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A murine model of gestational
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Introduction: Gestational Diabetes Mellitus (GDM) impacts roughly 1 in 7

pregnancies and results in metabolic dysfunction-associated steatotic liver

disease (MASLD) in 30% of these women. Nonetheless, there exists a dearth of

investigation into the relationship between GDM and MASLD. Here, we sought to

investigate the potential role of hepatic mitochondrial function in GDM

and MASLD.

Methods: One week prior to conception and throughout pregnancy, mice were

fed either a low-fat control diet (CD) or a high-fat, high-sucrose (HFHS) diet to

induce an established model of GDM. Maternal livers were collected at day 0, 6.5,

13.5 and 17.5 of pregnancy. Hepatic markers (via mRNA and western blot

analyses) of mitochondrial biogenesis, autophagy, mitophagy, activity, and

function were assessed, as well as markers of inflammation and antioxidant

status were evaluated.

Results: Progressing gestation in both CD and GDM dams significantly decreased

protein and mRNA markers of hepatic mitochondrial biogenesis (Pgc1-a, Tfam),

autophagy (Atg5, Sqstm1), mitophagy (Pink1, Bnip3) and lipid handling (Ampk,

pAMPK/AMPK, FAS, ACC, pACC,Mttp) with a main effect for time (P<0.05). HFHS-

induced model of GDM lead to significant elevations in liver triglycerides and

NAFLD Activity Score (NAS) (P<0.0001, P<0.0001) independent of body weight

gain during gestation. MASLD development in the GDM mice occurred in

conjunction with significant reductions in hepatic mitochondrial activity at day

6.5 (citrate synthase, p<0.01) and day 17.5 (b-HAD, citrate synthase, P<0.001)

compared to CD mice. However, GDM lead to elevated protein and/or mRNA

markers of mitochondrial biogenesis (Tfam), mitophagy (BNIP3, Bnip3, Sqstm1,

Pink1), lipid handling (Mttp), inflammation (Il-1b, Tnf-a, Tgf-b) and antioxidant

defense (Gxp1, Nfe2l2, Sod2) (P<0.05).
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Discussion: Pregnancy, independent of diet, decreased markers of liver

mitochondrial biogenesis, autophagy, and mitophagy in dams. The GDM

mouse model exhibited elevated hepatic TG and NAS, as well as decreased

liver mitochondrial activity. These findings demonstrate that pregnancy and GDM

significantly impact maternal liver mitochondrial metabolism and unveil new

insight on the potential relationship between MASLD and GDM.
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Introduction

The diagnosis of glucose intolerance during pregnancy or

Gestational Diabetes Mellitus (GDM), affects up to 14% of

pregnancies globally (1, 2). Although pregnancy is a natural state

of insulin resistance, women with GDM face a worsened level of

insulin resistance coupled with glucose intolerance (3–8). This

disease can then further be exacerbated by a lack of beta cell

expansion in the pancreas, leading to reduced insulin secretion

(9–11). This failure to adapt to the metabolic demands of pregnancy

is associated with an increased risk of type 2 diabetes, GDM in

subsequent pregnancies, hypertension, cardiovascular disease,

increased body mass index, and cesarean delivery (12). Moreover,

GDM induces adverse outcomes in the fetus, including increased

risk for preterm birth, macrosomia, and type 2 diabetes (12).

Recently, studies have found that women with GDM have a

heightened risk for developing metabolic dysfunction-associated

steatotic liver disease (MASLD), formerly known as nonalcoholic

fatty liver disease (NAFLD), during pregnancy and post-partum

(13–15). Women with MASLD were three times more likely to

develop GDM (16, 17). Furthermore, compared to their healthy,

pregnant counterparts, women with GDM display alterations in

hepatic serum metabolites such as lysophosphatidylcholine,

glycerophospholipids, monoacylglycerol, serine, proline, leucine,

and isoleucine (18, 19). These metabolites are involved in lipid

and amino acid metabolism (19, 20), and such alterations of these

metabolites may help explain the metabolic impact of GDM (21–

23), but a mechanistic link between GDM and MASLD has yet to

be determined.

