:381
External validation:1543

854/1053
683/860

58.4 ± 9.4
58.63 ± 9.24

Afrash et al. (2022) (47) Iran Cross DI Total: 327 (5-fold cross)
Training:

Internal validation:

176/151 54.7 ± 3.8
68.23 ± 5.6

Yang et al. (2024) (48) China Cohort DI Total: 162
Training: 114

Internal validation: 49

100/63 58 ± 12

Yin et al. (2024) (49) China Cohort DI Total: 562 (10-fold cross)
Training: 9 subsets

Internal validation: 1 subset

N/A N/A
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TABLE 1 Continued

tors
Machine
Learning

Performance
Evaluation

Validation

+PE
H

GBM AUROC, AUPRC INV

+FH
PD

BN, CHAID, D, XF AUC, NPV,
PPV, accuracy.

INV

I
H

RF, SVM AUC, Accuracy,
Sensitivity, Specificity,

PPV, NPV,
Balanced accuracy

INV+EXV

H
E

CatBoost, GBM,
XGBoost, ET,

GBDT, RF, LDA,
LR, QDA,

AdaBoost, NB,
KNN, DT,
SVM, RC

AUC, Accuracy INV

+LE
CI

DT, SVM, LR,
RF, XGBoost

AUC INV

+PE GBM, XGBoost,
AdaBoost, ANN,
DT, SVM, LR

AUC, sensitivity,
specificity, accuracy, F1

INV

XGBoost AUC, accuracy,
sensitivity, specificity

INV+EXV

+PD
+PE

LASSO, EN, GBDT AUC INV

+LE
H

RF, XGBoost AUC, Sensitivity
Specificity

Positive and negative
likelihood ratios, DOR

INV+EXV

D
E

LDA, SVM-RBF,
LR, KNN, NB

AUC, sensitivity,
specificity, accuracy, F1

INV

+LE
CI

GBM AUC, sensitivity,
specificity, accuracy, F1

INV+EXV

(Continued)
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Study Country
Study
Type

model Sample Size
Male/
Female

Age Predic

Song et al. (2020) (50) USA Cohort PR Total: 14039
Training: 11231

Internal validation: 2808

6786/7253 58 ± 18 DC+LE
+RS+

Fan et al. (2021) (51) China Cohort DI Total: 165
Training: 132

Internal validation:33

97/68 N/A DC+MH
+DD+

Zhang et al. (2022) (52) China Cohort DI Total: 929(5-fold cross)
Training: 743

Internal validation:186
External validation:329

608/321
234/94

51.34 ± 10.02
51.83 ± 9.66

DD+
+LE+

Liu et al. (2023) (53) China Cross DI Total: 3624
Training: 2899

Internal validation:725

2034/1590 59 ± 9.0 DC+
+PE+

Hosseini Sarkhosh et al.
(2022) (54)

Iran Cross DI Total: 6235
Training: 4988

Internal validation:1247

2754/3481 57.6 ± 11.9 DC+DD
+PE+

Dong et al. (2022) (55) China Cohort PR Total: 2809
Training: 652

Internal validation:164

585/231 56(48.3-65.0) DC+LE

Nicolucci et al.
(2022) (27)

Italy Case PR Total: 147664(Ten-fold Cross)
Training: nine folds

Internal validation: one fold

N/A N/A N/A

Sabanayagam et al.
(2023) (26)

Singapore Cohort PR Total: 1365
Training: 652

Internal validation:164

698/667 58.74 ± 8.95 DC+MH
+CI+LE

Allen et al. (2022) (56) USA Cohort PR Total: 87963
Training: 62994

Internal validation:17323
Hold-out testing sets: 7656
External validation: 23073

N/A N/A DC+MH
+SH+

Maniruzzaman et al.
(2021) (57)

Bangladesh Cross DI Training:133 55/78 54.3 ± 12.5 DC+D
+LE+

Song et al. (2019) (58) USA Cohort DI Total: 15645
Training: 8089

7726/7919 59.0 ± 14.0 DC+DD
+PE+
S

C
F

S
L

F

P

https://doi.org/10.3389/fendo.2025.1495306
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Continued

