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As a multidimensional metabolic disorder, the disability and death rate of type 2

diabetes mellitus (T2DM) has increased over time. T2DM covers a wide range of

pathological manifestations ranging from hyperglycemia to multi-organ failure,

and it has the potential to evolve into acute complications, including ketosis and

chronic complications such as peripheral neuropathy, retinopathy, and

nephropathy. T2DM mainly occurs in microvascular and large vessels and thus

it is restricted for the clinician to diagnose and prescribe. However, the

pathological mechanism and clinical diagnosis are inadequate. High-

throughput metabolomics, characterized by non-invasive diagnostic

techniques to identify potential biomarkers and distinct stages of T2DM, has

been increasingly recognized as a vigorous tool with latent capacity for clinical

translation. The pathological stratification of T2DM can significantly reduce

disability and mortality rates. By tracing the metabolome and associated

pathways from impaired fasting blood glucose or impaired glucose tolerance

to severe organ failure, the chief contributions of large, independent population-

based cohorts are summarized herein. These results facilitate understanding the

pathophysiology and mechanism and supports research in accurate diagnosis,

risk prediction, curative effect, distinct stages, and prognosis judgment of T2DM.
KEYWORDS

clinical metabolomics, type 2 diabetes mellitus (T2DM), complications, biomarkers,
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1 Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common

endocrine and metabolic disorders characterized by chronic

hyperglycemia, which can lead to acute and chronic complications

related to microvascular (i.e., neuropathy, nephropathy, and

retinopathy) and macrovascular (atherosclerosis-related vascular

disease, coronary heart disease, cerebrovascular disease, and

peripheral vascular disease) (1, 2). Common complications in

T2DM include Type 2 diabetic retinopathy (T2DR), Type 2 diabetic

retinopathy (T2DR), Type 2 diabetic peripheral neuropathy(T2DPN),

and Type 2 diabetic ketosis (T2DK) (3, 4). Such diseases pose a huge

economic burden (5). Prediabetes mellitus (PM) refers to the

transition stage of normal glucose metabolism into T2DM. This

stage is in a healthy state, and blood sugar can be recalled through

exercise and diet regulation. There are multiple risks due to abnormal

blood glucose, represented by diabetic macrovascular disease and

microvascular disease, which do not fulfill the diagnostic criteria for

diabetes, namely, two clinical conditions: impaired fasting blood

glucose (IFG) and impaired glucose tolerance (IGT).

The incidence of diabetes is mainly related to genetic

inheritance and environmental factors. According to the 10th

edition of the International Diabetes Federation, the number of

diabetes patients worldwide is estimated to increase to 783.2 million

by 2045 (6). It is widely recognized that approximately one-third of

these patients will develop at least one complication within about 10

years after the onset of diabetes (7). T2DM accounts for 90%-95% of

all diabetes cases (8). T2DM is a chronic disease characterized by

two primary pathophysiological mechanisms: ① a reduction in the

mass and function of pancreatic b cells, ranging from 20% to 65%,

which leads to impaired insulin secretion; ② insulin resistance,

where cells in muscles, fat, and liver tissues fail to respond

adequately to insulin (9). Consequently, higher levels of insulin

are required to maintain normal blood glucose concentrations by

inhibiting hepatic glucose production and promoting glucose

uptake in muscle and adipose tissues. Prolonged exposure to

elevated levels of circulating insulin leads to the development of

insulin resistance in peripheral tissues, and over time, the pancreas

fails to produce sufficient insulin to overcome this cellular resistance

(10). However, due to the long latent period and absence of obvious

symptoms initially, reversing T2DM with drug intervention is

difficult after the symptoms are exposed or clinically confirmed in

light of clear diagnostic criteria. According to the literature, the

pathogenesis and process of metabolic syndromes such as diabetes

and its complications are mainly reflected in the metabolite

network, and the mechanism changes at the gene level are also

found in the network. Studies have shown that some related

metabolites in patients with diabetes have changed before the

occurrence of obvious organic damage (11). Therefore, it is

necessary to scientifically prevent T2DM in the early stages of

disease onset. Fortunately, clinical metabolomics were employed to

understand the progression pathologies of T2DM and its

corresponding complications in detail (12). Studies have

demonstrated that metabolomic analysis enables the exploration

of metabolic disorders associated with T2DM, thereby deepening

our understanding of disease progression (13, 14). This approach
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has the potential to facilitate novel clinical diagnoses and the

development of effective treatment strategies. Moreover,

identifying specific metabolites may provide promising

biomarkers for the early prediction, prevention, and management

of hyperglycemia and its complications (15). In recent years,

excellent progress has been made in the study of T2DM and its

complications through High throughput sequencing method, i.e., a

discipline specifically focused on metabolic small molecules.

Clinical metabolomics is a type of systems biology research

closely linked to phenotype. Clinical metabolomics is based on

clinical cohorts, with metabolomics as a tool, and supplemented by

bioinformatics techniques to globally analyze the homeostasis

imbalance of endogenous metabolites under external stimulation

and the mechanism of prognosis after treatment intervention. This

technology reveals the potential biomarkers and targets of disease,

widely used in cardio-cerebrovascular research in the fields of, for

example, toxicity study, malignant tumors, diabetes, and

neurodegenerative diseases (16–21). For instance, Suhre et al. (22)

analyzed serum samples from 2820 subjects by ultra-performance

liquid chromatography-tandem mass spectrometry (UPLC-MS)

and obtained 295 metabolites and 37 related gene loci in 60

biochemical pathways. This report provides a new perspective for

the study of cardiovascular disease, kidney disease, diabetes, and

tumors. Clinical metabolomics is characterized by its advantages: it

is non-invasive and low cost and has high throughput, providing

strong technical support for type 2 diabetes and its complications.

In addition, the China National Academy of Sciences Dalian

Physical Chemistry Institute Xu Guowang Group (23) established

a fingerprint of a body fluid metabolism that can be used to identify

type 2 diabetes, based on liquid chromatography-electrospray

ionization linear ion trap mass spectrometry and screened four

phospholipid molecules that can be used as biomarkers. The

application of metabolomics in clinical sample cohort studies of

type 2 diabetes and its complications can help with exploring the

physiological and pathological mechanisms and the law of

metabolite variation. Early diagnostic indicators such as glucose

are expected to have broad application prospects and development

space. Despite the promising advancements, several challenges need

to be addressed to effectively integrate metabolomics into the

clinical management of diabetes and its complications. The

metabolome is sensitive to a variety of genetic and environmental

stimuli and susceptible to genetic, environmental, and gut

microbiome pressures, so subtle differences between individuals

can lead to large perturbations in metabolite concentrations and

fluxes (15, 24). At present, cystatin C has become an ideal

endogenous marker for evaluating glomerular filtration function

because it is not affected by sex, age or muscle mass (25). In

addition, more and more evidence shows that serum CysC is

involved in the pathological process of vascular remodeling and

neovascularization, which is closely related to the occurrence and

development of diabetic microangiopathy (26).