MASLD, characterized by a greater than 5% of hepatocytes

containing lipid, is the most common form of chronic liver disease

(24, 25). MASLD is linked to several metabolic disorders including

type 2 diabetes, cardiovascular disease, and obesity (24, 26).

Although the specific cause of MASLD is unknown, there are a

number of processes that influence this disease, such as alterations

in lipid metabolism and mitochondrial function (27–30). The

hepatic mitochondrion is responsible for the breakdown of

different substrates via glycolysis and fatty acid oxidation which

then feed into the TCA cycle and activates ATP synthesis via the

electron transport chain, a process known as respiration (31–34).
02
Further, functional mitochondria are in a constant cycle of turnover

via biogenesis, autophagy, and mitophagy. During MASLD,

mitochondrial respiration, metabolism, activity, and turnover are

impaired (35–37). This creates a pool of poorly functioning

mitochondria that exhibits inflammation, increases reactive

oxygen species generation, and decreases in antioxidant capacity

(35). The health of a hepatic mitochondria depends on the

interaction between these processes and when impaired

significantly contributes to the development and progression of

MASLD (32, 37).

As stated previously, there is limited investigation into the

mechanistic links between GDM and MASLD. Previous murine

models of GDM have shown alterations in maternal hepatic

electron transport chain and UCP2, a marker of ROS (38).

Offspring of mice with GDM display impaired mitochondrial

function and hepatic lipid accumulation (38, 39). The purpose of

this study was to evaluate the impact of GDM on hepatic lipid

metabolism, mitochondrial function, and inflammation in the

maternal liver. It is imperative to understand how GDM and

MASLD are connected. By evaluating the liver at varying time

points during gestation, we can further understand the natural

changes that occur in the liver in a healthy vs. GDM pregnancy. We

hypothesized that GDM will significantly increase maternal

hepatocellular injury.
Materials and methods

Experimental animals

The Baylor College of Medicine Institutional Animal Care and Use

Committee approved all animal procedures. All methods performed

were in accordance with the Guide for the Care and Use of Laboratory

animals. Seven-week-old female and 12-week-old male wild type

C57BL/6J were purchased from JAX (Bar Harbor, ME). Mice were

kept at 23°C, 40-60% humidity, and a 14-hour light/10-hour dark cycle.

Mice had ab libitum access to food and water. Female mice were mated

to C57BL/6J breeder males for five days. Following, observation of a

copulatory plug was identified and marked as day 0 of pregnancy. A

total of 60 mice were included in this study. CD: day 0 n=8, day 6.5
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n=8, day 13.5 n=4, and day 17.5 n=10. GDM: day 0 n=8, day 6.5 n=5,

day 13.5 n=7, and day 17.5 n=10.
Diet and timeline

Mice were randomized and fed either a high-fat, high-sucrose

(HFHS) diet (D12451, Research Diets Inc., New Brunswick, NJ) or

control diet (CD) (D12450K, Research Diets Inc.). Maternal feeding

started 1-week prior to conception and continued throughout

pregnancy. This feeding timeline has been verified to confirm a

model of GDM in C57BL/6J mice (40–42). Livers were collected on

days 0, 6.5, 13.5, and 17.5 of pregnancy. After a 6-hour fast, mice

were euthanized via CO2 inhalation and cardiac exsanguination.
Histology

Liver tissues fixed in 10% formalin for 24 hours were embedded

in paraffin, sectioned, and stained with hematoxylin-eosin (H&E)

