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We previously showed that antioxidants induced an impairment of negative

feedback of the hypothalamus-pituitary-adrenal (HPA) axis in rats, in parallel to

a down-regulation of the glucocorticoid receptor (GR) and nuclear factor

erythroid 2-related factor 2 (Nrf2) expression in the pituitary gland. This study

evaluated the role of the Nrf2-heme-oxygenase-1 (HO-1) pathway on the

impairment of the negative feedback of the HPA axis induced by N-

acetylcysteine (NAC). Male Swiss-Webster mice were orally supplemented with

NAC for 5 consecutive days. The Nrf2-HO-1 pathway activator cobalt

protoporphyrin IX (CoPPIX) was injected intraperitoneally on days 2 and 5 after

the starting of NAC supplementation. NAC reduced the expression of Nrf2 in the

pituitary of mice. Furthermore, NAC induced adrenal enlargement and

hypercorticoidism, along with a decrease in the GRa expression and an

increase of GRb expression in the pituitary gland. Treatment with CoPPIX

reduced adrenal enlargement, systemic corticosterone levels, and GRb
expression in the pituitary gland of mice supplemented with NAC, besides

increasing the expression of GRa. CoPPIX treatment also restored the failure in

the negative feedback of the HPA axis induced by NAC. In conclusion, these
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findings showed that NAC reduced the Nrf2-HO-1 pathway activation in the

pituitary gland, in a mechanism probably related to a local downregulation of

GRa and an up-regulation of GRb, leading to a failure of negative feedback of the

HPA axis and consequently to the hyperactivity of this neuroendocrine axis.
KEYWORDS
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1 Introduction

The hypothalamus-pituitary-adrenal (HPA) axis is a

neuroendocrine system regulated by the circadian cycle and stress

(1). Under normal conditions, glucocorticoids, the final product of

the HPA axis, are produced through the activation of the

adrenocorticotropic hormone (ACTH)-melanocortin receptor 2

(MC2R) signaling pathway in the adrenal glands (2). Chronic

activation of the HPA axis can have damaging effects on immune,

cardiovascular, metabolic, and neural functions, increasing the risk

of immune system dysfunction, mood disorders, and metabolic and

cardiovascular diseases (3). To prevent these deleterious effects of

chronic hypercortisolism, the HPA axis function is controlled by a

glucocorticoid-dependent negative feedback system that is essential

for ending the stress response. In corticotroph cells, the activation of

glucocorticoid receptor (GR)-a isoform by glucocorticoids is crucial

for the negative feedback of the HPA axis (4).

Reactive oxygen species (ROS), such as superoxide, hydroxyl

radicals, and hydrogen peroxide, are produced by oxygen reduction

(5). As the overproduction of ROS is toxic to cells, its synthesis is

finely controlled by endogenous antioxidant enzymes (6). ROS are

known to act as signaling molecules in physiological processes,

activating a defensive response, including nuclear factor erythroid

2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 pathway, which

appears to protect the organism from subsequent higher stresses (7–

9). Furthermore, the loss of Nrf2 activity in mouse fibroblasts,

hepatocytes, and liver cells disrupts local circadian rhythms (10).

Although the disruption of local circadian rhythms can increase

pituitary gland activation (11, 12), the effect of Nrf2 on the negative

feedback of the HPA axis is unclear.

In previous works, we demonstrated that oral supplementation

with antioxidants induces hyperactivity of the HPA axis in mice and

rats (13, 14). The antioxidant-induced hyperactivation of this axis

was related to overexpression of MC2R and steroidogenic machinery

in the adrenal gland, along with a down-regulation of GR in the
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pituitary gland, leading to a failure of the negative feedback