Sample Size
Male/
Female

Age Predictors
Machine
Learning

Performance
Evaluation

Validation

Internal validation: 3461
External validation: 4086

Training:2163 1227/949 57.27 ± 11.93 DC+MH+DD
+SH+PE

LR AUC INV

Total: 512
Training: 360

Internal validation:155

329/186 54.1 ± 0.64 DC+MH+DD
+LE+PE

RF, SVM,
GBDT, Adaboost

AUC INV

Total: 673
Training: 360

Internal validation:155

277/396 57 ± 8.5 DC+DD+LE
+PE+GA

SVM, Cforest AUC, sensitivity,
specificity, accuracy, F1

INV

Total: 219
Training: 175

Internal validation:44

140/79 56.15 ± 10.98 DC+LE KNN, SVM, LR sensitivity, specificity,
accuracy, F1,
MCC, AUC

INV

stic model; PR, prognostic model; MH, medical history; LE, laboratory examinations; DC, demographic characteristics; CI, complications information; SH, social-lifestyle history; RP,
nation; RS, Radiomic Signatures; FH, family history; GA, genetic attributes; CM, circulating metabolites; RH, renal histopathological results; LR, logistic regression; RF, random forest;
s; BN, Bayesian networks; NB, Naive Bayes; AdaBoost, Adaptive Boosting; LASSO, Least Absolute Shrinkage and Selection Operator; MICE, Multivariate Imputation by Chained
lgorithm; PCA, Principal Component Analysis; XGBoost, Extreme Gradient Boosting; KNN, K-Nearest Neighbors; AUC, area under the receiver operating characteristic curve; INV,
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Study Country
Study
Type

model

Wang et al. (2021) (59) China Cross DI

Shi et al. (2023) (60) China Cross DI

Leung et al. (2013) (61) China Cohort PR

Su et al. (2023) (62) China Cohort DI

Cross, cross-sectional study; Cohort, Cohort Study; Case, Case-Control Study; DI, diagno
Retinal Photographs; DD, Diabetes duration; PD, previous drug used; PE, Physical Exam
DT, decision tree; SVM, support vector machine; GBDT, gradient boosted decision tre
Equations; RFECV, Recursive Feature Elimination with Cross-Validation; GA, Genetic A
Internal validation; EXV, External validation.
i
e
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3.3 ML models and performance evaluation

There were 26 ML models involved across 26 studies. The most

commonly applied ML algorithms included logistic regression (LR,

n = 11), random forest (RF, n = 9), decision tree (DT, n = 9),

support vector machine (SVM, n = 6), gradient boosted decision

trees (GBDT, n = 5), Bayesian networks (BN, n = 3), Naive Bayes

(NB, n = 3), Adaptive Boosting (AdaBoost, n = 3), and Least

Absolute Shrinkage and Selection Operator (LASSO, n = 3). All

studies used classical methods to assess the discriminative ability of

ML models. We used AUC and associated 95% CI as the primary

ability metrics. Additionally, other ability evaluation metrics

included Accuracy, Specificity, Sensitivity, Jordan index, Precision

score, Recall score, PPV, and NPV, and F1 score.
3.4 Handling of missing data

Most studies addressed missing data using various imputation

methods. Among them, six studies used mean or median

imputation (45, 46, 52, 54, 56, 61). Momenzadeh et al. (42)

applied the MissForest imputation method, while Liu et al. (40)

employed the Multivariate Imputation by Chained Equations

(MICE) algorithm. Additionally, 2 studies used ML algorithms for

imputation (55, 60). However, 3 studies only mentioned the use of

imputation without specifying the exact methods employed (27, 50,

53). Three studies excluded missing data directly (39, 44, 48), while

6 studies selectively excluded missing data based on a certain

proportion (26, 41, 47, 49, 51, 58). There were also 3 studies that

did not mention their method to handling missing data (57, 59, 62).

Furthermore, one prospective study had no missing data, and thus,

did not involve any imputation methods (43).
3.5 Methods of selecting predictors

Of the studies reviewed, two did not mention the method used

for predictor selection (27, 44), one used all available features as

predictors (42), and another determined predictors based on

existing literature and expert consensus (56). The remaining 22

studies detailed their methods for predictors selection. The most

frequently employed method was Recursive Feature Elimination

with Cross-Validation (RFECV), followed by the LASSO.