by IDEXX BioAnalytics (Columbia, MO, USA) for histological

evaluation. Steatosis was scored by direct observation of the

percentage of overall surface area covered by lipid accumulation

within cells on a low to medium power and scored as a 0 (<5%), 1

(5-33%), 2 (33-66%), or 3 (>66%). Lobular inflammation refers to

the number of foci with white blood cell infiltrate present per 200x

powered field, scored as 0 (no foci), 1 (<2 foci), 2 (2-4 foci), or 3 (>4

foci). Hepatocyte ballooning refers to the presence of hepatocytes

that have pathologically swollen with or without the presence of

lipid vacuoles, indicating a trend towards apoptosis and necrosis of

the cell, and is scored as 0 (no ballooned hepatocytes), 1 (rare but

definite ballooned cells), or 2 (many/most cells are prominent with

ballooning). NAS (NAFLD Activity Score) assessment consists of

histologically examining the liver for steatosis, lobular

inflammation, and hepatocyte ballooning utilizing H&E staining,

and is indicated as a sum of these scores (0–8) (43).
Serum triglycerides and insulin

Triglycerides were isolated from the liver utilizing previous

methods (44). Once extracted, liver and serum triglycerides were

measured using the Serum Triglyceride Determination Ket (Sigma-

Aldrich). Serum insulin was measured after a 6-hour fast using a

Rat/Mouse Insulin ELISA kit from EMDMillipore according to the

manufacturer’s instructions. Serum insulin and triglycerides were

part of previous studies that have been published (40–42).
Mitochondrial activity

b-hydroxyacyl-CoA dehydrogenase (b-HAD) and citrate

synthase activities were measured utilizing methods from Srere

et al. (45) and Bass et al. (46) as previously described by our lab (28,

47, 48). For citrate synthase, liver homogenates were incubated with
Frontiers in Endocrinology 03
acetyl-CoA, DTNB, and oxaloacetate. Following, detection of

reduced DTNB at a wavelength of 412nm served as an index of

enzymatic activity. For b-HAD, liver homogenate was placed in an

assay buffer of EDTA, triethanolamine-HCl, and NADH at a pH of

7.0. After baseline reading, acetoacetyl-CoA was added, and the

rates of NADH disappearance to NAD appearance ratio were

measured every 10 seconds for 5 minutes at 340 nm.
RNA extraction and quantitative PCR

Gene expression was completed from whole liver tissue

samples. RNA and complementary DNA were isolated based on

previous protocols reported from our lab (48, 49). Quantitative

Real-time PCR (qPCR) was conducted using iTAQ Universal SYBR

Green Supermix (Bio-Rad). Results are displayed as RQ (Relative

Quantification) and was calculated using the Ct of the target gene,

Ct of the housekeeping gene, and the average control group (day 0,

CD). Results were calculated using the delta Ct methods and values

are expressed relative to the control group (day 0, CD). Primer

sequences are shown in Supplementary Table 1.
Western blotting

Whole liver homogenates were prepared for Western blot

analysis as previously described (28, 47, 49, 50). Primary

antibodies were used at 1:1,000 dilutions, and secondary

antibodies at 1:5,000 dilutions. Primary antibodies used are listed

in Supplementary Table 1. Blots were analyzed via densiometric

analysis (Image Lab v5.1, Bio-Rad Laboratories Inc., Hercules, CA).

Total protein was assessed with Amido black (0.1%; Millipore

Sigma) to control differences in protein loading and transfer, as

previously described (28, 47, 49, 50).
Statistical analysis

Statistical analyses were completed using GraphPad Prism

10.0.2. All data was analyzed via two-way ANOVA (diet, time)

with Tukey’s multiple comparison post-hoc test employed when

necessary. Differences were considered statistically significant when

P < 0.05. Data are shown as mean ± SEM.
Results

Animal characteristics and MASLD
development

As we have previously reported for this mouse model of GDM, a

significant increase in body weight across pregnancy stages

occurred in both groups with a main effect for time (Figure 1A,

P<0.0001). There were significant main effects for diet and time for

serum insulin, serum triglycerides, and liver triglycerides (P<0.01).
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On days 13.5 and 17.5, serum insulin increased in CD, whereas

GDM caused insulin secretion to be blunted (P=0.01, P=0.004,

Figure 1B). This model, employed by our group, also exhibited

systemic insulin resistance compared to control by day 13.5, as

confirmed by glucose tolerance test and euglycemic-

hyperinsulinemic clamp studies (41, 42). GDM mice compared to

control mice displayed a non-significant elevation in serum

triglycerides at day 0, but both groups were decreased by day 17.5

(Figure 1C). Liver triglycerides were markedly elevated in the GDM

mice compared to control at day 17.5 (P<0.0001, Figure 1D).