mechanism of the HPA axis. We also showed that N-acetylcysteine

(NAC) reduced the expression of Nrf2 and HO-1 in the pituitary

gland of rats (13). In this study, we evaluated the effect of Nrf2/HO-1

pathway activator cobalt protoporphyrin IX (CoPPIX) (15, 16) on the

NAC-induced hypercortisolism in healthy mice.
2 Materials and methods

2.1 Animals

Following the guidelines of the Committee on Use of

Laboratory Animals of Oswaldo Cruz Institute (CEUA-IOC/

Fiocruz, license L-027/2016 and L-004/2024), male Swiss-Webster

mice obtained from Science and Technology in Biomodels Institute

of Fiocruz were used. Mice aged between 4 and 6 weeks were housed

in groups of five in temperature-, humidity-, and light-controlled

(12 h light: 12 h darkness cycle) colony room. Mice were given

access ad libitum to food and water.
2.2 Antioxidant supplementation
and treatment

The mice were supplemented with antioxidant N-acetyl

cysteine (NAC) (150 mg/kg body weight) (Sigma Chemical Co.,

Saint Louis, MO, USA) (17–19) by gavage once a day, during five

consecutive days. Control mice received an equal volume of vehicles

(sterile saline 0.9%). The mice were treated concomitantly with Co

(III) Protoporphyrin IX chloride (Nrf2-HO-1 pathway activator –

CoPPIX) (10 mg/kg body weight, i.p.) (Co654-9, Frontier Scientific,

Inc., Logan, UT, USA) (14) on days 2 and 5 after the start of NAC

supplementation (Figure 1A). CoPPIX was diluted with NaOH

0.1N (10% final volume) (Merck, Rio de Janeiro, Brazil), and then,

HCl 1N (Merck) to obtain a solution with pH 7.4. Untreated mice

received an equal volume of vehicles. To analyze corticoid-induced

negative feedback sensitivity, a group of animals received

dexamethasone (20 µg/kg body weight, s.c.) (Sigma Chemical

Co.) 1h before the euthanasia. Control mice were treated s.c. with

sterile saline 0.9%. All analyses were performed 24 hours after the

last supplementation with NAC. All solutions were freshly prepared
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https://doi.org/10.3389/fendo.2025.1500630
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chaves et al. 10.3389/fendo.2025.1500630
immediately before use. To analyze whether the effect of NAC is

sustainable after the interruption of the supplementation, we

administered NAC by gavage once a day, during five consecutive

days, and analyzed plasma corticosterone levels 24h and 15 days

after the last supplementation with NAC.
2.3 Evaluation of mRNA expression of GRa,
GRb, and Nfr-2 by real time PCR

Total RNA was isolated from adrenal and pituitary glands using

TRI Reagent® and followed reverse-transcribed to cDNA using the

RevertAid Reverse Transcriptase (Thermo Fisher Scientific,

Waltham, USA). Real-time PCR was performed with the
Frontiers in Endocrinology 03
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster

City, USA) using a Mix (5x HOT FIREPol® EvaGreen® qPCR Mix

Plus with ROX; Solis BioDyne, Estonia) according to the

manufacturer’s instructions. The amplification program included

an initial activation step at 95°C for 15min, followed by

denaturation at 95°C for 15s, annealing between 59°-62°C and

finally elongation at 72°C for 20s, for 40 cycles. Fluorescence was

measured after each extension step, and the specificity of

amplification was evaluated by melting curve analysis. The

housekeeping gene GADPH was used as a control to normalize

RNA samples. Relative gene expression levels were calculated using

the DDCT method (20). Amplification efficiencies were identical or

similar between genes of interest and controls. Primers were

designed in our laboratory and purchased from Eurofins
FIGURE 1

CoPPIX increases the under-expression of Nrf2 and HO-1 in the pituitary glands of mice supplemented with NAC. (A) In vivo protocol. Mice were
supplemented with NAC (150 mg/Kg, gavage) daily for 5 consecutive days and treated with CoPPIX (10 mg/Kg, i.p.) on days 2 and 5 after the starting
of oral supplementation with the antioxidant. Non-supplemented animals received an equal amount of vehicles (NaOH 0.1N and HCl 1N, pH = 7.4,
i.p.), and analyses were performed 24 h after the last supplementation with NAC and/or treatment with CoPPIX. (B, C) Nrf2 gene expression in
adrenal and pituitary glands of mice, measured by qPCR, respectively. Data are expressed as the mean ± SEM. *P < 0.05. CoPPIX, Cobalt
protoporphyrin IX; HO-1, Heme-oxygenase-1; NAC, N-acetylcysteine; Nrf2, Nuclear factor erythroid 2-related factor 2.
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Genomics Scientific, Inc. (Louisville, USA) or Invitrogen Thermo