Eighty-four papers were included in this review and obtained

through database searches, namely, PubMed, Cochrane Library,

China national knowledge internet(CNKI), General Purpose, and

VIP Database. The keywords for the searches were “metabolomics”

and “type 2 diabetes mellitus” and its complications. The papers
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were incorporated by reading and summarizing the literature

according to the classification standards (27). The profound

analysis of clinical differential metabolites identified in type 2

diabetes and its complications were conducted concerning

composition, frequency of category, sample type, and pathways to

explore the pathological mechanism of type 2 diabetes and its

complications to provide a systematic basis for clinical diagnosis,

risk stratification, comprehending disease progression, prognosis

assessment, and drug efficacy. Our goal is to apply metabolomics to

clinical diagnostic biomarkers, metabolic mechanisms, and

prognostic observations, and early diagnosis can be made through

metabolites to avoid progression to more serious complications.
2 Profiles of literature retrieval and
clinical characteristics

In this review, we applied the strategy of “meta-analysis” to

search for all literature included in diabetes and clinical

metabolomics to interpret related biomarkers. Other details in the

literature were extracted by intensive reading.
2.1 Search and study identification

2.1.1 Literature retrieval strategy
To retrieve and include papers, we completed five separate and

sequent ia l l i terature searches using PubMed (http://

www.ncbi.nlm.nih.gov/pubmed), the Cochrane Library (https://

www.cochrane.org/welcome), China National Knowledge

Infrastructure Database (https://www.cnki.net/), WangFang

Database (http://www.wanfangdata.com.cn/index.html), and VIP

Database (http://www.cqvip.com/). The aim of the first search

was to find all related free words (synonyms) according to the

subject words. Next, we used the search term “#1 OR #2 OR #3

AND *1 OR *2 OR*3,” “#MeSH AND *MeSH” (#: Subject words

and free words of type 2 diabetes and its complications;* Subject

words and free words in metabolomics). The retrieval time of the

literature was set from January 1, 2000, to January 1, 2020, and the

clinical research depended on the official publication time of the

literature. The specific retrieval strategies are provided in

Supplementary Method S1.

2.1.2 Data extraction
The initial literature screening process was conducted by

reviewing the titles and abstracts. Subsequently, full-text versions

of potential articles were obtained for further assessment. Next, data

were extracted following the pre-designed form, including the title,

name of the first author and corresponding author, publication

institution, publication year, patient characteristics (sample size,

sex, age, patient’s baseline, and sample category), study design, and

domains of risk of bias. Finally, biomarkers for the early diagnosis of

type 2 diabetes and its complications were identified.
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2.1.3 Literature quality assessment
The Cochrane Collaboration risk of bias tool was used to

evaluate the baseline indicators of the eligibility of the included

studies. The following items were assessed: 1) sample size of each

group, 2) age, and 3) sex. If the baseline basic indicators of included

research are complete and there is no statistical difference, the

quality of literature can be rated as “low risk” (indicating low bias

risk). And the quality of literature can be rated as “high risk” (high

bias risk) if any one of the three items with a statistical difference,

and it can be rated as “unclear” if the data are incomplete.

Moreover, the statistical differences in age, sex, and baseline

characteristics of the study results are presented in Supplementary

Table S1, and they were given a degree of bias assessment because

there were different baseline characterizations in each case. When

the statistical result of baseline was p > 0.05, it was defined as “ low

risk;” p<0.05 was defined as “high risk.” The absence of baseline

results was defined as “uncertain”.
2.2 Literature search results and
baseline characterization

All literature records were identified from the five databases.

The duplications were removed, and some records were excluded

through screening titles and abstracts because they were irrelevant

studies such as reviews and animal experiments. The full texts of the

remaining records were screened, and the remaining records were

excluded for eligibility of the abovementioned exclusion criteria.

The remaining studies were ultimately included in this review. All

the studies were published between 2000 and 2020. The process and

results of the literature screening are shown in Figure 1. There are

23 pieces of literature on type 2 PM, 39 on T2DM, 1 on T2DK, 1 on

type 2 diabetic peripheral neuropathy, 4 on T2DR, and 17

on T2DN.
3 Pathogenesis

The pathogenesis of T2DM and its complications are complex

and unclear, but the following mechanisms have been proven

closely related to the onset of T2DM and its complications

(Figure 2). Many types of pathogenesis and adverse consequences

are induced by the state of high glucose.
3.1 Common pathogenesis

3.1.1 Genetic factors
There are two crucial pathophysiological bases of T2DM,

including b cell dysfunction and insulin resistance, and genetic

factors play an indispensable role in its development. T2DM is

related to the angiotensin-converting enzyme (ACE) gene, which

regulates the angiotensin system. Among this process, the AGE
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receptor, AR, and ApoE genes are implicated in abnormal lipid

metabolism. The HP gene is associated with oxidative stress

response, and the CCR5 gene, VEGFA gene, and EPO gene are

related to the increased secretion of various inflammatory factors.

Under the action of polygenes, kidney damage is caused in some

patients with diabetes. In addition, overexpression of miRNA in

diabetic nephropathy (DN) leads to proteinuria and hyperglycemia

in patients with DN, leading to the occurrence and development of

the disease (28).

3.1.2 Obesity
Approximately 80% of patients with T2DM are obese, and

mainly central obesity is observed, characterized by abnormal

glucose and lipid metabolism. Central obesity is defined by the
Frontiers in Endocrinology 04
World Health Organization as a waist circumference exceeding

94 cm for males and 80 cm for females. The International Diabetes

Federation (IDF) has proposed different cut-off points for various

ethnic groups, such as 94 cm for males and 80 cm for females for

Europeans, and 90 cm for males and 80 cm for females for Asians

(29). Abdominal fat metabolism is more active than hip and thigh

fat metabolism. There was a significant negative correlation

between the area of intra-abdominal fat and insulin-mediated

glucose utilization. In patients with central obesity, the amount of

intra-abdominal fat increased, and the inhibitory effect of insulin on

hepatic glycogen production weakened. Free fatty acids in the blood

affect blood glucose levels in two ways, leading to the onset of

T2DM. On the one hand, excessive free fatty acids lead to ectopic

deposition of fatty acids, and the function of insulin secretion in b
FIGURE 2

Pathophysiological factors of diabetes and its complications.
FIGURE 1

Identification of different metabolites of T2DM and its complications based on clinical metabolomics.
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cells is impaired. On the other hand, there are excessive free fatty

acids in the blood, which increase the output of liver glycogen and

hinder the clearance of glucose through via a free fatty acid

substrate competition mechanism (30). The elevation of plasma

free fatty acids can inhibit glucose oxidation, impede glucose uptake

by cells, suppress muscle glycogen synthesis, and promote

gluconeogenesis, ultimately leading to glucose metabolic

disorders. Furthermore, the inhibition of cellular insulin receptor

tyrosine kinase activity and reduced expression and activity of

insulin receptor substrates exacerbate these metabolic

disturbances, thereby aggravating insulin resistance (30).

3.1.3 Inflammation
Inflammation is a crucial pathogenesis, and various

inflammatory factors, such as TNF-a, Interleukin-1 and

interferon g , are elevated (31). TNF-a induces serine

phosphorylation of serine phosphorylation of insulin receptor

substrate-1 (IRS-1) at Ser312, thereby impairing IRS-1 function

and subsequently blocking insulin signaling (32, 33). IL-1 inhibits

insulin signaling by activating the NF-kB inflammatory signaling

pathway, leading to serine phosphorylation of IRS-1 (34). IFN-g can
modulate the phosphorylation status of IRS through activation of

the p38-MAPK signaling pathway, thereby disrupting insulin

signaling and ultimately leading to insulin resistance (35).