Additionally, some studies used multivariate LR, the Markov

Blanket, the Genetic Algorithm (GA) feature selection method,

and various ML algorithms, including RF, GBDT, Gradient

Boosting Machine (GBM), SVM, DT, Extreme Gradient Boosting

(XGBoost), and Principal Component Analysis (PCA) et al. for

selecting predictors.
3.6 Quality of evidence and risk of bias

All included studies were assessed for risk of bias using the

PROBAST tool. Overall, with the exception of two studies that were
Frontiers in Endocrinology 09
assessed as low risk and one study that was assessed as unclear risk,

the remaining studies were assessed as having a high risk of bias. In

domain 4 (statistical analysis), a significant proportion of studies had

a high risk of bias. In particular, 14 studies failed to properly assess

the discrimination and calibration of the prediction models, which is

a common source of bias. Furthermore, 53.8% of the studies did not

assess whether the coefficients and intercepts of the final predictors in

the development phase were consistent with the results reported in

the multivariable analysis, another common bias. Although the vast

majority of studies (96.1%) conducted internal validation, a portion

of these studies (34.6%) relied solely on random data splitting as

internal validation, which cannot be considered a proper application

of internal validation methods. This leading to an increased risk of

bias. Eleven studies (42.3%) did not provide adequate explanations

for handling complex data. Eight studies (30.8%) failed to

appropriately address missing data in their included subjects.

Additionally, 8 studies (30.8%) had unreasonable sample size

designs, with 4 studies having an event-per-variable (EPV) ratio of

less than 10 during the development of predictive models, and

another 4 studies having a validation cohort sample size of fewer

than 100 cases. These results indicate that potential bias may be

present in the majority of the included studies, which should be

considered carefully when interpreting the results. A summary table

of the results from the PROBAST assessment can be seen in

Supplementary Table 2.
3.7 Statistical analysis

Twenty-five studies underwent internal validation, while only 8

studies performed external validation (27, 39, 44–46, 52, 56, 58). A

total of 94 ML models were developed, with 81 models in the

internal validation set and 13 models in the external validation set.

The meta-analysis of the AUC included data from 25 studies for

internal validation sets and 8 studies for external validation sets.

Since most studies employed multiple ML models, we first pooled

their AUC, as shown in Supplementary Table 3. A meta-analysis

was then subsequently performed using the pooled AUC from each

study. The pooled AUC in the internal set was 0.839 (95% CI 0.787-

0.890; I²= 99.8%; P = 0.000 for heterogeneity), with a 95% PI

ranging from 0.56 to 1.00. In contrast, the pooled AUC in the

external validation set was 0.830 (95% CI 0.784-0.877; I²= 95.6%; P

= 0.000 for heterogeneity), with a narrower 95% PI of 0.64-0.97 that

excluded 1, indicating more stable performance and better

generalizability across external datasets, despite significant

heterogeneity. Moreover, these results indicated a marginally

higher pooled AUC in the internal validation set compared to the

external validation set. The results of the meta-analysis were

presented in Figure 2.

To identify potential sources of heterogeneity, we conducted

subgroup analyses based on study type and prediction model type

using the internal validation datasets. Individually, the pooled AUC

for cross-sectional studies was 0.848 (95% CI 0.770-0.926; I²=

99.2%; P = 0.000 for heterogeneity), for cohort studies it was

0.833 (95% CI 0.775-0.891; I²= 99.5%; P = 0.000 for
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heterogeneity). Notably, case-control demonstrated a pooled AUC

of 0.858 (95% CI 0.817-0.900) with significantly reduced

heterogeneity (I² = 23.0%; P = 0.254). When grouped by

prediction model type, pooled AUC was 0.797 (95% CI 0.757-

0.836; I²= 97.7%; P = 0.000 for heterogeneity) for prognostic models

and 0.856 (95% CI 0.815-0.896; I²= 99.5%; P = 0.000 for

heterogeneity) for diagnostic models. The results of the meta-

analysis were presented in Supplementary Figures 1, 2.

All used algorithms according to the history of ML into

traditional regression ML models (n = 14), ML models (n = 21),

and deep learning (DL) models (n = 4). Traditional regression ML

models refer to those that use regression techniques of ML, including

LR and LASSO. ML models are more complex than traditional
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regression ML models (such as RF, DT, SVM, et al). Additionally,

we defined DL models as neural networks with two or more hidden

layers, such as CNN and ANN. We then pooled their AUC. The

results indicated that the pooled AUC for traditional regression ML

models was 0.797 (95% CI 0.777-0.816) with significant heterogeneity

(I²= 96.7%, P = 0.000), forMLmodels was 0.811 (95% CI 0.785-0.836;

I²= 99.9%, P = 0.000 for heterogeneity). In contrast, the pooled AUC

for DL models was 0.863 (95% CI 0.825-0.900; I²= 81.1%, P = 0.000

for heterogeneity), indicating a outperformed both ML and

traditional regression ML models. The results of the meta-analysis

were presented in Supplementary Figure 3.