Fisher Scientific, Inc. (Carlsbad, USA). The primer used were: i)

GAPDH - forward: AGCAATGCATCCTGCACCACCA; reverse:

ATGCCAGTGAGCTTCCCGTTCA; ii) GRa - forward: AAAGAG

CTAGGAAAAGCCATTGTC; reverse: TCAGCTAACATCTCTG

GGAATTCA; iii) GRb - forward: AAAGAGCTAGGAAAAGCCA

TTGTC; reverse: CTGTCTTTGGGCTTTTGAGATAGG; iv) Nrf2

- forward : TAGATGACCATGAGTCGCTTG; reverse :

GCCAAACTTGCTCCATGTCC.
2.4 Western blot analysis

The pituitary glands were homogenized in RIPA buffer

containing protease and phosphatase inhibitor cocktails, and

then, the protein content was quantified by the BCA method

(21). 60 mg total protein/lane was resolved on 12% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis, for evaluation

of GR protein expression, and afterward electrotransferred through

a semi-dry transfer apparatus (Trans-Blot SD; Bio-Rad, Hercules,

CA, USA) to a nitrocellulose membrane. Subsequently, the

membrane was blocked with a solution containing Tris-buffered

saline, 5% bovine serum albumin, and 0.1% Tween 20, pH 7.4

(TBST), for 90 minutes at room temperature. Then, the membrane

was incubated with a primary antibody dissolved in the blocking

solution overnight at 4°C. Primary antibody against anti-GR (1:200;

Santa Cruz Biotechnology) was used. The housekeeping anti-b-
actin (1:1000; Santa Cruz Biotechnology) was used as the standard.

Afterward, the membrane was incubated with an HRP conjugated

secondary antibody polyclonal anti-rabbit IgG HRP (1:10.000,

Invitrogen ThermoFisher Scientific, MA, USA), or monoclonal

anti-mouse IgGs HRP (1:1000, R&D System, Minneapolis, MN,

USA) for 60 minutes at room temperature , and the

immunocomplexes were visualized by using a ChemiDoc MP

Imaging System 6.0.1 (Bio-Rad Laboratories, Inc, Hercules, CA,

USA). Then, the band density measurements were analyzed by

Image Lab software version 6.1.0 (Bio-Rad Laboratories, Inc). The

description of all the antibodies used is in Supplementary Table S1.
2.5 Hormone quantification

After euthanasia (ketamine 140 mg/Kg and xylazine 20 mg/Kg

i.p.) of mice, during nadir (08:00h) of the circadian rhythm (21).

Blood was immediately collected from the abdominal aorta with

heparinized (40 U/ml) saline, centrifuged for 20 min at 1000 x g,

and stored at -20°C until use. The ELISA kit detected plasma

corticosterone levels following the manufacturer’s guidelines

(Cayman Chemical, 501320, Cedarlane Labs, Canada).
2.6 Statistical analysis

The data are reported as the mean ± standard error of the mean

(SEM). Data distribution was assessed by Kolmogorov-Smirnov.

Data with normal distribution was statistically analyzed by one-way
Frontiers in Endocrinology 04
ANOVA followed by Tukey’s multiple comparison post-hoc test.