NAFLD activity score (NAS) and its three main components were

evaluated to determine MASLD progression (Figure 1E). GDM

displayed elevations in hepatic steatosis and significant increases in

total NAS for day 0 (P<0.01), 6.5 (P<0.0001), and 17.5 (P<0.0001)

compared to control mice. Hepatic inflammation and ballooning

were also increased in GDM mice compared to CD at day 6.5 and

17.5 (P<0.05). There was a main effect for time and diet for all three

components and NAS (P<0.01).
Markers of hepatic lipid metabolism
decreased throughout gestation

Markers of hepatic lipid metabolism were evaluated throughout

gestational development. mRNA expression of Ampk (AMP-

activated protein kinase) decreased as pregnancy progressed

(main effect for time, P<0.0001, Figure 2A) while protein

expression of phospho-AMPK to AMPK decreased at day 6.5 but

slightly increased by day 17.5 (main effect for time, P=0.0373,
Frontiers in Endocrinology 04
Figure 2B). Other major markers of lipid handling [fatty acid

synthase (FAS), acetyl-CoA carboxylase (ACC), phospho-ACC,

microsomal triglyceride transfer protein (Mttp)] except ACC

(acetyl-CoA Carboxylase) protein were significantly decreased

with gestational duration (P<0.05, Figure 2). GDM significantly

decreased hepatic de novo lipogenesis marker FAS (fatty acid

synthase) protein at day 0 (P=0.024), day 6.5 (P<0.0001), and

17.5 (P=0.0001) compared to CD (Figure 2D) and there were

main effects for GDM for ACC and phospho-ACC protein

content (P<0.01, Figures 2E, F). Mttp, which aids in transporting

lipids across cell membranes, was elevated at day 0 (P=0.007) and

then decreased at day 6.5 (P=0.035) in GDM compared to control

mice (Figure 2G).
Alterations in markers of mitochondrial
turnover in GDM and gestation

Measures of hepatic mitochondrial function, citrate synthase

and b-HAD activities, significantly decreased in dams with GDM at

days 6.5 (P=0.001), 13.5 (P=0.019) and 17.5 (P=0.003) (Figure 3A).

Markers of mitochondrial biogenesis, Pgc1-a (peroxisome

proliferator-activated receptor gamma coactivator 1-alpha), and

Tfam (mitochondrial transcription factor A) exhibited parallel

declines as pregnancy progresses (main effect of time, P<0.0001,

Figure 3B). Markers of autophagy (Atg5: Autophagy-related protein

5, Sqstm1: Sequestosome-1) and mitophagy (Pink1: PTEN Induced

Kinase 1, Bnip3: BCL2 Interacting Protein 3) in both groups were

significantly attenuated as gestation progressed to day 17.5 (main
FIGURE 1

Animal characteristics. (A) Body weight of dams throughout stages of pregnancy (g). (B) Fasting serum insulin concentrations (ng/ml). (C) Serum
triglycerides (mg/dL). Data were previously reported (40–42). (D) Liver triglycerides (mg/dL). (E) NAFLD Activity Score and Liver H&E Representative
images. D0 = day 0, D6.5 = day 6.5, D13.5 = day 13.5, D17.5 = day 17.5 of pregnancy. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 all denote an
interaction. Main effect for time and/or diet indicated under each graph. Error bars represent SEM. N=6-10. CD, Control Diet; GDM, Gestational
Diabetes Mellitus.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1498764
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shryack et al. 10.3389/fendo.2025.1498764
effect for time, P<0.0001, Figures 3C, D). GDM significantly

increased BNIP3 protein and mRNA expression at day 0

compared with CD mice (P=0.004 and P<0.001, respectively,

Figure 3D) but had similar expression to CD by day 17.5.