A total of 26 different ML models were analyzed. To identify

which models performed best, we pooled and compared the AUC of
FIGURE 2

Random effects forest plot of area under the curve (AUC) values with 95% confidence intervals (CI) in internal and external validation. AUC, area
under the receiver operator characteristic curve. The weight % represents the contribution of each study to the overall analysis. The diamond shapes
indicate pooled AUC estimates for each subgroup (internal, external) and the overall analysis. Horizontal lines represent the confidence intervals for
individual studies, and the dashed vertical line indicates the pooled AUC estimate. p values from Cochran’s Q test.
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those models that were used three or more times. The results

indicated that the pooled AUCs were as follows: AdaBoost, 0.798

(95% CI 0.729-0.868); BN, 0.815 (95% CI 0.777-0.854); DT, 0.748

(95% CI 0.567-0.929); GBDT, 0.821 (95% CI 0.757-0.885); LASSO,

0.820 (95% CI 0.816-0.825); LR, 0.793 (95% CI 0.764-0.823); NB,

0.788 (95% CI 0.737-0.840); RF, 0.848 (95% CI 0.785-0.911); SVM,

0.825 (95% CI 0.690-0.960); and XGBoost, 0.829 (95% CI 0.724-

0.934). Among the models, the RF exhibited the best performance,

while the DT model had the lowest performance; however, these

differences were not statistically significant. Despite the high degree

of heterogeneity, the 95% PIs for ML models demonstrated

statistical significance (0.53–1.00). The results of the meta-

analysis were presented in Figure 3.
3.8 Sensitivity analysis

A total of 25 studies were included, and excluding any single

study did not result in a statistically significant difference in the

pooled results from the remaining studies (n = 24). The results

remained consistent with the original pooled AUC (0.84, 95% CI

0.79-0.89), indicating the stability of the findings. The results of the

sensitivity analysis were presented in Supplementary Figure 4.
3.9 Predictors screened

The final predictors selected for developing the ML model can be

categorized into 14 types: demographic characteristics, medical

history, T2DM duration, previous drug use history, complication

information, social lifestyle history, family history, physical

examination, laboratory examinations, renal histopathological

results, radiomic signatures, circulating metabolites, genetic

attributes, and retinal photographs. Based on these studies, we can

identify several risk factors for the development of DKD in patients

with T2DM. These include age, gender, race; history of hypertension,

cardiovascular disease, cerebrovascular disease; T2DM duration;

smoking, alcohol; family history of diabetes; use of antidiabetic

(e.g., insulin, glinides, TZDs) and antihypertensive medications;

complications such as diabetic retinopathy and diabetic peripheral

vascular disease; physical examination parameters like height, weight,

BMI, pulse pressure, systolic blood pressure (SBP), diastolic blood

pressure (DBP), and waist-to-hip ratio; Additionally, laboratory

examinations result such as 2-hour Postprandial glucose (2hPPG),

glucose, insulin, fasting blood glucose (FBG), hemoglobin A1c, low-

density lipoprotein (LDL), high-density lipoprotein(HDL),

triglycerides, total cholesterol; circulating metabolites like tyrosine,

lactate, intermediate-density lipoprotein cholesteryl ester % (IDL-CE

%); and citrate, genetic attributes including uteroglobin gene G38A

mutation (UGB G38A), LIPC514C > T, and apolipoprotein B

threonine to isoleucine substitution at position 71 (APOBThr71Ile);

as well as renal histopathological results; retinal photographs, and

renal radiomic signatures. We have integrated these predictors, as

shown in Table 2.
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FIGURE 3

Random effects forest plot of area under the curve (AUC) values
with 95% confidence intervals (CI) in machine learning (ML) type.
AUC, area under the curve; AdaBoost, Adaptive Boosting; BN,
Bayesian networks; DT, decision tree; GBDT, gradient boosted
decision trees; LASSO, Least Absolute Shrinkage and Selection
Operator; LR, logistic regression; NB, Naive Bayes; RF, random
forest; SVM, support vector machine; XGBoost, Extreme Gradient
Boosting. The weight % represents the contribution of each study to
the overall analysis. The diamond shapes indicate pooled AUC
estimates for each subgroup (internal, external) and the overall
analysis. Horizontal lines represent the confidence intervals for
individual studies, and the dashed vertical line indicates the pooled
AUC estimate. p values from Cochran’s Q test.
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4 Discussion

This meta-analysis systematically evaluated the application of

ML-based risk prediction models for assessing the risk of DKD in

patients with T2DM. We conducted a comprehensive analysis of 26

studies, exploring critical aspects such as study quality, the stability

of internal and external validation, the performance of various ML

models, and the types of predictive factors used.