Data without normal distribution was evaluated by Kruskall-Wallis

followed by the U-Mann Whitney test. All statistical analysis was

performed with GraphPad Prism 8 software. Probability values (p)

of 0.05 or less were considered significant. Determining if the

frequency distribution of a given data set follows a normal

distribution or not is among the first steps of data analysis.
3 Results

3.1 CoPPIX restores NAC-induced under-
expression of Nrf-2 in the pituitary gland
of mice

Supplementation with NAC (Figure 1A) did not alter the

mRNA expression of Nrf2 in adrenal glands compared to non-

supplemented mice (Figures 1B); however, it reduced the mRNA

expression of Nrf2 in the pituitary glands (Figures 1C).
3.2 CoPPIX reduces adrenal enlargement
and hypercorticoidism induced by
NAC supplementation

NAC supplementation did not affect the overall body weight of

mice (Figure 2A), but induced adrenal enlargement, which was

evidenced by an increase in the adrenal weight and the adrenal-to-

body weight ratio (Figures 2B, C, respectively) compared to non-

supplemented mice. However, the treatment with CoPPIX prevented

the adrenal enlargement observed in NAC-supplemented mice

without modifying the body weight (Figures 2A-C). CoPPIX did

not alter these readouts in non-supplemented mice. In addition, NAC

increased circulating corticosterone levels compared to non-

supplemented mice (Figure 2D). Remarkably, this change was

sensitive to CoPPIX treatment, as evidenced by conditions in

which the CoPPIX did not alter this parameter in non-

supplemented mice (Figure 2D).
3.3 CoPPIX restored NAC-induced failure
in the negative feedback of the HPA axis by
increasing the expression of GRa in the
pituitary gland of mice

Dexamethasone reduced plasma corticosterone levels in non-

supplemented mice, however; it failed to inhibit this readout in

NAC-supplemented mice, indicating an impairment in the negative

feedback of the HPA axis due to NAC supplementation in mice.

Notably, CoPPIX restored dexamethasone’s ability to reduce

plasma corticosterone levels in NAC-supplemented mice, while it

did not affect this parameter in non-supplemented mice

(Figure 3A). We also demonstrated that NAC decreased GR

protein expression in the pituitary gland of mice, which was

sensitive to CoPPIX treatment (Supplementary Figure S1).

Furthermore, CoPPIX did not modify this readout in non-
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supplemented mice (Figure 3B). In addition, NAC significantly

reduced GRa expression (Figure 3C) and increased GRb expression

in the pituitary gland of mice (Figure 3D). Treatment with CoPPIX

significantly increased GRa expression and decreased GRb
expression in the pituitary gland of mice supplemented with NAC

(Figures 3C, D, respectively). CoPPIX treatment did not

significantly alter GRa and GRb in non-supplemented mice.
3.4 NAC increases plasma corticosterone
levels in mice even after discontinuing
supplementation for 15 days

We observed that dietary supplementation with NAC

(Figure 4A) significantly increased plasma corticosterone levels in

mice 24h (Figure 4B) as well as 15 days (Figure 4C) after the last

administration of the antioxidant with the same magnitude of the

response (3.5-fold and 3.4-fold, respectively).
Frontiers in Endocrinology 05
4 Discussion