Interestingly, there was a main effect for diet with GDM mice

exhibiting elevated protein and/or mRNA markers of

mitochondrial biogenesis (Tfam), autophagy (Sqstm1), mitophagy

(BNIP3, Bnip3, Pink1) (P<0.05).
Frontiers in Endocrinology 05
GDM elevates markers of inflammation and
antioxidant defense

GDM had no effect on the protein expression of hepatic CD68

(cluster of differentiation 68), a marker of macrophage infiltration,

but there was a main effect for time (P=0.0077, Figure 4A). Time

during gestation also significantly decreased other markers of

inflammation [Il-1b (interleukin-1 beta), Tnf-a (tumor necrosis
FIGURE 2

Hepatic lipid handling. (A) Ampk mRNA expression. Protein expression of: (B) pAMPK/AMPK, (C) FAS, (D) ACC, (E) pACC. (F) Mttp mRNA expression.
(G) Representative protein bands from western blot for: AMPK, pAMPK, FAS, ACC, pACC. D0 = day 0, D6.5 = day 6.5, D13.5 = day 13.5, D17.5 = day
17.5 of pregnancy (H). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, all denote an interaction. 6.5: an interaction of both respective groups
compared to day 6.5 with P<0.05. Main effect for time and/or diet indicated under each graph. Error bars represent SEM. N=8-10. CD, Control Diet;
GDM, Gestational Diabetes Mellitus; RQ, Relative Quantification; AU, Arbitrary Units; PPIB, Peptidylprolyl Isomerase B, housekeeping gene.
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factor-alpha), and Tgf-b (transforming growth factor b)] and

hepatic markers of antioxidant defense [Nfe2l2 (nuclear-factor

erythroid-derived 2-like 2), Sod2 (superoxide dismutase 2), Gpx1

(glutathione peroxidase 1)] (Figure 4B). GDM markedly

upregulated Il-1b, Tnf-a, and Gpx1 at day 0 (P<0.0001,

Figure 4A). There was also a main effect for diet with increases in

hepatic Tnf-a (P<0.001), Tgf-b (P=0.0009), Nfe2l (P=0.0287), Sod2

(P=0.0207), and Gpx1 (P=0.0003) (Figure 4B).
Discussion

Gestational diabetes mellitus is associated with an increased risk

of MASLD, but there is a paucity of data mechanistically linking

these two conditions. Here we provide novel evidence in an

established high fat, high sucrose-fed mouse model of GDM (40–

42) that changes in maternal liver lipid metabolism may play an

important role in GDM pathology. GDM mice developed hepatic
Frontiers in Endocrinology 06
steatosis, the accumulation of lipid in the liver, with increases in

hepatocellular inflammation and ballooning degeneration,

consistent with MASH (35). The GDM mice also exhibited global

downregulation in markers of lipid metabolism, and mitochondrial

function, biogenesis, mitophagy, and autophagy with increasing

gestation time.

