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1Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jilin University,
Changchun, China, 2Department of Medical Imaging Technology, Changzhi Medical College,
Changzhi, China, 3Department of Endocrinology and Metabolism, The Second Affiliated Hospital of
Jilin University, Changchun, China, 4Department of Orthopedics, The Second Affiliated Hospital of
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Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are the most

common microvascular complications associated with type 2 diabetes mellitus

(T2DM). However, the occurrence of DR and DKD is not parallel. The aim of our

study is to identify the risk factors for combining DKD in T2DM patients with pre-

existing DR and construct a nomogram predictive model to identify high-risk

patients with DR combined with DKD. We retrospectively reviewed 683 T2DM

patients with DR from March 2017 to March 2023. The patients were divided into

the DR group and the DR combined with DKD group. The hold-out method was

used to randomly divide all subjects into a training set (70%) and a validation set

(30%). Using multivariate logistic regression, we identified eight independent risk

factors: fibrinogen (FIB), albumin (ALB), atherogenic index of plasma (AIP), low-

density lipoprotein cholesterol (LDL-C), body mass index (BMI), classification of

DR, gender, and history of hypertension. These factors were used to construct

the nomogram prediction model. The model’s discriminative ability was assessed

using receiver operating characteristic (ROC) curve analysis, yielding an area

under the curve (AUC) of 0.780 (95% CI: 0.736-0.823) in the training set and

0.739 (95% CI: 0.668-0.809) in the validation set. Calibration curves and decision

curve analysis (DCA) further demonstrated the model’s clinical utility.

Additionally, to explore potential genetic predisposition, single nucleotide

polymorphism (SNP) genotyping analysis was conducted on a subset of 50

randomly selected patients (25 from each group). The results suggested that

the rs6591190 and rs12146493 loci of the AP5B1 gene might be associated with

an increased susceptibility to DKD in patients with DR, warranting further

investigation. In summary, our nomogram represents a valuable tool for

identifying T2DM patients with DR who are at high risk for developing DKD.
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Introduction

Diabetes mellitus (DM) is a prevalent chronic progressive

disease worldwide. Currently, approximately one in ten adults

globally suffers from DM, with 90% of cases being type 2 diabetes

mellitus (T2DM) (1, 2). The rising incidence of T2DM correlates

with an annual increase in microvascular complications. Among

these, diabetic kidney disease (DKD) and diabetic retinopathy (DR)

stand out as the most common in T2DM patients (3, 4).

Epidemiological studies have highlighted a close association

between DKD and DR due to their similar structural and

physiological changes (5, 6). However, in the real world, DR

and DKD can manifest independently, and their progression may

not always align (7). For instance, some DM patients experience

retinopathy without concurrent kidney impairment, suggesting

varying pathogenic mechanisms and risk factors. Notably, C-

peptide levels exert differing effects on DKD and DR. In a real-

world observational study, C-peptide was observed to promote

DKD while conferring protection against DR (8). Furthermore,

genetic susceptibility likely plays a pivotal role in disease

pathogenesis (9–11). Investigations employing single nucleotide

polymorphisms (SNPs) as genetic markers have identified

susceptibility genes (12). Recent studies have underscored

distinct genetic predispositions for both DKD and DR,

reflecting differences in their genetic backgrounds and

susceptibility genes (11, 13–15). Despite these findings, the

specific risk factors contributing to the coexistence of DKD in

patients with pre-existing DR remain inadequately explored. To

address this gap, our study systematically analyzed the clinical

differences between T2DM patients with DR alone and those with

DR combined with DKD, aiming to identify independent risk

factors for DKD in this population. Based on these predictors, we

developed a nomogram model to provide individualized risk

assessment. Furthermore, we conducted SNP genotyping

analysis to explore potential genetic predispositions associated

with the combined presence of DKD and DR. To our knowledge,

this is the first study to construct a predictive model specifically

for DKD in T2DM patients with DR while incorporating genetic

susceptibility analysis. Our findings enhance the understanding

of the interplay between these diabetic microvascular

complications and provide a foundation for early identification

and targeted interventions in high-risk populations.
Materials and methods

Study design and participants

We collected data from 683 T2DM patients diagnosed with DR

who were hospitalized in the Endocrinology and Metabolism

Department of the First Hospital of Jilin University from March

2017 to March 2023. Patients were grouped based on 24-hour

urinary microalbumin and/or estimated glomerular filtration rate

(eGFR): those with 24-hour urinary microalbumin ≥ 30 mg and/or

eGFR < 60 ml/min were classified into the DR combined with DKD
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group, while others were classified into the DR group. Diagnosis of

T2DM followed criteria outlined in the “Guidelines for the

Prevention and Control of Type 2 Diabetes in China (2019)” (16).