Early prediction and identification of DKD are crucial for

preserving renal function in patients with T2DM. This can lead

to timely therapeutic interventions and lifestyle modifications,

preventing disease progression to advanced stages and reducing

dependence on dialysis and high healthcare expenditures (63).

However, DKD often manifests insidiously. Our analysis

indicated that ML demonstrates promising performance in
Frontiers in Endocrinology 12
predicting and identifying DKD in T2DM patients. The pooled

AUC from internal validation sets was 0.839 (95% CI 0.787-0.890),

and for external validation, it was 0.830 (95% CI 0.784-0.877).

These findings suggest that our study could provide valuable

insights for early clinical prediction of DKD.

It is important to note that the pooled AUC demonstrates

considerable heterogeneity. This heterogeneity among subgroups

may stem from variations in data sources and types. The studies

included in this analysis draw upon diverse datasets, encompassing

prospective clinical sample collections, publicly available datasets,

and electronic health records. The data types also vary, including

clinical laboratory tests, blood metabolomics, imaging, and

genomics. All of which may contribute to the observed

heterogeneity. Moreover, variations in the assessment tools for

DKD, the demographic characteristics of the study populations,
TABLE 2 Predictors included in the machine learning model.

Feature Final Predictors

Demographic characteristics Age, Gender, Race

Medical history Hypertension, Cardiovascular disease, Cerebrovascular disease

Duration T2DM duration

Social lifestyle history Smoking, Alcohol

Family history Family history of diabetes

Histopathological Renal histopathological results

Radiomic signatures Renal radiomic signatures

Photographs Retinal Photographs

Circulating metabolites Tyrosine, Lactate, DL-CE%, Citrate, Glycoprotein acetyls, LLDL-PL%, Alanine.

Genetic attributes (Urinary Glucose Blood Glycine 38 to Alanine Mutation) UGB G38A, Lipase C Gene Mutation (514C > T) (LIPC514C > T),
Apolipoprotein B Threonine 71 to Isoleucine Mutation (APOBThr71Ile), Apolipoprotein C3 Gene Mutation (3206T > G) (APOC33206T >
G) and Apolipoprotein C3 Gene Mutation (1100C > T) (APOC31100C > T)

Previous drug use history Antidiabetic medications: insulin use, TZDs, glinides, DPP-4 inhibitors, GLP-1 receptor agonists, SGLT-2 inhibitors;
Antihypertensive medications

Complication information Diabetic retinopathy
Diabetic peripheral vascular disease
Macrovascular complications of diabetes