Heightened insulin resistance is the distinguishing feature of

GDM that is commonly accompanied by inadequate pancreatic

beta cell expansion (51). Obesity is a risk factor for the development

of GDM (andMASLD), but it has been found that up to one third of

women with GDM are considered lean (BMI < 18.5 kg/m2) (52). To

better characterize the condition, GDM is now being classified into

subtypes dependent on insulin metabolism. Approximately 50% of

women with GDM will have systemic insulin resistance, 35% will

display insufficient insulin secretion, and 15% will exhibit variations

of altered insulin metabolism (53–55). These data highlight the

importance of understanding and investigating the varying

pathophysiology of GDM. The mouse model used in the current
FIGURE 3

Hepatic mitochondrial activity, biogenesis, autophagy, and mitophagy. (A) Citrate synthase and (nmol/min/ug) and b-had activity (nmol/min/ug). (B)
Biogenesis: mRNA expression of Pgc1-a, and Tfam. (C) Autophagy: mRNA expression of Atg5 and Sqstm1. (D) Mitophagy: Protein expression of BNIP3 with
its representative protein bands from western blot and mRNA expression of Pink1 and Bnip3. D0 = day 0, D6.5 = day 6.5, D13.5 = day 13.5, D17.5 = day 17.5
of pregnancy. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 all denote an interaction. 6.5: an interaction of both respective groups compared to day 6.5 with
P<0.05. Main effect for time and/or diet indicated under each graph. Error bars represent SEM. N=4-10. CD, Control Diet; GDM, Gestational Diabetes
Mellitus; RQ, Relative Quantification; AU, Arbitrary Units; PPIB, Peptidylprolyl Isomerase B, housekeeping gene.
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study exhibited systemic insulin resistance and impaired insulin

secretion with attenuated beta cell expansion, making it a preferred

translational model to investigate GDM (40–42).

During healthy gestation, several metabolic adaptations occur such

as elevated glucose utilization, decreases in fatty acid oxidation in the

liver, and subsequent systemic insulin resistance (56, 57). As pregnancy

progresses into its later stages, adipose tissue undergoes increased

lipolysis to ensure sufficient circulating free fatty acids (58). GDM

appears to extend these adaptations beyond what is metabolically

necessary, aligning with MASLD development. Here, we found in

our model of GDM that maternal liver triglycerides were significantly

elevated at day 17.5 compared to control diet fed mice, while serum

triglycerides were markedly decreased (Figure 1). Similarly, NAS,

which includes steatosis, was markedly increased at day 0, 6.5, and

17.5 in GDM compared to CD with elevations occurring as gestation

processed. Our data showed that markers of lipid breakdown (Ampk,

pAMPK/AMPK) and export (Mttp) decreased as gestation progresses,

in both groups. These data suggest that increased hepatic lipid uptake

occurs in GDM, concomitant with significant decreases in lipid

breakdown and export. This outcome was accompanied with

decreased levels of FAS and ACC, markers of hepatic de novo

lipogenesis (DNL), which is the formation of fats in the liver from

other sources such as sugar (59). Decreased markers of hepatic DNL

correspond with other short-term high fat diet feedings studies that
Frontiers in Endocrinology 07
show similar reductions (60–64). Overall, these data suggest GDM

significantly decreases in lipid breakdown and export, eliciting the

formation of lipid accumulation in the liver.

The mitochondrion is the main residence for lipid import and

break down. The dysfunction of this organelle is an important feature

of MASLD development (27, 28). With our findings of altered lipid

storage and export, we hypothesized that our model of GDM would

display significant alterations in hepatic mitochondrial function,

aligning with MASLD progression. Citrate synthase and b-HAD

activities, enzymes that catalyze the TCA cycle and fatty acid b-
oxidation within the mitochondria, respectively, were both

significantly decreased in GDM mice compared to control mice by

day 17.5 (65). Interestingly, early in GDM pregnancy, markers of

mitochondrial activity (citrate synthase, b-HAD), biogenesis (Tfam),

autophagy (Atg5), and mitophagy (BNIP3, Bnip3, Pink1) were either

significantly elevated or trending. Similar outcomes were seen with

inflammation (Il1-b, Tnf-a, Tgf-b) and antioxidant defense (Sod2,

Gpx1). This information suggests that early pregnancy is a critical

window where transcriptional hepatic adaptations to GDM first

emerge. In line with these findings, work from our group have

previously shown that mitochondrial dysfunction actually precedes

MASLD development (28), and findings from others suggest that

alterations in plasma lipidomics in early pregnacy predict GDM

development (21–23). It is known that pregnancy requires great
FIGURE 4

Markers of hepatic inflammation and antioxidant defense. (A) Inflammation: Protein expression of CD68 with its representative protein bands from
western blot, and mRNA expression of Il1-b, Tnf-a, and Tgf-b. (B) Antioxidant defense: mRNA expression of Nfe2l2, Sod2 and Gpx1. D0 = day 0,
D6.5 = day 6.5, D13.5 = day 13.5, D17.5 = day 17.5 of pregnancy. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 all denote an interaction. 6.5: an
interaction of both respective groups compared to day 6.5 with P<0.05. 0: an interaction of both respective groups compared to day 0. Main effect
for time and/or diet indicated under each graph. Error bars represent SEM. N=4-10. CD, Control Diet; GDM, Gestational Diabetes Mellitus; RQ,
Relative Quantification; AU, Arbitrary Units; PPIB, Peptidylprolyl Isomerase B, housekeeping gene.
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metabolic flexibility, and substrate and additional energy requirements