The diagnostic criteria for DR were based on the International

Clinical Grading Standards (2002). Exclusion criteria included (1):

acute complications (diabetic ketoacidosis, hyperosmolar

hyperglycemic syndrome, severe infection, lactic acidosis, etc.) (2);

type 1 diabetes or secondary diabetes (3); T2DM with other retinal

vascular diseases complicated by macular edema (4); other retinal

diseases (e.g., age-related macular degeneration, uveitis, hereditary

retinal diseases) (5); acute or chronic nephritis, nephrotic

syndrome, urinary infections, renal tumors, renal vascular

diseases (6); use of drugs affecting urinary protein excretion or

nephrotoxic drugs.
Data collection

General data collected included demographic characteristics,

clinical information, and laboratory data such as blood routine,

coagulation routine, urine routine, blood glucose-related indicators,

liver function, kidney function, four lipid panel items, blood ions,

thyroid function, as well as 24-hour urinary protein and urinary

microalbumin levels. All these data were measured at the time of

hospital admission. DR staging was performed using fundus

photography and independently assessed by two ophthalmologists.

Cases were classified according to the International DR Staging

Standards (2003) into non-proliferative diabetic retinopathy

(NPDR) and proliferative diabetic retinopathy (PDR). Hypertension

was defined as a systolic blood pressure ≥ 140 mmHg and/or diastolic

blood pressure ≥ 90 mmHg, measured on three separate occasions, or

the current use of antihypertensive medication, or a documented

history of hypertension. History of coronary heart disease was defined

as a prior diagnosis of coronary heart disease. History of stroke was

defined as a prior cerebrovascular event, confirmed by clinical

diagnosis or supporting neuroimaging evidence. History of fatty

liver was defined as a prior diagnosis of fatty liver disease,

confirmed by imaging studies, abnormal biochemical markers, or

clinical assessment by a physician. Smoking history was defined as

current smoking (≥1 cigarette per day for at least 6 months) or former

smoking (having smoked for ≥6 months but quit for at least 12

months). Alcohol consumption history was defined as current

drinking (≥1 standard drink per week for the past 6 months) or

former drinking (regular consumption for ≥6 months but abstinent

for at least 12 months). Fasting blood samples were collected in the

morning following an overnight fast of at least 8 hours. A family

history of T2DM was defined as a history of T2DM in at least one

parent or sibling.
Correlation variable definitions

Body mass index (BMI) = weight (kg)/height (m)^2;

Neutrophil-to-lymphocyte ratio (NLR) = neutrophil absolute

value (NE)/lymphocyte absolute value (LY); Lymphocyte-to-
frontiersin.org
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monocyte ratio (LMR) = LY/monocyte absolute value (MO);

Platelet-to-lymphocyte ratio (PLR) = platelet/LY; Residual

cholesterol (mmol/L) = cholesterol (TC) – low-density lipoprotein

cholesterol (LDL-C) – high-density lipoprotein cholesterol (HDL-C);

Atherogenic index (AI) = (TC - HDL-C)/HDL-C; Atherogenic plasma

index (API) = LDL-C/HDL-C; Atherogenic index of plasma (AIP) =

log(triglyceride/HDL-C) (the unit of all lipid indicators is mmol/L);

TyG index = ln[triglyceride (mg/dl) * plasma glucose (mg/dl)/2].
SNPs data collection

To explore potential genetic susceptibility to DR combined with

DKD, twenty-five baseline-matched whole blood samples were

selected from each group for SNPs genotyping.
Fron
1. The main instruments, equipment, experimental reagents,

and consumables are listed in Supplementary Tables 1

and 2.

2. The candidate genes for this study were determined

through a comprehensive review of the literature (Table 1).