Physical examination Height, Weight, BMI, Pulse pressure, SBP, DBP, DAP, SAP

Laboratory examinations 2hPPG, GLU, INS, FBG, HbA1c;
LDL, HDL, TG, TC, Apo-A, Apo-B, APB: APA;
BUN, CREA, BUN/CREA, UA, eGFR, 24h-UTP, MAU, ACR, CYS-C, hematuria, significant proteinuria;
ALB, GLB, ALP, gGGT, ALT, AST;
HCT, WBC, PLT, PDW, MCHC, HGB, PCV, RDW-SD, RDW, MPV, Mon%, Bas, Eos, Neu, P-LCR, Lym;
FT3, TSH, IGF-1, FIB, INR, Tyr, C2, C4DC, C5DC, C24, Na, K, PP, PLT, PT, TT, Bicarbonate, DHA, LLDL-CE%, IDLC%.
T2DM, Type 2 Diabetes Mellitus; DL-CE%, Double Layer Cholesterol Ester Percentage; LLDL-PL%, Large Low-Density Lipoprotein Phospholipid Percentage; UGB, Urinary Glucose Blood;
G38A, Glycine 38 to Alanine Mutation; LIPC514C > T, Lipase C Gene Mutation (514C > T); APOBThr71Ile, Apolipoprotein B Threonine 71 to Isoleucine Mutation; APOC33206T > G,
Apolipoprotein C3 Gene Mutation (3206T > G); APOC31100C > T, Apolipoprotein C3 Gene Mutation (1100C > T); TZDs, Thiazolidinediones; DPP-4, Dipeptidyl Peptidase-4; GLP-1,
Glucagon-Like Peptide-1; SGLT-2, Sodium-Glucose Cotransporter-2; BMI, Body Mass Index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; DAP, Waist-to-hip ratio, Diastolic
arterial pressure; SAP, Systolic arterial pressure; 2hPPG, 2-hour Postprandial Plasma Glucose; GLU, Glucose; INS, Insulin; FBG, Fasting Blood Glucose; HbA1c, Hemoglobin A1c; LDL, Low-
Density Lipoprotein; HDL, High-Density Lipoprotein; TG, Triglycerides; TC, Total Cholesterol; Apo-A, Apolipoprotein A; Apo-B, Apolipoprotein B; APA, Apoptosis-Associated Protein; BUN,
Blood Urea Nitrogen; CREA, Creatinine; BUN/CREA, Blood Urea Nitrogen to Creatinine Ratio; UA, Uric Acid; eGFR, Estimated Glomerular Filtration Rate; 24h-UTP, 24-hour Urinary Total
Protein; MAU, Microalbuminuria; ACR, Albumin-to-Creatinine Ratio; CYS-C, Cystatin C; ALB, Albumin; GLB, Globulin; ALP, Alkaline Phosphatase; gGGT, Gamma-Glutamyl transferase;
ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; HCT, Hematocrit; WBC; White Blood Cell Count; PLT, Platelet Count; PDW, Platelet Distribution Width; MCHC, Mean
Corpuscular Hemoglobin Concentration; HGB, Hemoglobin; PCV, Packed Cell Volume; RDW-SD, Red Cell Distribution Width-Standard Deviation; RDW, Red Cell Distribution Width; MPV,
Mean Platelet Volume; Mon%, Monocyte Percentage; Bas, Basophil Count; Eos, Eosinophil Count; Neu, Neutrophil Count; P-LCR, Platelet Large Cell Ratio; Lym, Lymphocyte Count; FT3, Free
Triiodothyronine; TSH, Thyroid-Stimulating Hormone; IGF-1, Insulin-Like Growth Factor-1; FIB, Fibrinogen; INR, International Normalized Ratio; Tyr, Tyrosine; C2, Carnitine C2
(Acetylcarnitine); C4DC, Butyrylcarnitine (C4 Dicarboxylate); C5DC, Glutarylcarnitine (C5 Dicarboxylate); C24 - Tetracosanoylcarnitine (C24); PP, Pancreatic Polypeptide; PT, Prothrombin
Time; TT, Thrombin Time; Bicarbonate, Bicarbonate Ion; DHA, Docosahexaenoic Acid; LLDL-CE%, Large Low-Density Lipoprotein Cholesterol Ester Percentage; IDLC%, Intermediate-
Density Lipoprotein Cholesterol Percentage.
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and the types of research designs may contribute to the

heterogeneity across studies. In our analysis, the sample sizes of

the included studies varied significantly, ranging from 133 to

147,664 participants. While sample size is an important factor,

the proportion of positive cases is arguably more critical, as it

determines the weight of each study. Consequently, a larger sample

size may not directly influence the AUC value. However, studies

with smaller sample sizes may experience a reduction in machine

learning model performance, which could also serve as a potential

source of heterogeneity.

Despite the significant potential demonstrated by extant studies

in the application of machine learning for multidimensional data

processing and risk prediction, the lack of external validation using

completely independent datasets remains a major methodological

issue in risk prediction model research (64, 65). Similarly, among

the 26 studies included in our review, only 8 conducted external

validation (27, 39, 44–46, 52, 56, 58), while the remaining studies

did not employ external validation. External validation is imperative

for evaluation of a model’s robustness and generalizability (66–68).

It not only evaluates the model’s predictive ability but also tests its

adaptability to new environments or different datasets, thereby

revealing its effectiveness and limitations in real-world clinical

practice (69). Although the negligible discrepancy (AUC values

from internal and external validation sets differed by only 0.009),

the absence of external validation hinders our understanding of the

actual capability of the generalizability in our pooled models. This

limitation restricts the applicability of our findings to diverse

regions, environments, and healthcare systems. In addition,

model overfitting or selectivity bias can result in good

performance on the training set but poor performance on the

external validation set (70). External validation can reveal

whether the model has overfitted the training set, as well as

selective bias during internal validation. In our study, it is also

not yet clear whether there is overfitting or selective bias in the

training set data due to the lack of external validation.