by the fetus, placenta, and uterus take priority (66–68). Regardless of

GDM or control conditions, we found that all measures of

mitochondrial turnover, lipid metabolism, inflammation, and

antioxidant defense were attenuated by day 17.5 of pregnancy. Early

pregnancy displays the largest alterations in hepatic mRNA and protein

markers between GDM and CD, but it is not until later in pregnancy

that the liver cannot compensate, and it develops overt metabolic

characteristics of MASLD exhibited by increased liver triglycerides,

elevated NAS (steatosis, inflammation, and ballooning), and attenuated

mitochondrial activity.

One of the strengths of this study is the use of an established diet-

fed mouse model to develop GDM. This model closely mimics key

metabolic features of human GDM, such as insulin resistance and

impaired insulin secretion. Furthermore, this is the first study to

evaluate the impact of GDM on hepatic markers of mitochondrial

activity, biogenesis, mitophagy, autophagy, inflammation, antioxidant

defense, and lipid metabolism throughout gestation. Despite these

strengths, there are limitations. While the HFHS-fed mouse model

does recapitulate GDM pathophysiology, it is important to note that

pregnancy in a human is much lengthier and likely more complex,

limiting the translation of these findings from rodent GDM to human

GDM. Secondly, the present study does not include any non-pregnant

mice as a control group. Although previous literature suggests that

control-diet fed non-pregnant mice would not display any hepatic

metabolic alterations over time (69–72), direct comparisons with this

experimental setting would help strengthen the conclusions.

In conclusion, our data demonstrates that HFHS feeding in a

GDM model leads to increased maternal hepatic triglyceride

accumulation, elevated NAS, and reduced mitochondrial activity,

accompanied by increases in hepatic inflammation and antioxidant

defense. Pregnancy itself acts as a powerful metabolic switch,

reprogramming nutrient utilization and energy balance to support

fetal development. This metabolic shift appears strong enough to

override liver adaptations to high-fat diet-induced GDM, ensuring

continued development of the fetus and support organs but leading

to hepatic lipid increases. To our knowledge, this is the first study to

evaluate and characterize alterations in hepatic mitochondrial and

lipid metabolism during both normal gestation and in a GDM

model. These findings highlight the significant impact of gestation

and GDM on liver health and MASLD risk.
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Glossary

GDM Gestational Diabetes Mellitus
Frontiers in Endocrino
MASLD Metabolic Dysfunction-Associated Steatotic Liver Disease
MASH Metabolic-Dysfunction Associated Steatohepatitis
CD68 Cluster of Differentiation 68
ACC Acetyl-CoA Carboxylase
pACC phosphorylated Acetyl-CoA Carboxylase
FAS Fatty acid synthase
TGF-b Transforming growth factor beta
NFE2L2/NRF2 Nuclear factor, erythroid 2-like 2
b-HAD b-hydroxyacyl-CoA dehydrogenase
AMPK AMP-activated protein kinase
PPIB Peptidylprolyl Isomerase B
logy 11
PGC1-a Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha
TFAM Mitochondrial transcription factor A
PINK1 PTEN Induced Kinase 1
SQSTM1 Sequestosome 1
BNIP3 BCL2 interacting protein 3
ATG5 Autophagy protein 5
SOD2 Superoxide dismutase 2
GPX1 Glutathione peroxidase 1
TNF-a Tumor necrosis factor alpha
IL1-b Interleukin-1 beta
MTTP Microsomal triglyceride transfer protein
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