3. The selection of SNPs loci in candidate genes was based on two

primary sources: functional SNPs loci identified from the NCBI

dbSNP database, focusing on gene functional regions such as

Exon, Promoter, 5’ UTR, and 3’ UTR, and literature-derived

SNPs identified through Google Scholar and databases such as

GWAS Catalog, GWAS Central, and GWAS Atlas. SNPs with a

minor allele frequency (MAF) < 0.01 in the Chinese Han

population in Beijing based on data from the 1000 Genomes

database were excluded. Predicted functionality of selected SNPs

was assessed using http://snpinfo.niehs.nih.gov/, and linkage

disequilibrium (LD) analysis was performed using http://asia.

ensembl.org/Homo_sapiens/Tools/LD?db=core. The final SNPs

loci of candidate genes are presented in Table 2.

4. Genotyping: We conducted the study using whole blood

samples stored at -80°C in an ultra-low temperature

freezer. DNA was extracted from the blood samples

using a commercial DNA extraction kit, ensuring

extracted DNA met quality standards. SNPs genotyping

of candidate genes was performed using Agena MassArray

technology provided by Biomiao Biological Technology
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(Beijing) Co., Ltd. Initially, polymerase chain reaction

(PCR) amplified DNA sequences, followed by a reaction

system incorporating four dideoxyribonucleotide

triphosphates and single-base extension primers to

amplify PCR products. SNPs genotyping was conducted

using a time-of-flight mass spectrometry system,

distinguishing SNPs alleles based on molecular

weight differences.
Statistical analysis

The measurement data were described as means ± standard

deviations if they followed a normal distribution and as medians

and interquartile range (P25, P75) otherwise. For categorical data,

frequencies and percentages (%) were used. To compare measurement

data between two groups, a t-test was used if the data followed a

normal distribution and had equal variances; otherwise, the Wilcoxon

rank-sum test was used. Categorical data were compared using the c2

test or fisher’s exact test. Univariate logistic regression analysis was

used to analyze the variables. Variables with statistically significant

results, combined with professional knowledge, were included in the

multivariate logistic regression model. The final factors were screened

by forward stepwise regression method, and the prediction model was

constructed and visualized as a nomogram using the rms package in R.

Model discrimination was evaluated by calculating the area under the

receiver operating characteristic (ROC) curve (AUC), with ROC

curves generated using the pROC package. Model calibration was

evaluated using the Hosmer-Lemeshow (H-L) test and bootstrap-

corrected calibration curves. Calibration curves were generated using

the rms::calibrate function with 1,000 bootstrap resamples to correct

overfitting. Deviations from ideal calibration were quantified by mean

absolute error (MAE). Decision curve analysis (DCA) implemented

through the rmda package and was performed to quantify the net

clinical benefit of the model across a range of threshold probabilities,

with comparisons made to “treat all” and “treat none” strategies. To

ensure the model’s generalizability, the dataset was randomly split into

a training set (70%) and a validation set (30%). Model validation was

performed using the validation dataset, with AUC, calibration curves,

and DCA applied independently. The data processing software used

included IBM SPSS 25.0 and R software (version 4.2.0), with a

significance level of a = 0.05.

The SNPStats (https://www.snpstats.net) was used to analyze

SNPs-related data. DR with or without DKD was the dependent

variable, while SNPs locus alleles and genotypes were the

independent variables in a binary logistic regression analysis, with

P < 0.05 considered statistically significant. Genotype analysis was

based on five genetic models: co-dominant, dominant, recessive,

over-dominant, and log-additive models. Specifically, if AA

represents wild-type homozygous, AC represents heterozygous

variant, and CC represents homozygous variant, the models are

as follows: Co-dominant model: CC vs AA; AC vs AA; Dominant

model: (AC+CC) vs AA; Recessive model: CC vs (AC+AA); Over-

dominant model: (AA+CC) vs AC; Log-additive model: CC vs AA.
TABLE 1 The candidate genes.

Gene
name

Genetic
locus information

Coding protein

AP5B1 Chr11: 65773898.65780976
AP-5 complex subunit

beta-1

TENM2 Chr5: 166979029.168264157 Teneurin-2

CUBN Chr10: 16823966.17129811 Cubilin

UMOD Chr16: 20333051.20356301 Uromodulin

PTPRO Chr12: 15322508.15598331
Receptor-type tyrosine-
protein phosphatase O
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Results

Baseline characteristics of participants

Using the hold-out method, data from 683 patients were

randomly divided into a training set and a validation set in a 7:3

ratio, resulting in 478 patients in the training set and 205 patients in

the validation set. Comparative analysis of the training and

validation sets showed that both general and laboratory data were

comparable (P > 0.05), as shown in Supplementary Table 3.
Frontiers in Endocrinology 04
Univariate and multivariate analyses of risk
predictors

Univariate logistic regression results indicated that gender,

classification of DR, history of hypertension, history of stroke,

smoking history, duration of smoking, systolic blood pressure,

BMI, fibrinogen (FIB), albumin (ALB), TC, HDL-C, LDL-C,

residual cholesterol, AI, API, AIP, TyG index, and free

triiodothyronine were statistically significant (P < 0.05), as shown

in Supplementary Table 4. These factors were then included in a
TABLE 2 The SNPs loci of candidate genes.