ML enhances model performance by synthesizing complex

relationships among variables, surpassing traditional statistical

analysis methods (67). Currently, ML algorithms are widely

applied in the healthcare industry, demonstrating significant

advantages in disease risk prediction. Another meta-analysis by

Saputro et al. (8) focused solely on the performance of traditional

Cox regression and LR models, without reporting on other ML

techniques. Our study is the first systematic review to predict the

risk of DKD in T2DM patients using ML algorithms. We

categorized ML models according to their chronological

development into traditional regression ML models, general ML

models, and DL models, and subsequently compared their

performance. Our results indicated that DL models consistently

outperform both regression-based and other ML models, aligning

with findings from previous studies (71, 72). The superior

performance of DL models in these studies can be attributed to

their capacity to process unstructured data (73). Such data include

diabetic retinal images, renal ultrasound scans, and renal pathology

slides, which directly reflect the pathological state of DKD. DL

models (CNN, ANN et al) are capable of automatically extracting

high-dimensional features such as vascular morphology and renal
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tissue microstructure, which are often challenging for other

traditional ML techniques to capture (74). However, traditional

ML algorithms can still achieve high performance with less

computational power and smaller datasets. These models

predominantly rely on structured data, including demographic

information, laboratory metrics, lifestyle factors, and other clearly

defined data with standardized units, which underscores their

inherent strengths. Notably, the study by Betzler et al. found that

modeling based on DL in combination with risk factors obtained by

RF screening yielded more effective results. Consequently, future

studies that can integrate structural data and unstructured data by

multimodal modeling may further improve the prediction of

DKD risk.

In addition, we evaluated and compared the performance of

common ML models (e.g., LR, RF, DT, SVM, etc.) separately. Our

results indicated that the RF model yielded the highest performance,

with a pooled AUC of 0.848 (95% CI 0.785-0.911), outperforming

the other models. This superior performance may be attributed to

unique ability to its unique ability to handle feature importance,

strong generalization, avoidance of overfitting and proficiency in

processing high-dimensional data (75, 76). RF is an ensemble

learning algorithm that solves classification and regression

problems by constructing multiple DTs, enabling the model to

effectively assess the relative importance of each feature in

prediction (77). This characteristic aids in identifying the most

influential predictors of DKD risk, thereby providing valuable

support for clinical decision-making. Additionally, RF trains each

tree by randomly selecting subsets of features and data, a strategy

that significantly reduces the overfitting risks typically associated

with individual models, thereby enhancing the model’s

generalizability. Moreover, RF’s parallelization capability results in

high computational efficiency, markedly reducing training time

(78). This efficiency enables the RF model to process large-scale

clinical data, such as electronic health records, genomic data, and

imaging information, quickly. This makes RF particularly suitable

for clinical settings where real-time predictions or immediate

decision-making are required. Unlike our study, the meta-analysis

by Feng et al. (79) found that the LR model achieved a higher AUC

in predicting stroke onset timing. Similarly, Wu et al. reported that

neural network algorithms outperformed others in screening for

diabetic retinopathy (80). These results suggest that, in practical

applications, the selection of a model should be based on the specific

research objectives and the characteristics of the dataset.

The selection of effective features is of critical importance for

the enhancement of both the predictive accuracy and

interpretability of ML models in clinical applications. To this end,

a comprehensive integration of the predictors that were ultimately

incorporated into the models was conducted. The final selection

comprised fourteen distinct categories of predictors, including

demographic data, medical history, duration of T2DM, prior

medication use, comorbidity profiles, lifestyle factors, family

medical history, physical examination results, laboratory findings,

renal biopsy data, radiomic features, circulating metabolites, genetic

markers, and retinal imaging results. The heterogeneity of these

predictive factors is reflective of the intricate and multifaceted

pathophysiological underpinnings of DKD risk (81, 82). It is
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noteworthy that age has been consistently validated in numerous

studies as a pivotal predictor of DKD (5). Moreover, the duration of

T2DM is recognized as a pivotal factor in DKD progression.