Inflammation interferes with insulin signal transduction through

blood and/or paracrine functions and leads to insulin resistance

(36). Inflammation is a nonspecific response to injury or stress. In

patients with diabetes with hyperglycemia, glial cells are activated

by changes in biological pathways such as polyols, protein kinase C,

advanced glycation end products, and the renin–angiotensin

system, and release many inflammatory factors (37). Increased

inflammatory factors can damage the retina by promoting

angiogenesis and neurodegeneration (38, 39). The upregulation of

IL-8, TNF-a, ICAM-1, and other inflammatory factors and

leukocytosis, glial cell activation, and other inflammatory

reactions, inhibiting inflammation, can effectively alleviate the

development of DR (40).

3.1.4 Oxidative stress
Oxidative stress can change renal hemodynamics and destroy

glomerular endothelial cells, leading to extracellular matrix

deposition and thickening of the glomerular basement membrane

(41). NADPH oxidase and mitochondrial dysfunction are the two

principal mechanisms of oxidative stress in patients with T2DN

(42). High glucose levels can stimulate the production of reactive

oxygen species (ROS) and nitrogen species (43). ROS can initiate

polyunsaturated fatty acids in cell membranes, leading to lipid

peroxidation, which produces a series of harmful by-products that

disrupt the integrity and function of cell membranes (44). ROS also

can directly induce DNA damage, encompassing base

modifications, single and double strand breaks, as well as DNA

cross-linking (45). Studies have shown that in T2DM, persistent

high blood sugar is a stress stimulus capable of increasing oxidative

stress, which can be seen at both cellular and plasma levels (46, 47).

Cellular responses to elevated oxidative stress include increased
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poly ADP-ribose polymerase activity. Elevated poly ADP-ribose

levels are important predictors of elevated IL-6 and TNF-a levels,

and their role in modulating inflammatory pathways in T2DM

suggests that oxidative stress can regulate inflammatory

responses (46).

3.1.5 Metabolic disorder
3.1.5.1 High glucose

Under continuous hyperglycemia, the increase in glucose

oxidation and the production of mitochondrial reactive oxygen

species in patients aggravates oxidative stress and accelerates the

speed of apoptosis and the degree of DNA damage, resulting in

renal tubular and interstitial fibrosis. Hyperglycemia directly

induces the activation of the polyol pathway, changes in the

redox state of cells, an increase in triglyceride production, the

activation of the protein kinase C (PKC) pathway, and the

generation of advanced glycation end products (AGEs), resulting

in abnormalities in the retinal nerve tissue and microvascular

system (48–50).

3.1.6 Advanced glycation end products
AGEs can be generated through the reaction between sugars

and amino groups of dicarbonyl-modified proteins. Under

conditions of hyperglycemia, the production rate of AGEs

increases, leading to abnormal accumulation in the retina. This

process not only directly alters the normal structure of proteins,

nucleic acids, and lipids but also activates multiple signal

transduction pathways, resulting in apoptosis of retinal pericytes,

dysfunction of endothelial cells, increased secretion of vascular

endothelial growth factor (VEGF), and induction of oxidative

stress and inflammatory responses. These mechanisms are

primarily responsible for the onset and progression of diabetic

retinopathy (DR) (51).

3.1.7 Protein kinase C
PKC activation induces the downregulation of endothelin-1

receptor and upregulation of VEGF. Endothelin-1 is a powerful

vasoconstrictor that can cause hemodynamic changes. VEGF plays an

crucial role in signal transmission in cells, leading to changes in vascular

permeability, and promoting endothelial cell proliferation, migration,

and angiogenesis (52). PKC activation plays a role in the abnormal

regulation of blood vessels and retinal neovascularization (53).
3.2 Pathogenesis by complications

3.2.1 Type 2 diabetic peripheral neuropathy
Studies have indicated that a high expression of IL-6 is detected

in the DRG of diabetic mice, and IL-6 can bind to and induce the

dimerization of multiple receptor complexes and then activate JAK

in the cell membrane to induce the transcription of related

neuroprotective genes. Diabetic neuropathy is closely related to

oxidative stress, and the anti-oxidative stress effect of the JAK-

STAT signaling pathway provides a new approach for the treatment

of DPN (54). Moreover, neurons are supported by the nutritional
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support of their innervating tissues, which produce nerve growth

factors and nutritional factors. The lack of cell nutrition, nerve

growth, and nutritional factors affects the normal function of nerve

fibers, leading to varying degrees of nerve fiber damage (55).

3.2.2 Type 2 diabetic retinopathy
Endothelial progenitor cells (EPCs) may help increase the

growth of collateral vessels to ischemic tissues (therapeutic

angiogenesis) and deliver antiangiogenic agents or proangiogenic

agents to pathological or functional angiogenesis sites, respectively.

In patients with DR, the fate of EPCs is also affected by the

mitochondrial state and oxidative stress. On the one hand, a high

concentration of glucose can induce autophagy of EPCs,

accompanied by an increase in mitochondrial oxidative stress and

the destruction of mitochondrial oxidative permeability; the

number and function of mitochondria in DR patients are

damaged, leading to a decline in EPC metabolism and function

(56, 57). DR-related retinal neurodegeneration occurs before

vascu lar changes , which are ca l l ed d iabe t i c re t ina l

neurodegeneration (DRN). Many animal studies have also shown

that DRN is an early component of DR in terms of structure and

function. Park et al. observed that photoreceptor apoptosis first

occurred within 4 weeks of diabetes onset, and the thickness of the

outer nuclear layer decreased significantly at 24 weeks. The outer

nuclear layer is the nucleus of the photoreceptor, which is not only

the main site of superoxide production in diabetic mice but can

produce inflammatory proteins, resulting in increased permeability

and death of retinal endothelial cells (58–60).

3.2.3 Type 2 diabetic nephropathy
Hyperglycemia can promote the release of various vasoactive

mediators, namely, insulin-like growth factor-1 (IGF-1), VEGF, and

nitric oxide (NO) from the kidney, resulting in the dilation of renal

arterioles; however, due to the local elevation of angiotensin II (Ang

II) and endothelin-1 (ET-1), the efferent arterioles contract, leading

to the formation of glomerular hypertension and the occurrence of

DN (61). Another metabolic pathway is the renin–angiotensin–

aldosterone system (RAAS). Overactivity of RAAS is a key factor in
Frontiers in Endocrinology 06
renal fibrosis, which is also closely related to the occurrence of DN.

A mouse-based animal experiment showed that the use of RAAS

inhibitors, ACE, or an angiotensin-converting enzyme inhibitor

significantly reduced renal fibrosis (62).

Mitochondria are crucial organelles for energy production and

the main source of reactive oxygen species (ROS) production.