Gene SNPs locus Location MAF Potential function prediction

AP5B1 rs4014195 ‐‐ 0.210 ‐‐

rs6591190 Promoter 0.422 TFBS

rs522800 3’UTR 0.359 miRNA binding site

rs12146493 Exon-missense 0.340 nsSNP

TENM2 rs72831309 Intron 0 ‐‐

rs1862416 Intron 0.102 ‐‐

rs3733989 3’UTR 0.243 miRNA binding site

rs4242220 Intron 0.282 ‐‐

rs11272049 Promoter 0.490 ‐‐

CUBN rs11254238 Intron 0.150 ‐‐

rs1801239 Exon-missense 0.167 nsSNP

rs74375025 Intron 0.130 ‐‐

rs7918972 Intron 0.374 ‐‐

rs45551835 Exon-missense 0.169 Splicing (ESE or ESS);nsSNP

rs141640975 ‐‐ 0 ‐‐

rs45619139 Intron 0.206 ‐‐

rs2271462 Exon-missense 0.209 Splicing (ESE or ESS);nsSNP

rs539606836 Intron 0 ‐‐

rs572663329 Intron 0.017 ‐‐

UMOD rs13329952 Promoter 0.102 TFBS

rs11864909 Promoter 0.194 ‐‐

rs77924615 Intron 0.204 ‐‐

rs12922822 Promoter 0.010 TFBS

rs34882080 Intron 0.010 ‐‐

PTPRO rs7976329 Intron 0.257 ‐‐

rs3748299 Exon-synonymous 0.340 Splicing (ESE or ESS)

rs1050646 Exon-synonymous 0.117 Splicing (ESE or ESS)

rs2300290 Intron 0.180 ‐‐

rs7956634 Intron 0.277 ‐‐

rs6488782 Exon-synonymous 0.136 Splicing (ESE or ESS)
MAF, minor allele frequency; TFBS, transcription factor binding site; miRNA, microRNA.
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multivariate logistic regression analysis to identify independent risk

factors for DR combined with DKD. The results showed that FIB

(OR = 1.52, 95% CI: 1.11-2.08), ALB (OR = 0.92, 95% CI: 0.87-0.97),

AIP (OR = 3.96, 95% CI: 1.91-8.24), LDL-C (OR = 1.43, 95% CI:

1.11-1.84), BMI (OR = 1.08, 95% CI: 1.01-1.16), classification of DR

(OR = 2.81, 95% CI: 1.32-5.96), gender (OR = 0.36, 95% CI: 0.22-

0.60), and history of hypertension (OR = 2.73, 95% CI: 1.73-4.30)

were independent risk factors for the DR combined with DKD

group (P < 0.05), as shown in Table 3.
Construction of the nomogram prediction
model

The indicators screened in the multivariate regression were used

to construct the prediction model, visualized as a nomogram, as

shown in Figure 1. By summing the scores corresponding to each

predictive indicator, the total score was obtained. The risk value

corresponding to the total score indicates the probability of a

patient with DKD in the context of DR.
Evaluation and validation of the prediction
model

The AUC of the nomogram model in the training set was 0.780

(95% CI: 0.736-0.823). When distinguishing between high and low

risk using the optimal predictive risk cutoff value of 0.604, the

specificity was 0.697 and the sensitivity was 0.732, indicating good

discrimination (Figure 2A). In the validation set, the AUC was

0.739 (95% CI: 0.668-0.809). Using 0.725 as the cutoff for high and

low risk stratification, the specificity was 0.775 and the sensitivity
Frontiers in Endocrinology 05
was 0.627 (Figure 2B). In both the training and validation sets,

calibration curves showed good consistency between the predicted

and ideal curves. After 1,000 bootstrap resampling iterations, the

mean absolute errors were 2.5% and 2.7%, respectively (Figures 3A, B).