This study investigated the effect of Nrf2/HO-1 pathway

activator CoPPIX on NAC-induced impairment of HPA axis

negative feedback in healthy mice. We found that CoPPIX

treatment increased the expression of Nrf2 in the pituitary gland

of NAC-supplemented mice. In addition, CoPPIX treatment

inhibited NAC-induced hypercorticoidism in healthy mice,

parallel to a reduction in adrenal enlargement. The decrease in

the corticosterone production in the adrenal glands of NAC-

supplemented mice treated with CoPPIX was correlated with an

improvement in the negative feedback of the HPA axis, as well as

up-regulation of GRa and downregulation of GRb expression in the

pituitary gland. Our findings suggest that the impairment of the

negative feedback of the HPA axis induced by NAC

supplementation is probably due to an imbalance in GR isoform

expression in the pituitary gland, caused by local downregulation of

the Nrf2-HO-1 pathway.
FIGURE 2

CoPPIX reduces adrenal enlargement and plasma corticosterone levels observed in mice supplemented with NAC. Mice were supplemented with
NAC (150 mg/Kg, gavage) daily for 5 consecutive days and treated with CoPPIX (10 mg/Kg, i.p.) on days 2 and 5 after the starting of oral
supplementation with the antioxidant. Non-supplemented animals received an equal amount of vehicle (NaOH 0.1N and HCl 1N, pH = 7.4, i.p.), and
analyses were performed 24 h after the last supplementation with NAC and/or treatment CoPPIX. (A) Body weight of mice. (B) Adrenal weight of
mice. (C) The ratio between adrenal and body weight. (D) Plasma quantification of corticosterone levels. Data are expressed as the mean ± SEM.
*P < 0.05. CoPPIX, Cobalt protoporphyrin IX; NAC, N-acetylcysteine.
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Currently, many people incorporate antioxidants into their daily

regimen as a proactive measure to combat the effects of aging,

including the development of age-related diseases (22, 23).

Nevertheless, numerous clinical trials evaluating the efficacy and

safety of antioxidant supplementation have failed to show beneficial

readouts and, in some cases, have suggested an increase in overall

mortality rates (24–26). Previously, we showed that supplementation

with two different antioxidants, NAC and vitamin E, increased

plasma corticosterone levels in mice and rats (13). Additionally,

NAC was shown to abolish the ability of exogenous glucocorticoids

to perform negative feedback on the HPA axis in rats, alongside a

decrease in the expression of GR, Nrf2, and HO-1 in the pituitary

gland (13). However, the causal effect of the downregulation of the

Nrf2-HO-1 pathway on NAC-induced impairment of the HPA axis

negative feedback remains unknown. Therefore, we hypothesized

that activating the Nrf2-HO-1 pathway by CoPPIX in the pituitary of

NAC-supplemented mice could improve the HPA axis negative

feedback failure observed in these animals.
Frontiers in Endocrinology 06
Initially, we confirmed our previous findings in rats and

demonstrated that NAC supplementation also reduced the

expression of Nrf2 in the pituitary gland of healthy mice, even

with a shorter supplementation period. Our data agree with the

literature that showed that treatment with NAC reduced the

expression of Nrf2 and HO-1 in non-stimulated human umbilical

vein cells (HUVECs) and C2C12 myotube cells and AuNP-induced

up-regulation of Nrf2-HO-1 pathway in human vascular

endothelial cells (27–29).

To evaluate whether activation of the Nrf2-HO-1 pathway in the

pituitary of NAC-supplemented mice could improve the negative

feedback of the HPA axis, we first evaluated if CoPPIX treatment

could reduce the hypercorticoidism observed in these animals. First,

we confirmed that supplementation with NAC increased the plasma

corticosterone levels in mice. Although antioxidant treatment

decreases corticosterone levels in several models of diseases,

including brain oxidative stress induced by lipopolysaccharide and

streptozotocin-induced diabetes in rats (30, 31), we showed that
FIGURE 3

CoPPIX restores the impairment of negative feedback of the HPA axis in mice supplemented with NAC by restoring the imbalance in the GR
isoforms in the pituitary gland. Mice were supplemented with NAC (150 mg/Kg, gavage) daily for 5 consecutive days and treated with CoPPIX (10
mg/Kg, i.p.) on days 2 and 5 after the starting of oral supplementation with the antioxidant. Non-supplemented animals received an equal amount of
vehicle (NaOH 0.1N and HCl 1N, pH = 7.4, i.p.), and analyses were performed 24 h after the last supplementation with NAC and/or treatment
CoPPIX. Some groups of mice were injected with dexamethasone (20 µg/Kg, s.c.) or vehicle (saline 0.9%, s.c.) 1h before de euthanasia.
(A) Quantification of plasma corticosterone levels after dexamethasone suppression test in vivo. (B) Expression of total GR in pituitary glands was
determined by western blot. The data were normalized to b-actin and represented as the ratio between the expressions of GR: b-actin relative
to the control. (C, D) GRa and GRb gene expression in pituitary glands of mice measured by qPCR, respectively. Data are expressed as the
mean ± SEM. *P < 0.05. CoPPIX, Cobalt protoporphyrin IX; Dexa, Dexamethasone; GR, glucocorticoid receptor; NAC, N-acetylcysteine.
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physiological ROS act as messenger molecules in pituitary cells of

healthy mice and are vital to their homeostasis maintenance.