Dysfunction can also lead to DN. When the body’s blood glucose

increases, the load of the mitochondrial electron transport chain

increases, resulting in insufficient production of adenosine

triphosphate (ATP), NO, and nuclear factor kB(NF-kB). This
phenomenon can promote inflammation and vascular dysfunction

in the kidney and finally form DN. Based on the aforementioned

theory, some scholars have long proposed improving mitochondrial

oxidative phosphorylation activity through exercise, heat restriction,

or drug stimulation of AMPK to reduce the risk of DN (63).
4 Metabolic information statistics of
clinical differences

According to the aforementioned 85 pieces of literature, 589

differential metabolites were identified (Figure 3, Supplementary

Table S1, S2). The classification of differential metabolites in the

class column were obtained through the following steps: we upload

the names of metabolites into the human metabolome database

(HMDB, https://hmdb.ca/) and inquiries the results.
4.1 Alterations of different metabolites in
different stage

First, the type and frequency of different metabolites of type 2

diabetes and its complications were analyzed (Figure 4). Clinical

metabolite analysis revealed changes in metabolites associated with

disease progression, both longitudinally (across disease stages) and

laterally (from prediabetes to complications). The metabolic profile

covers a wide range of metabolic products, including glycerol

phospholipids, amino acids, carboxylic acids, and fatty acids.
FIGURE 3

Metabolites of diabetes mellitus and its complications. (A: Metabolite profiles evolve from prediabetes to complications, B: Proportional
representation of metabolites across stages).
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A total of 162 differential metabolites were obtained from the PM

(Supplementary Table S3). The top 25 differential metabolites included

12 amino acids, 6 glycerophosphatidylcholine, 2 glucose, and other

components. The most frequent type was branched-chain amino acids,

namely, valine, leucine, and isoleucine. There were 372 differential

metabolites in T2DM among which there were 14 amino acids,

including branched-chain amino acids and aromatic amino acids,

4 monosaccharides (e.g., a-glucose), 7 organic acids, and other

components (Supplementary Table S4). There were 7 differential

metabolites in T2DK: 7 straight-chain amino acids, including the

special amino acid acetylcarnitine C2 (Supplementary Table S5).

There were 19 metabolites in T2DPN, which were ranked as

8 organic acids, 4 amino acids and their derivatives, 3 alcohols,

2 organic nitrogen compounds, 1 inorganic acid, and 1 salt

compound (Supplementary Table S6). There were 32 metabolites in

T2DR. According to the order of frequency, 7 organic acids, 5 sugars,

3 glycerophosphatides, 3 peptides and derivatives, and 3 linear amino

acids can be obtained (Supplementary Table S7). A total of 127

differential metabolites were identified in T2DN. Among the top

25 metabolites, the main types included 15 amino acids, 5 organic

acids, and 3 phosphatidylcholines (Supplementary Table S8). In total,

the number of investigations focusing on themetabolic profile of T2DK

was the lowest, followed by T2DPN and T2DR (Figure 3B). This result

is mainly due to the large sample size of patients with T2DM and

reflects the maturity of detection technology.

Figure 4 demonstrates that progressive research remains scarce,

and there is a shortage of the early diagnosis and prediction of diabetic

complications. Additionally, the PM stage can be a significant stage in

terms of diet and exercise. Notably, amino acids account for the largest
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proportion of various complications when using PM and T2DM as

references. Acetylcarnitine C2 shows a different research trend from

other amino acids in T2DK. In a study on T2DM, a significant

reduction in acetylcarnitine was observed, suggesting either decreased

acetyl-CoA production or increased diversion of acetyl-CoA into

oxidation or synthesis pathways (64). The research and metabolic

features of chronic complications, including T2DPN, T2DR, and

T2DN, are more abundant and can provide information concerning

biomarkers for further study. For instance, glycine and urea can be

detected in several stages and thus require further clinical development.

Dysregulation of glycine and urea metabolic pathways was found in the

metabolomics analysis of diabetic mice (65). The results showed that

creatine metabolites in the model group were significantly higher than

those in the control group, indicating that the relative concentrations of

glycine and urea were up-regulated, and their concentrations were

positively correlated with the progression of T2DM.
4.2 Other characteristics of
differential metabolites

The differential metabolites were classified and summarized

according to the type of metabolite of HMDB. The results showed

that 12 types of compounds had a frequency of ≥10 times (details in

Figure 5). Glycerophosphatides are the most common substance,

followed by carboxylic acids and derivatives, fatty acids, organic

oxygen compounds, and so forth. The typical structure of

glycerophosphatides is choline glycerophosphate. In this section,

ipidome consists of the cell membrane. We focus on the
FIGURE 4

Clinical metabolic profile in T2DM complications. (A: T2DK, B: T2DPN, C: T2DR, D: T2DN).
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identification of novel diagnostic biomarkers, as well as the

numerous therapeutic targets. Additionally, LC-MS/MS could be

an extensive, informative technique for lipidome. In Supplementary

Table S2, the detection technologies for differential metabolites

mainly include H-NMR, GC-MS, LC-MS, and UPLC-MS; among

them, there are 11 types of MS detectors, including SIM, TOF, FIA,

MRM, QqQ, and LTQOrbitrap, among which UPLC-Q-TOF/MS is

the most frequently used. NMR has been replaced by LC-MS/MS

and GC-MS because of its high sensitivity, high resolution, and

excellent qualitative and quantitative efficiency.

In terms of sample types, there are six types of serum and

plasma samples—aqueous humor, blood, plasma, serum, urine, and

saliva—with the largest number of serum and plasma samples in the

T2DM period, totaling approximately 450 samples. Another feature

is that serum and plasma samples ranked the highest, and their

advantages are stability, easy access, and rich metabolic

characteristics in blood (66). Urine, as an end product of

metabolism, is an crucial sample type in metabolic research.
4.3 Pathway analysis

The metabolomics analysis platform MetaboAnalyst was used to

analyze the different metabolites at different stages (http://
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www.metaboanalyst.ca/faces/ModuleView.xhtmL). The database was

used for pathway analysis, and the HMDB IDS corresponding to

different stages was imported. The channel database type was Homo

sapiens, and the pathway calculation method was the

hypergeometric test; next, the pathway topology analysis method

was selected as the relative centrality. Through the p value of the

calculation and impact value of pathway topology analysis,

MetaboAnaylst displays all matching pathways in the form of a

metabolomics diagram. The results are shown in Figure 6. The

ordinate of metabolomics is -log(p), where p represents significance.

The larger -log(p), the more significant the statistical difference;

the abscissa path impact is the pathway impact value, and the

greater the pathway impact value, the more metabolites are queried

to hit the pathway.
5 Biological function of metabolites

5.1 Analysis of metabolites of T2DM
over time

5.1.1 PM
The main metabolites of PM are amino acids, lipids, sugars, and

fatty acids. IFG and IGT can be observed in patients with PM. IGT
FIGURE 5

Differential metabolite frequency. (A: Category and structure of choline glycerophosphate, B: sample type, C: analysis platform).
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and IFG can be regarded as an transitional stage from normal to

diabetes. At this time, insulin sensitivity is reduced due to insulin

resistance. Long-term fatigue of beta cells can easily lead to

functional failure. If properly treated, this status can be reversed

to normal. If not treated properly, diabetes develops. Lipid

compounds comprise include cholesterol esters, free fatty acids,

phospholipids, and triglycerides (67). In Figure 1, phospholipids are

the lipid with the highest frequency in the PM phase. Phospholipids

include glycerin and sphingomyelin. Glycerophosphatidylcholine is

also known as glycerophosphate. Depending on the different

hydroxyl groups of phospholipid acids, they can be divided into

PC, phosphatidylethanolamine, phosphatidylserine, and

phosphat idy l inos i to l . LysoPC is the most abundant

lysophospholipid in the human blood. LysoPC(18:1), lysoPC

(18:0), lysoPC(16:0), lysoPC(17:0), lysoPC(18:2), and lysoPC(14:0)