The DCA curves for both the training and validation sets

demonstrated that this model provides good net benefits for

clinically predicting the risk of DKD in patients with DR

(Figures 4A, B).
SNPs-related research results

The results of SNPs genotyping of the submitted blood samples

are shown in Supplementary Table 5. Hardy-Weinberg (H-W)

equilibrium analysis of the different sample groups showed that

all 27 SNPs loci conformed to the H-W equilibrium law (i.e., HWP

value ≥ 0.001).

Whether the presence of DKD in patients with DR as the

dependent variable and the alleles (variant genes) of each SNPs

locus as the independent variables, binary logistic regression was

performed to identify susceptible alleles. The results revealed that

the alleles of AP5B1’s rs6591190 and rs12146493 were statistically

significant (P < 0.05) (Table 4).

Whether DR combined with DKD as the dependent variable

and the genotypes of various SNPs loci as independent variables,

binary logistic regression was performed to identify susceptible

genotypes. The results showed that for the rs6591190 locus of the

AP5B1 gene, in the co-dominant genetic model, the heterozygous

GC genotype had a higher risk of DKD compared to the

homozygous CC genotype (OR = 3.45, 95% CI: 1.07-10.43, P =

0.008), and the variant GG genotype had a higher risk of DKD

compared to the homozygous CC genotype (OR = 3.67, 95% CI:

1.05-11.87, P = 0.008). In the dominant genetic model, the GC and

GG genotypes had a higher risk of DKD compared to the

homozygous CC genotype (OR = 3.29, 95% CI: 1.80-8.12, P =

0.002). In the over-dominant genetic model, compared to the CC

and GC genotypes, the heterozygous GC genotype had a higher risk

of DKD (OR = 3.88, 95% CI: 1.15-13.04, P = 0.023). In the additive

model, the variant GG genotype had a higher risk of DKD

compared to the homozygous CC genotype (OR = 3.36, 95% CI:

1.21-9.32, P = 0.011). For the rs12146493 locus of the AP5B1 gene,

in the additive genetic model, the variant AA genotype had a lower

risk of DKD compared to the homozygous GG genotype (OR =

0.41, 95% CI: 0.16-0.98, P = 0.038), as shown in Table 5. The

remaining SNPs loci were not statistically significant (P > 0.05)

(Supplementary Table 6).
Discussion

It is well known that the occurrence of diabetic microvascular

complications is influenced by multiple factors. Although each risk

factor may impact disease onset, no single factor is decisive. By
TABLE 3 Multivariate logistic regression analysis of training set.

Characteristic Beta S.E. Z OR
(95%CI)

P value

FIB (g/L) 0.42 0.16 2.64 1.52(1.11-2.08) 0.008*

ALB (g/L) -0.09 0.03 -3.07 0.92(0.87-0.97) 0.002*

AIP 1.38 0.37 3.69 3.96(1.91-8.24) <0.001*

LDL-C (mmol/L) 0.36 0.13 2.78 1.43(1.11-1.84) 0.005*

BMI (kg/m2) 0.08 0.04 2.12 1.08(1.01-1.16) 0.034*

Classification of DR
(PDR vs. NPDR)

1.03 0.38 2.69 2.81(1.32-5.96) 0.007*

Gender (female
vs. male)

-1.01 0.25 -3.97 0.36(0.22-0.60) <0.001*

History of
hypertension
(yes vs. no)

1.00 0.23 4.32 2.73(1.73-4.30) <0.001*
S.E., Standard error; FIB, fibrinogen; ALB, albumin; AIP, atherogenic index of plasma;LDL-C,
low density lipoprotein cholesterol; BMI, body mass index; DR, diabetic retinopathy; PDR,
proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy. *P < 0.05,
with statistical difference.
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integrating these risk factors and constructing an optimal

nomogram prediction model, we can provide valuable guidance

for clinical practice. To our knowledge, there is currently no risk

prediction model for predicting the combination of an additional

microvascular complication based on the presence of one diabetic

microvascular complication. Our study is the first to construct a risk

model for the combination of DKD in T2DM patients with DR.