Furthermore, we showed that CoPPIX treatment inhibited both

NAC-induced adrenal enlargement and hypercorticoidism in mice.

These findings suggest that reduced activation of the Nrf2-HO-1

signaling pathway in the pituitary is involved in the hyperactivity of

the HPA axis induced by NAC supplementation. While we believe

that CoPPIX does not act directly on the adrenal glands – since NAC

supplementation did not alter Nrf2 mRNA expression in the adrenals

– we cannot entirely rule out the possibility that CoPPIX restored

NAC-induced a reduction in the MC2R expression in the adrenal

gland and, consequently, the adrenal insensitivity to ACTH

stimulation. In fact, the downregulation of HO-1 expression in

adrenocortical cells has been shown to increase ACTH-induced

progesterone steroidogenesis in vitro (32), indicating that the Nrf2-

HO-1 pathway plays a crucial role in adrenal steroidogenesis.

Since CoPPIX inhibited NAC-induced hypercorticoidism and

restored the expression of Nrf2 and HO-1 in the pituitary gland of

mice, we further evaluated the effect of Nrf2-HO-1pathway

activation on the functioning of the negative feedback of the HPA

axis. For this, we assessed the sensitivity of the HPA axis to negative

feedback induced by the synthetic exogenous glucocorticoid

dexamethasone in NAC-supplemented mice treated or not with

CoPPIX. Dexamethasone reduced circulating corticosterone levels

in non-supplemented mice, but did not affect plasma glucocorticoid

levels in NAC-supplemented mice, indicating that NAC impairs the
Frontiers in Endocrinology 07
negative feedback of the HPA axis. Interestingly, CoPPIX treatment

significantly reduced plasma cort icosterone levels in

dexamethasone-treated and NAC-supplemented mice, indicating

that CoPPIX restored the ability of glucocorticoids to perform

negative feedback on the HPA axis.

It is well known that the inhibition of stressor-evoked HPA axis

responses at the pituitary level is mediated by the activation of GR (33,

34). Furthermore, NAC reduces the expression of GR in the

hypothalamus of mice on a high-cholesterol diet (35) and in the

pituitary of healthy rats (13). As expected, we showed that NAC

significantly reduced GR protein expression in healthy mice’s

pituitary. Treatment with CoPPIX significantly increased the

density of GR in this gland of mice supplemented with NAC,

strongly confirming that the downregulation of the Nrf2-HO-1

pathway has a causal relationship with the failure of the negative

feedback of the HPA axis observed in mice supplemented with NAC.

Among the isoforms of GR produced by alternative splicing GRa and

GRb stand out. Unlike GRa, which is the classic receptor responsible

for glucocorticoid actions, GRb cannot bind to glucocorticoids.

Nevertheless, GRb forms a heterodimer with GRa and exerts a

dominant-negative effect on GRa-mediated transcription (36–38).

Although Otto et al. described that GRb is not conserved across

species and its physiological significance in humans appears

questionable, they only evaluated the exons 7, 8, and 9 of the GR

loci (39). Currently, it is well known that the mGRb isoform arises

from a distinct alternative splicing mechanism utilizing intron 8,
FIGURE 4

NAC increases plasma corticosterone levels in mice even after discontinuing supplementation for 15 days. (A) In vivo protocol. Mice were
supplemented with NAC (150 mg/Kg, gavage) daily for 5 consecutive days. Non-supplemented animals received an equal amount of vehicles (NaOH
0.1N and HCl 1N, pH = 7.4, i.p (B) Quantification of plasma corticosterone levels 24 h after the last supplementation with NAC. (C) Quantification of
plasma corticosterone 15 days after the last NAC supplementation. Data are expressed as the mean ± SEM. *P < 0.05. NAC, N-acetylcysteine.
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rather than exon 9 as in humans, and that this isoform showed the