are six types of phospholipids. LysoPC(18:2) has been shown to be

related to BMI and T2DM (68). Secretory phospholipase A2

(sPLA2) produced by vascular smooth muscle cells and

macrophages A2 can hydrolyze cell membranes and lipoproteins,
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including low-density lipoprotein and high-density lipoprotein

phosphat idy lcho l ine second acy l group , to produce

lysophosphatidylcholine and free fatty acids, mediating the

production of inflammatory mediators. However, a long-term

increase in lipid compounds leads to initial insulin resistance in

peripheral tissues, which is in the early stage of the disease, and the

body has not yet developed diabetes. The increase in inflammatory

mediators accelerates the occurrence and development of chronic

complications in T2DM (69).

The main amino acids are branched-chain amino acids

(BCAAs), including valine, leucine, and isoleucine. BCAAs can

promote glucose uptake and glycogen synthesis in the liver and

skeletal muscles. Under the condition of a high-fat diet, high-sugar

diet, or overnutrition, the catabolism of BCAAs in various tissues of

the body, especially in adipocytes, is inhibited, increasing blood

concentration (70). Tulipani et al. (71). demonstrated that valine

levels in BCAAs are positively correlated with insulin resistance,

which can regulate the growth and proliferation of beta cells and

insulin secretion; aromatic amino acids such as phenylalanine was
FIGURE 6

Results of pathway analysis. (The color of the circle represents the significance of the statistical difference; the size of the circle represents the
magnitude of the influence value of the pathway). Based on the aforementioned information, the pathway with higher impact value and the
significant high -log (p) of pathway coverage is more important. Considering the time sequence from the development of prediabetes to the
complications of diabetes, the key pathways obtained by each stage are shown in the Discussion section.
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studied in the course of diabetes (72), and the increase in serum

phenylalanine concentration is due to insulin deficiency. When

insulin secretion is insufficient, the body cannot make full use of

glucose and fatty acids for the energy supply; free phenylalanine and

other amino acids are the main sources of the energy supply; thus,

they appear in a large number in serum. In a study of 1302

individuals aged 40-79, higher levels of BCAAs were associated

with metabolic syndrome, obesity, cardiovascular risk, dyslipidemia

and hypertension (73). Increases in BCAAs observed in prediabetic

individuals with obesity are primarily attributed to insulin

resistance; however, once elevated, BCAAs may contribute

causally to the progression from prediabetes to full-blown

T2DM (74).

5.1.2 T2DM
The differential metabolites of diabetes include phenylalanine,

isoleucine, valine, taurine, and other amino acids (Figure 7); fatty

acids such as palmitic acid; and intermediate products of the

tricarboxylic acid cycle, such as lactic acid, citric acid, and pyruvic

acid. There are two reasons why lactic acid can be used as a marker

for T2DM. First, the increase in lactic acid levels in patients with

T2DM can indicate a disorder of glucose metabolism. The process

of dehydrogenation and oxidation of lactic acid to pyruvate is

inhibited because of microcirculation disorder and the poor

oxygen supply of cells, leading to an increase in lactic acid in

vivo; in addition, in the hyperglycemia state, D-lactic acid, an

isomer of lactic acid, changes from elevated malonic acid to

pyruvate ketoaldehyde and can intensify oxidative stress and the

glycosylation process of tissues, promote the formation of advanced
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glycation end products, and accelerate the process of microvascular

complications and peripheral neuropathy in T2DM (75).

Amino acid metabolism is a major metabolic change related to

insulin sensitivity. There are BCAAs, aromatic amino acids, and

special amino acids such as taurine. Clinical studies have shown that

elevated BCAA levels are associated with the risk of T2DM (76, 77),

and genetic studies have also confirmed the crucial role of BCAA

metabolism in the development of DM (78). For example, 3-

hydroxyisobutyric acid (3-HIB), a newly found paracrine regulator

of trans-endothelial fatty acid transport, can activate trans-

endothelial fatty acid transport and promote the absorption and

accumulation of fatty acids in muscle, producing insulin resistance

(79), which can be used as a link between BCAA catabolism and

insulin resistance. Additionally, Winiarska et al. (80). found that

taurine affects the prevention and control of T2DM complications,

which may be achieved by inhibiting gluconeogenesis, and taurine

has antioxidant and neuroprotective effects.

O’Connell (81) found that the accumulation of BCAAs can

activate mammalian rapamycin targeted gene complex I

(mTORC1) and then affect the downstream target ribosomal

protein S6 kinase I (S6K1), affecting insulin sensitivity in the

body. This regulation effectively confirmed the close relationship

between DM and amino acid metabolic disorders. Branched-chain

amino acid metabolism (82) was also found to affect the energy

supply of the body by influencing the TCA cycle, which is closely

related to the metabolic process of the disease. According to the

theory of lipotoxicity in DM, the long-term increase in free fatty

acids results in cell and tissue toxicity, which can cause secretion

dysfunction of the pancreas or isolated islets. FFAs are donors of the

lipid structure of the cell membrane and prostaglandin synthesis.
FIGURE 7

Amino acid metabolism of T2DM.
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They are the intermediate products of fat metabolism and the main

source of energy for the body. Under normal physiological

conditions, the concentration is in a relative equilibrium state.

When pathological changes occur in the body, the balanced state

is destroyed, and the concentration in the body changes (83).

Excessive FFAs produce many free radicals and participate in

oxidative stress. Palmitic acid is the most abundant free fatty acid

in the body. High concentrations of palmitic acid can increase

endothelial cell apoptosis (84, 85) and ROS (86).

5.1.3 T2DK
For patients with DM with ketosis or ketoacidosis and other

complications, the discovery of its differential metabolites can

provide diagnostic features for clinical diagnosis. In patients with

diabetes, insulin deficiency leads to increased gluconeogenesis

(hepatic glucose production), accompanied by impaired glucose

uptake and use in peripheral tissues, leading to hyperglycemia. The

increase in gluconeogenesis is due to the increased utilization of

gluconeogenic precursors, such as lactic acid, glycerol, and several

gluconeogenic amino acids, including alanine, glycine, and serine. In

addition, low insulin concentrations lead to muscle protein catabolism,

releasing gluconeogenic and ketogenic amino acids (e.g., tyrosine,

isoleucine, and phenylalanine), or pure ketogenic amino acids (e.g.,

lysine and leucine), which lead to an increase in ketone bodies and

excessive accumulation in the body, causing “acidosis” (87).