Considering that this is a retrospective study, we excluded

factors that have been confirmed to be closely related to kidney

function, such as urinary protein, creatinine (Cr), blood urea

nitrogen, retinol-binding protein (RBP), cystatin C, and eGFR, to

ensure the causal relationship of the results. Finally, we used FIB,
Frontiers in Endocrinology 06
ALB, AIP, LDL-C, BMI, classification of DR, gender, and history of

hypertension as predictors to construct the nomogram model. The

AUC was 0.780 (95% CI: 0.736-0.823) in the training set and 0.739

(95% CI: 0.668-0.809) in the validation set. In addition, both the

calibration curve and the DCA indicated that this model has good

predictive performance and is of great significance for identifying

high-risk populations. Importantly, our model is consistent with

existing evidence indicating that individuals with DR are at an

elevated risk of developing DKD. Furthermore, the model captures

the well-established risk gradient between DR severity and DKD

(16, 17), demonstrating that patients with PDR exhibit a

significantly higher predicted probability of DKD compared to
FIGURE 1

Nomogram to predict the risk of DKD for patients with DR. FIB, fibrinogen; ALB, albumin; AIP, atherogenic index of plasma; LDL-C, low density lipoprotein
cholesterol; BMI, body mass index; DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy.
FIGURE 2

The ROC curves for training set (A) and validation set (B). The part below the blue line is the AUC of the model. AUC, area under curve.
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FIGURE 4

Decision curve analysis for training set (A) and validation set (B). The red line indicates that all patients experienced DKD and the green line
represents that no patients experience DKD. The blue line represents the nomogram model. The curves show that the model is clinically beneficial
across a relatively wide range of threshold probabilities.
TABLE 4 The alleles logistic regression analysis of DR combined with DKD.

Gene SNPs locus Minor allele OR(95%CI) P value

AP5B1 rs4014195 G 0.50 (0.17-1.47) 0.206

rs6591190 G 3.36 (1.21-9.32) 0.019*

rs522800 C 0.73 (0-inf) 0.999

rs12146493 A 0.41 (0.17-0.99) 0.049*

TENM2 rs3733989 G 1.36 (0.41-4.50) 0.617

rs1862416 C 0.18 (0.01-1.58) 0.121

rs4242220 G 1.24 (0.49-3.08) 0.643

rs11272049 G 0.84 (0.38-1.83) 0.664

CUBN rs11254238 C 0.99 (0.35-2.78) 0.982

rs74375025 A 0.73 (0-inf) 0.999

rs7918972 G 0.95 (0.41-2.19) 0.910

(Continued)
F
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FIGURE 3

Calibration curves for training set (A) and validation set (B). The solid line represents the model after calibration. The closer the calibration curve of
the model is to the ideal line, the better the model’s prediction accuracy.
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those with NPDR (OR=2.81). The inclusion of hypertension as a

predictor reinforces the strong interplay between hypertensive

status and DKD risk in DR patients, further supporting previous

epidemiological findings. These results highlight the clinical utility

of our nomogram in refining risk prediction for DKD in T2DM

patients with DR.

In recent years, although no studies have developed prediction

models specifically for DR patients with concurrent DKD, many

studies have aimed to develop prediction models for the early risk

of DKD in T2DM patients. Dunkler et al. (18) developed a

prediction model that included five predictive factors: urine

albumin creatine ratio (UACR), eGFR, albuminuria stage, age,

and gender, but their study population mainly comprised patients

aged 55 and older. In contrast, our study includes a broader age

range, making it more applicable and incorporating relevant

indicators such as weight, blood pressure, and blood lipids,

comprehensively reflecting the status of metabolic syndrome.

Jardine et al. (19) constructed a prediction model including

seven variables (eGFR, UACR, systolic blood pressure, HbA1c,

DR, gender, and education level). However, their model included

T2DM patients with vascular diseases, whereas our study focuses

specifically on T2DM patients with DR, providing a more detailed

classification of vascular disease conditions and a more accurate

model for preventing DKD in DR patients. Additionally, Xu et al.

(20) constructed a prediction model that included seven risk

factors: a-1-microglobulin/Cr, UACR, transferrin/Cr, RBP/Cr,

HbA1c, age, and hypertension. However, their study had a

smaller patient sample size. In comparison, our study includes a
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larger patient population, and the predictive factors are easier to

obtain in clinical practice.

SNPs are the most important genetic markers in the genome

and continue to be a prominent focus in genetic research (21, 22).