Extensive research indicates that a longer duration of T2DM

significantly escalates the risk of DKD, a phenomenon that is

intrinsically linked to the chronic renal damage induced by

sustained hyperglycemia (83, 84). Furthermore, complications,

such as diabetic retinopathy and peripheral vascular disease are

also closely associated with an increased risk of DKD. These

complications serve as hallmarks of systemic microvascular

pathology, indicating an increased likelihood of renal impairment

(85). The integration of emerging predictive factors, such as renal

biopsy data, circulating metabolites, genetic markers, and radiomic

features, underscores the forefront of interdisciplinary approaches

in DKD risk prediction. These high-dimensional datasets enrich the

input variables for complex models, thereby enhancing predictive

precision and bolstering the models’ generalizability (81).

This study represents the first comprehensive review of the

application of ML models for predicting DKD risk in patients with

T2DM. A principal strength of our study is the rigorous and

systematically developed methodology, which is not only logically

sound but also sufficiently detailed to ensure reproducibility.

Almost all published studies on the risk of DKD in patients with

T2DM were included in this meta-analysis, facilitating

comprehensive comparisons across different studies. In addition,

we extensive searched multiple databases in accordance with

PRISMA guidelines. Two independent reviewers systematically

accomplished literature screening, data extraction, and a detailed

risk of bias assessment using the PROBAST checklist, which

improved the credibility and reliability of the study results.

The present study also reveals a number of limitations (1). The

limited availability of external validation studies constrains the

generalizability of our findings (2). The studies included in this

meta-analysis varied in design, with the majority being

retrospective single-center cohort studies, which are prone to

selection bias and information bias (3). There is considerable

variation in sample sizes across studies. Studies with smaller sample

sizes may experience greater random error in estimating feature

factors, leading to potential overfitting or underfitting of the model

(4). The variability in the sources of predictive factors also affected the

consistency of the study results. While the diversity of data sources

enriches the model’s input dimensions, it may also introduce issues

related to data quality and consistency (5). Most studies exhibit

notable shortcomings in handling missing data. These discrepancies

may affect the prediction accuracy and stability of the models (6).

There is considerable variation in the methods used for selecting

predictive factors, and the choice of method can influence both the

complexity and interpretability of the model.

The integration of ML with medical expertise maximizes its

clinical efficacy. By providing clinicians with patient risk

information and encouraging the active use of clinical decision-

making tools, rather than passive reliance on them, early detection,

treatment, and prognosis of diseases are significantly enhanced.
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Additionally, the streamlined presentation of data improves

clinicians’ knowledge and experience, while the application of ML

models can substantially reduce both time and economic costs.

Therefore, we recommend that future research focus on the

following aspects to enhance the standardization of study conduct

and reporting, thereby advancing the field (1): In terms of study

design, future research should focus on conducting large-scale

prospective studies. (2) Concerning study populations, it is crucial

to select appropriate data sources and ensure the rationality of

inclusion and exclusion criteria. (3) For predictive factors, it is

important to clearly define and assess these factors consistently

across all populations and verify the effectiveness of the factors

included in predictive models. (4) Appropriate methods for

handling missing data should be employed. (5) Future research

should place greater emphasis on external validation, particularly

through the use of multi-center, large-scale datasets across diverse

regions, to enhance the generalizability of the models. (6) In the

discussion of results, a detailed evaluation of potential biases should

be provided, along with exploration of strategies to mitigate these

biases. (7) Whenever feasible, research data and processing codes

should be made publicly available, and standardized evaluation

datasets should be established to enhance the reproducibility and

generalizability of future research. (8) Future studies should

emphasize the transparency and standardization of data

processing methods to ensure the reliability and broader

applicability of results. (9) The integration of interpretable

algorithms, such as the Shapley additive explanation (SHAP)

algorithm, to interpret risk prediction models can help clinicians

better understand the key drivers behind model predictions, thereby

enhancing clinical decision-making.
5 Conclusion

ML algorithms have demonstrated high performance in

predicting the risk of DKD in T2DM patients. By integrating

various demographic characteristics, biomarkers, and clinical

data, these models offer more precise risk predictions compared

to traditional methods. However, challenges related to data bias

during model development and validation still need to be addressed.

Future research should focus on enhancing data transparency and

standardization, as well as validating these models’ generalizability

through multicenter studies. In summary, the application of

machine learning in predicting diabetic nephropathy risk holds

significant clinical value and represents a more selective and cost-

effective screening method for diabetic nephropathy.
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