5.1.4 T2DPN
The differential metabolites of diabetic peripheral neuropathy

included amino acids such as glycine and taurine and fatty acids such

as b-hydroxymyristic acid and linoleic acid (FFA), which indicated that

amino acid metabolism and lipid metabolismmight be abnormal in the

pathogenesis of DPN. Gou Xiaojun (88) found that this compound is

one of the raw materials for glutathione synthesis (GSH). GSH can

scavenge oxygen free radicals, reduce the occurrence and development

of neuropathic pain caused by ROS, and may have an analgesic effect in

the neuropathic pain model; taurine is also an antioxidant and can

directly inhibit the production of ROS to reduce oxidative stress in

patients with diabetes by upregulating the antioxidant defense system in

cells. Oxidative stress is the pathogenesis of diabetes mellitus and its

associated complications. It can damage nervemicrocirculation through

microvascular damage, resulting in decreased blood perfusion and

DPN. Due to the relative or absolute deficiency of insulin, long-term

hyperglycemia further leads to dyslipidemia and excessive FFA (89),

which can cause ischemia and hypoxia of nerve tissue, and in vitro

experiments have shown that FFA directly inhibits the synthesis or

release of neuropeptides, whichmay exert a direct cytotoxic effect on the

nervous system, and can participate in the oxidative stress process of the

human body by generating many free radicals, mediating neuropathy.

5.1.5 T2DR
DR is the most common ocular complication of DM. The organic

acid differential metabolites are, for example, lactic acid, gluconic acid,

and fatty acid, which are converted into pyruvate and then oxidized to

acetyl coenzyme A, which enters the TCA cycle. Lactic acid is the end

product of glycolysis and is a special material for aerobic metabolism.
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High glucose-induced mitochondrial dysfunction leads to cell division

and reduced respiratory capacity. Therefore, the decrease in lactate

levels may be related to mitochondrial damage and accompanied by

decreased energy metabolism. Studies have shown that mannose and

erythritol can be used as biomarkers of DM and IFG andMannose and

erythritol can also be used as potential clinical metabolomic markers of

T2DR. Amino acids (e.g., threonine and glutamine) are decomposed

into oxaloacetic acid, a-ketoglutarate, or succinyl coenzyme A, which

are oxidized into CO2 and H2O in the TCA cycle and then oxidized

and phosphorylated to ATP. Studies have shown that hyperglycemia

and hypoxia exert additional effects on the accumulation of electrons

and protons in the intracellular free NADH pool, and the ratio of

NAD/NADH in the diabetic retina is significantly reduced. Therefore,

the changes in these amino acids may be due to the inhibition of the

TCA cycle and catabolism by high-level NADH/NAD+ in DR patients.

5.1.6 T2DN
DN is the main lethal factor in diabetes. In the summary results of

this study, the changes in BCAAs and fatty acids in patients with DN

are obvious. Elevated serum levels of BCAAs, such as valine, can

predict insulin resistance and diabetes. Insulin resistance in patients

with diabetes leads to T2DN, which increases the level of serumBCAAs

in patients with DN. However, with the development of DN, acidosis

may be caused by a decrease in renal function and glomerular filtration

rate, enhancing branched-chain amino acid catabolism and decreasing

its level. In addition, glutamine, the most abundant amino acid in the

human body, can improve insulin resistance as an important

intermediate of glucose metabolism and amino acid metabolism,

When the serum taurine level in patients with T2DN is lower than

the normal, taurine can inhibit renal local lipid peroxidation, and AGEs

formation and reduce high glucose-induced renal tubular injury.

IR and fatty acid metabolism affect each other. The disorder of

fatty acid metabolism can lead to excessive accumulation of free

fatty acids in the liver, skeletal muscle, and other parts, leading to or

aggravating insulin resistance, which may lead to diabetes. Insulin

resistance can also aggravate the metabolic disorder of fatty acids,

mainly through the influence of glucose metabolism to increase the

decomposition of fat metabolism, and a large amount of glucose and

free fatty acid deposition in the liver can synthesize many low-

density lipoproteins, which can lead to hyperlipidemia. Semba

conducted a plasma metabolomics study on 472 patients with an

average age of 70.7 years. The results showed that 16 types of

polyunsaturated fatty acids were the lipid metabolites associated

with abnormal glucose metabolism and insulin resistance in elderly

individuals, including various PC and LPC. In addition, in vitro

experiments confirmed that elevated levels of free fatty acids in

urine can cause tubulointerstitial damage in patients with DN, and

palmitic acid can induce apoptosis of renal tubular epithelial cells.
5.2 Temporality analysis of
differential metabolites

According to the summary results of the aforementioned

differential metabolites, Supplementary Table S2 and Figure 1
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show that the most frequently occurring metabolites are amino

acids, carbohydrates, and lipid metabolites. The discussion and

analysis in this paper are based on the changes in patients with

symptoms emerging from PM to various diabetic complications,

and the diabetic complications that have occurred before the

development of diabetes are not discussed. Subsequently, the

horizontal development of detailed metabolites from light glucose

damage to severe glucose injury in acute and chronic complications

was analyzed as follows:

From PM to T2DM: LysoPC components were higher in the

PM stage compared with T2DM, and the amino acids also increased

during this period; additionally, the frequency of BCAAs was higher

than that of straight-chain amino acids, and phenylalanine had the

highest frequency. On the one hand, the increase in the frequency of

a-glucose indicates that the related research is increasing; on the

other hand, it is easy to detect and highly representative in the

T2DM stage.

From T2DM to T2DK: Because few patients have such acute

complications, few have been conducted studies on metabolic

biomarkers in T2DK. Notably, amino acids and glutamine are both

present in T2DM and appear frequently. Acetylcarnitine C2, a small

metabolic molecule in the body, plays a crucial role in cellular

respiration by removing acetyl groups from cells and facilitating

energy transfer. It acts as a carrier for fatty acids (FAs) to enter the

mitochondria, where ATP is produced during cellular respiration (90).

Acetylcarnitine is an ester of acetyl coenzyme A (acetyl-CoA) and

carnitine. It facilitates the transport of long-chain fatty acids into the

mitochondria for b-oxidation, which is crucial during periods of ketosis
when the body relies on fat as a primary energy source. In T2DK,

where insulin sensitivity is impaired, the ability to utilize glucose is

compromised, making fatty acid metabolism and the utilization of

ketone bodies increasingly important. Acetylcarnitine helps bridge the

gap in energy metabolism by enhancing fatty acid oxidation (91).

Moreover, acetylcarnitine C2 is the sole metabolite reduced in the

T2DK stage and elevated as quantified by MRM before the occurrence

of ketosis (92); thus, it may become the key marker of follow-

up research.

From T2DM to T2DPN: Few studies have investigated the

different metabolites in the T2DPN stage, which may be due to the

following: the occurrence of neuropathy with other complications,

that there are few patients with simple peripheral neuropathy, and

that the evaluation index of neuropathy is relatively complex. The

highest frequency of components in diabetes was amino acids, and

in T2DPN, amino acid types decreased. Compared with the 373

metabolites of T2DPN, there were eight different metabolites

coincident, and the other 11 were unique to T2DPN: 3-Urea

propionic acid, benzyl alcohol, boric acid, d-xylose, hexuronic

acid, maleimide, nicotinic acid, octoic acid, phenylethanol,

pyroglutamate, and b-hydroxymyristic acid.