same properties reported for human GRb (40, 41). Interestingly,

dietary supplementation with NAC significantly reduced the

expression of GRa mRNA and increased the expression of GRb
mRNA in the pituitary gland of healthy mice. This data can explain

the exact mechanism by which supplementation with NAC

completely impairs the HPA axis’ negative feedback, even with a

slight but significant reduction in the expression of total GR protein

levels. Treatment with CoPPIX increased the expression of GRa
mRNA in the pituitary gland of NAC-supplemented mice, however,

strongly decreased the expression of GRb mRNA. Our data showed

that the activation of the Nrf2-HO-1 pathway restores the negative

feedback of the HPA axis of mice supplemented with NAC by

upregulating the expression of the receptor responsible for the

glucocorticoid actions, together with a downregulation of the

expression of the receptor responsible by the impairment of GRa-
mediated activities. In addition, for the first time, we showed that the

Nrf2-HO-1 pathway can regulate direct or indirectly the expression of

GR isoforms, therefore, our findings contribute novel insights into GR

potential regulatory mechanism. Nevertheless, further studies will be

required to delineate the exact intracellular pathways involved with

the Nrf2/HO-1 pathway-induced glucocorticoid receptor gene

expression modulation. Although we strongly believe that activation

of the Nrf2-HO-1 pathway in mice supplemented with NAC restores

HPA axis negative feedback by modulating the expression of GR

isoforms in the mouse pituitary, it is imperative to emphasize that an

important limitation of the work is the lack of circulating ACTH levels

measurement. We can mainly rule out that NAC supplementation

might reduce corticosterone metabolism in the liver and intestine

(42), and that CoPPIX treatment might be preventing this possible

extra HPA axis effect of NAC supplementation.

We also evaluated the effect of the discontinuation of the

supplementation of NAC on the plasma corticosterone levels of

mice to evaluate whether NAC-induced downregulation of the HPA

axis negative feedback is part of an adaptation period or if this can

have a long-lasting effect on the HPA axis stress response. We

showed that even after we stopped the dietary supplementation of

mice with NAC for 15 days, they showed the same magnitude of

increase in circulating corticosterone levels when compared to mice

who did not have their supplementation interrupted. Therefore, we

can hypothesize that the supplementation of NAC in mice for only

5 days induces a sustainable alteration of the control of

glucocorticoid production for at least 15 days. One limitation of

our study was that we used only male mice to investigate the effect

of NAC on the hyperactivity of the HPA axis in healthy animals,

and the effects of NAC on HPA axis function in females should also

be considered.

The CoPPIX enhances cellular antioxidant defenses and reduces

the production of ROS by inducing the HO-1 signaling pathway,

protecting cells from oxidative damage (43). Despite the promising

preclinical data, the clinical development of CoPPIX as an

antioxidant therapy is in its early stages. Further detailed

preclinical and clinical studies are necessary to fully understand
Frontiers in Endocrinology 08
the therapeutic potential and safety use of CoPPIX in humans.

Moreover, the exploration of CoPPIX and other Nrf2-HO-1

activators holds the potential for developing novel therapeutic

strategies for oxidative stress-related diseases (44, 45).

In summary, our results indicate that NAC-induced

hyperactivity of the HPA axis in mice is related to the reduction

of the activity of the Nrf2-HO-1 pathway in the pituitary gland. This

effect seems to be caused by a reduced GRa mRNA and an

increased GRb mRNA transcription, which could lead to a

subsequent impairment of the negative feedback of the HPA axis.

In addition, the activation of the Nrf2-HO-1 pathway with CoPPIX

normalizes the dysregulation in the pituitary gland induced by NAC

supplementation and, consequently, stabilizes the negative feedback

of the HPA axis after dexamethasone suppression test.
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