Many aspects of SNPs sites related to DKD remain unknown. Our

study conducted SNPs genotyping analysis and identified new SNPs

sites and genotypes associated with susceptibility to DKD within the

gene functional region of AP5B1, a part of the adaptor protein

complex 5 involved in endosomal transport (23). We analyzed that

the rs6591190 may bind to transcription factor binding sites,

thereby affecting gene expression. Exon missense mutation at

rs12146493 may affect gene splicing, transcription or expression.

Previous studies have shown that the rs4014195 locus of the AP5B1

gene is closely related to eGFR in both DM and non-DM patients

(24). However, no correlation between the rs4014195 locus and

DKD was found in our study, possibly due to the small sample size.

As the primary focus of our study was on developing a clinical

predictive model for DKD in T2DM patients with DR, the SNP

analysis was conducted on an exploratory basis to identify potential

genetic markers. Future studies with larger cohorts are needed to

validate these findings.
Limitations

Despite its strengths, our study has certain limitations. (1) DKD

in our study was diagnosed based on clinical criteria without renal

biopsy for pathological confirmation. (2) The study did not include
TABLE 4 Continued

Gene SNPs locus Minor allele OR(95%CI) P value

rs1801239 C 0.73 (0-inf) 0.999

rs45619139 G 0.73 (0-inf) 0.999

rs45551835 A 1.82 (0.26-12.54) 0.546

rs572663329 G 0.73 (0-inf) 0.999

rs2271462 T 1.78 (0.58-5.47) 0.312

UMOD rs13329952 C 0.80 (0.23-2.75) 0.717

rs11864909 T 0.39 (0.12-1.31) 0.128

rs77924615 A 0.44 (0.14-1.38) 0.159

rs34882080 G 0.73 (0-inf) 0.999

rs12922822 T 0.73 (0-inf) 0.999

PTPRO rs7976329 C 1.37 (0.56-3.36) 0.489

rs2300290 A 1.18 (0.44-3.15) 0.737

rs3748299 A 1.01 (0.46-2.23) 0.987

rs1050646 C 0.94 (0.31-2.85) 0.918

rs7956634 C 0.73 (0-inf) 0.999

rs6488782 A 0.73 (0.25-2.15) 0.570
*P < 0.05, with statistical difference.
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all potential risk factors that may affect the occurrence of

microvascular complications in T2DM patients, such as dietary

habits, physical activity levels, education level, and other factors. (3)

Due to the small sample size and various confounding factors in our

study, whether these SNPs sites are susceptibility genotypes affecting

DKD occurrence needs further validation through large-scale samples

and genome-wide association study (GWAS). Additionally, animal

models need to be constructed to explore the potential mechanisms of

these SNPs sites in DKD pathogenesis. (4) Our study was retrospective

and single-center, thus requiring more external data to validate the

efficacy of the prediction model, particularly necessitating multicenter,

large-sample prospective cohort studies to cover different regions.
Conclusions

Our study includes easily accessible clinical and laboratory

indicators and uses scientific statistical methods to construct a
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model predicting the risk of DKD in T2DM patients with DR.

This model can guide clinical practice by controlling blood pressure,

managing blood lipids, promoting weight loss, and improving

nutrition, thereby preventing or delaying the onset of DKD in

T2DM patients with DR. This, in turn, can reduce the economic

burden on both patients and society. Additionally, the SNPs sites

related to DKD identified in our study may provide new data

support for this field. Future research should focus on expanding

sample sizes, conducting multicenter studies, and exploring the

underlying mechanisms of these genetic factors to further improve

DKD risk prediction and prevention strategies.
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TABLE 5 The Genotype logistic regression analysis of DR combined with DKD.

Gene SNPs locus Genetic model Genotype OR (95%CI) P value

AP5B1 rs6591190

Co-dominant

C/C 1

0.008*G/C 3.45 (1.07-10.43)

G/G 3.67 (1.05-11.87)

Dominant
C/C 1

0.002*
G/C-G/G 3.29 (1.80-8.12)

Recessive
C/C-G/C 1

0.480
G/G 1.78 (0.35-8.96)

Over-dominant
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G/C 3.88 (1.15-13.04)

Log-additive
C/C 1

0.011*
G/G 3.36 (1.21-9.32)

AP5B1 rs12146493

Co-dominant

G/G 1

0.110A/G 0.49 (0.14-1.72)
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G/G 1

0.086
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Log-additive
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*P < 0.05, with statistical difference.
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