From T2DM to T2DR: Compared with the 32 components in

T2DR, the organic acids, organic nitrogen compounds, and

phosphatidylcholine increased in the T2DM stage, including

acetic acid, hydroxybutyric acid, glutathione, and its sulfide and

three phosphatidylcholines (PC[14:0/22:5(4Z, 7Z, 10Z, 13Z, 16Z)],

PC[14:0/20:2(11Z,14Z)], and PC[14:1(9Z)/22:2(13Z,16Z)]).
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From T2DM to T2DN: Compared with 127 differential

metabolites in T2DN, five differential metabolites (frequency ≥2)

of CIS agonic acid, cytidine, tiglyglycine, uridine, and xanthine were

exclusive to T2DN.

From PM to T2DM to T2DK, aminoacyl-tRNA biosynthesis.

Aminoacylation of transfer RNAs establishes the rules of the genetic

code. The reactions are catalyzed by an ancient group of 20 enzymes

(one for each amino acid) known as aminoacyl-tRNA synthetases

(AARSs). The etiology of specific diseases is related to the specific

AARS, that is, the heritable mutation in the tRNA synthetase gene,

which has a causal relationship with disease. Both the dominant and

invisible pathogenic mutations were annotated. For example,

intracellular synthetases form multiple protein complexes with each

other or with other regulatory factors, controlling multiple signaling

pathways. Mitochondrial interleukin tRNA synthetase (Mito LRS),

encoded by the nuclear genome, stimulates the accumulation of

mitochondrial tRNA mutations by inducing oxidative stress in

hyperglycemia and hyperinsulinemia during the development of

DM. Nevertheless, a single nucleotide polymorphism of Mito LRS

was also found in patients with type 2 diabetes, resulting in an amino

acid substitution (h324q) (93); however, h324qmito LRS has normal

aminoacylation and editing activity; thus, the causal relationship

between mito-lrsh324q mutation and type 2 diabetes is not clear.

Mutations in mitochondrial tRNAs (the substrate of AARS) have

similar causal relationships with many diseases, including diabetes

mellitus (94, 95). In addition, AIMP 1 regulated glucose homeostasis

(96). AIMP 1 gene deletion in mice leads to a hypoglycemic

phenotype, but whether this pathological phenotype is also

applicable to humans has not been confirmed.

From PM to T2DM to T2DPN, taurine and hypotaurine

metabolism. Taurine is a sulfur-containing b-amino acid that can

significantly promote the dendritic differentiation and proliferation of

human brain nerve cells, increase the total number of human brain

nerve cells, promote the synthesis of nucleic acids, accelerate the

formation of neural networks, and prolong the survival time of nerve

cells. In mammals, taurine is high in the brain, retina, myocardium,

liver, kidney, and muscle, as well as in platelets, lymphocytes, and

cerebrospinal fluid (97). In hyperglycemia, an increase in intracellular

glucose leads to the production of sorbitol by aldose reductase.

Organic osmotic pressure (sorbitol, inositol, and taurine) controls

cell volume according to changes in extracellular osmotic pressure.

Stevens found that inositol and taurine decreased in STZ

(Streptozotocin)-induced diabetic rats, but the use of aldose

reductase inhibitors helped avoid this situation, suggesting that the

accumulation of sorbitol led to a decrease in other organic osmolality

(98). Notably, cell exposure to high glucose reduces the expression of

taurine transporter; however, the use of antioxidants or aldose

reductase inhibitors in high glucose leads to the recovery of taurine

transporter expression (99, 100), indicating the importance of sorbitol

in intracellular taurine concentration. Taurine supplementation has

been used to treat neurologic impairment, such as hyperalgesia

and nerve conduction defects, and insufficient nerve blood flow in

STZ diabetic models (101–103). Taurine attenuates neuropathy by

inhibiting the expression of NF-kB and increasing the expression of

GLUT3, GLUT1, HO-1, and Nrf2 in STZ-induced diabetic rats (104).
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From PM to T2DM to T2DR, glutathione metabolism.

Glutathione is a major antioxidant in all life forms and an

indicator of oxidative stress in cells. NADPH is used as an

electron donor to reduce glutathione. When the NADPH/NAD+

ratio is decreased, the ratio of GSH reduced to oxidized is also

reduced, weakening the antioxidant capacity of the body and

deepening the vascular injury (105). Reduced glutathione is

metabolized in various ways, leading to the biosynthesis of amino

acids, such as sulfhydryl acid, glutamic acid, glycine, and cysteine.

Van Hove Inge et al. (106) performed single-cell transcriptome

analysis of neurons, glial cells, and inflammatory cells in a DR

Akimba rat model. The results showed that glial cells play a key role

in retinal neurodegenerative diseases. The differential gene string

analysis of macroglia showed that glutathione metabolism regulated

astrocytes; subsequently, through the subcellular aggregation of glial

cells, class analysis focuses on glutathione metabolism and the

specific growth factor pathway.

From PM to T2DM to T2DN. Through the joint analysis of

metabolomics and proteomics, Wang et al. (107). The 14

metabolites with significant differences related to insulin

resistance were obtained through the joint analysis of

metabolomics and proteomics. Bioinformatics annotation analysis

showed that phenylalanine, tyrosine, and tryptophan biosynthesis

and phenylalanine metabolism pathways were the two most

significant pathways in the process of T2DM. Phenylalanine,

tyrosine, and tryptophan are aromatic amino acids (AAAS).

Tyrosine is most closely related to the occurrence and

development of DN. A project published in Diabetes in 2015

explored the correlation between amino acid levels in different

ethnic groups and the risk of diabetes. Therefore, higher levels of

BCAAs and AAAS, especially tyrosine, can increase the risk of

diabetes and is expected to become a new mechanism and potential

therapeutic target for diabetes in South Asia. In addition, tyrosine-

derived phenyl sulfate (PS) can lead to albuminuria in patients with

DN. Reducing tyrosine intake in patients with diabetes may reduce

PS production. Inhibition of tyrosine in the PS enzyme tyrosine

phenol lyase can also protect against T2DN (108).
5.3 Limitations

As a clinical diagnostic index, differential metabolites have the

advantages of easy detection, high sensitivity, and accurate reflection

of physiological and pathological characteristics (109, 110).

According to the diagnostic criteria for diabetes published by the

World Health Organization, blood glucose content was used as the

clinical diagnostic criteria for T2DM. The review results show that

more than 18 papers have detected differential metabolites by using

the clinical metabolomics technology a-glucose and b-glucose. In
addition, urea, a clinical evaluation index of renal function, has also

been detected in serum samples in the clinical metabolomics of DN.

Therefore, the differential metabolites of clinical metabolomics have

great development space for clinical diagnosis. However, this study

has limitations:

First, there is a certain gap between the differential metabolites

reviewed in this paper and the clinical diagnostic indicators to be
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examined, which requires further verification. Basic metabolomics

research often involves the measurement of hundreds of

metabolites, an approach that is neither practical nor cost-

effective for large-scale implementation. Furthermore, the

specialized laboratory equipment required for metabolomics

analysis is both expensive and not readily accessible in clinical

settings. Consequently, only a limited subset of clinically relevant

metabolites, which can be evaluated using standard equipment or

assays, should be integrated into routine clinical practice (111).

While metabolomics provides insights into metabolites, its ability to

fully reveal the mechanisms of type 2 diabetes is limited, and in

order to address this issue, omics and systems biology techniques

need to be combined with traditional approaches (14, 112). Finally,

indicators for clinical diagnosis must have certain specificities and

sensitivities. Therefore, further research on the obtained differential

metabolites is necessary, such as using targeted metabolomics for

clinical large cohort validation, and the specificity and sensitivity of

target metabolites were calculated.

In addition, this paper summarizes the database of differential

metabolites through the research literature. Thus, there may be bias

in different clinical research stages, and there are many types of bias

due to the merger process, specifically, selection bias, information

bias, and confounding bias.

The first is selection bias, and the first is the admission rate bias.

Due to the differences in population and sample size in the literature

integration, for example, there is a gap in the research results of

T2DM between Tianjin Fourth Central Hospital and the pathology

department of Pittsburgh University Medical School in Pittsburgh,

Pennsylvania, due to the differences in living habits, environmental

factors, and course changes of the included samples. Nevertheless,

there was a distinct difference in the number and type of differential

metabolites among the various sample types. For instance, the

quantity of serum and plasma samples was the highest, and only

five metabolites were detected in the aqueous humor. In addition,

there was migration bias: patients with T2DM were compared with

the blank group, but the results of this group were compared with

those of the T2DR group in another study.

The second factor is information bias. In clinical research, there

can be information errors or omissions of research objects. There is

a tendency for some indicators in the research of investigators in

clinical diagnosis. By expanding the scope of data collection,

researchers and research objects can be distracted, and the bias

caused by the loss of objective data or the lack of measurement tools

and methods can be reduced.

The third factor is confounding bias, that is, the influence of a

factor related to both the disease and the factor studied, which

conceals or exaggerates the strength of the association between the

exposure studied and the disease. In the presence of DM and its

complications, the highest level of glucose is detected in metabolite

research. However, this phenomenon does not indicate a weak

correlation between blood glucose and T2DM. If this is ignored,

misleading conclusions may be obtained, and the sensitivity and

detection conditions of the instrument detection may be different.

Then, for some complications of diabetes, such as T2DPN and

T2DK, the included literature is comparatively less than the other

complications, and the metabonomic profile analysis results are not
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generally representative. Therefore, the differential metabolites

reviewed in this paper advance the understanding of the

mechanism of diabetes and its complications and provide a

reference for the discovery of biomarkers and treatment methods.

To verify the clinical diagnosis, a large team conducting multicenter

targeted studies is necessary.

Additionally, a significant limitation in the practical application

of clinical metabolomics is the variability in metabolomics analysis

results across different populations and platforms. This variability

substantially impacts the reproducibility and generalizability of

research findings. Firstly, the serum metabolome varies

significantly among populations based on region, gender, and age,

indicating that a one-size-fits-all reference standard cannot be

simply applied for disease diagnosis and biomarker screening

using metabolomics. Secondly, different analytical platforms, such

as GC-MS and LC-MS, produce varying spectra for the same

metabolite due to differences in detection principles and

conditions, increasing the complexity of metabolite identification

and affecting the accuracy and comparability of research results.

Moreover, pre-analytical factors, including sample storage and

preparation, can also influence the metabolic profile, further

contributing to result inconsistencies. Therefore, to enhance the

reliability and practicality of metabolomics in T2DM research,

greater emphasis should be placed on rigorous experimental

design, including the selection of appropriate samples, platforms,

and data analysis methods, as well as the establishment of

standardized operating procedures and data sharing strategies.

These measures will help reduce inter-study variability and

improve the reproducibility and generalizability of results.
6 Conclusion and prospects

A total of 85 metabolomics studies in clinical practice on T2DM

and its complications were included from five literature databases.

The types and frequency, time sequence changes, sample types, and

detection methods for differential metabolites were analyzed and

studied. A total of 589 differential metabolites were found in six

stages, ranging from PM to T2DN. The highest frequency of T2DM

was 372, the lowest frequency of T2DK was 7, and the highest

frequency of BCAAs was found in the PM phase, including BCAAs

and AAAS in the T2DM stage; 7 amino acids and their derivatives

in the T2DK phase; organic acids in T2DPN and T2DR stages;

organic ac ids and amino ac ids in the T2DN stage .

Glycophorophospholipids were the most frequently used

differential metabolite types, and UPLC-Q-TOF/MS was the most

commonly used detection technology in clinical metabolomics.

Serum and plasma samples were the most frequently studied

samples. The dominant metabolite types in the disease

stratification of T2DM are various, and amino acids,

phosphatidylcholine, and organic acids are the common types.

Furthermore, the limited availability of data on T2DK and

T2DPN presents numerous challenges in conducting robust

research. These complications are understudied due to their

relative infrequency or complex metabolic profiles. This highlights
Frontiers in Endocrinology 14
the critical need for more focused studies to elucidate metabolomic

changes in T2DK and T2DPN in T2DM. Future research should

aim to recruit larger, more diverse patient cohorts and involve

collaborative efforts to develop targeted biomarkers and therapies,

thereby enhancing patient care.

Clinical metabolomics has the potential to identify novel

biomarkers for early diagnosis, risk assessment, and treatment

monitoring in T2DM and its complications. For instance, detecting

metabolites associated with diabetic complications can facilitate timely

interventions. Metabolomic data can also inform personalized

treatments by elucidating individual metabolic responses. Integrating

metabolomics into clinical decision-making can optimize therapeutic

strategies, leading to improved glycemic control and reduced

complication risks. Future research should focus on clinically

validating these biomarkers and assessing their impact on patient

outcomes through rigorous studies and trials. In addition, clinical

metabolomics holds significant potential for the clinical translation of

T2DM and its complications, but practical barriers exist. Standardizing

metabolomic protocols is essential to mitigate variability in sample

collection, processing, and analysis, which can lead to inconsistent

findings across studies. Additionally, the high cost of advanced mass

spectrometry and data processing software poses a significant barrier to

clinical adoption. Overcoming these challenges by establishing robust

standardized protocols and developing more cost-effective technologies

will facilitate the integration of metabolomics into routine clinical

workflows, thereby enhancing the diagnosis and management of

T2DM and its complications.

Clinical metabolomics is the application of metabolomics in

clinical practice. By comprehensively analyzing the characteristics

of metabolomics in distinct stages and combining them with

pattern recognition technology, we obtained potential biomarkers

related to the occurrence, development, and outcome of diseases

and determined the relationship between health and disease to

provide the basis for clinical intervention and master clinical

detection. After the types and frequencies of different metabolites

are obtained from the samples, and the changes over time in distinct

stages of diabetes and its complications are assessed, a quantitative

verification study of differential metabolites in a specific period can

be conducted, the correlation between the differential metabolites

and clinical indicators can be studied, and whether the substance

can be used as a clinical diagnostic marker for sensitivity and

specificity can be determined. If the sample capacity can be

expanded, the prevention and treatment of T2DM will make a

great breakthrough in this prospective study.

The future research directions for clinical metabolomics in

T2DM encompass identifying biomarkers for early diagnosis and

risk prediction, exploring the pathogenesis of the disease,

investigating biomarkers associated with complications, and

evaluating drug mechanisms and efficacy. In terms of clinical

applications, metabolomics can enhance diagnostic accuracy by

integrating traditional indicators; facilitate personalized treatment

plans based on patients’ metabolic profiles to optimize drug

selection; monitor disease progression and assess therapeutic

outcomes; and support preventive health management by

intervening in high-risk populations.
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