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Effects of systemic oxytocin and
beta‐3 receptor agonist (CL
316243) treatment on body
weight and adiposity in male
diet‐induced obese rats
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Previous studies have implicated hindbrain oxytocin (OT) receptors in the control of

food intake and brown adipose tissue (BAT) thermogenesis. We recently

demonstrated that hindbrain [fourth ventricle (4V)] administration of oxytocin (OT)

could be used as an adjunct to drugs that directly target beta-3 adrenergic receptors

(b3-AR) to elicit weight loss in diet-induced obese (DIO) rodents. What remains

unclear is whether systemic OT can be used as an adjunct with the b3-AR agonist, CL

316243, to increase BAT thermogenesis and elicit weight loss in DIO rats. We

hypothesized that systemic OT and b3-AR agonist (CL 316243) treatment would

produce an additive effect to reduce body weight and adiposity in DIO rats by

decreasing food intake and stimulating BAT thermogenesis. To test this hypothesis,

we determined the effects of systemic (subcutaneous) infusions of OT (50 nmol/day)

or vehicle (VEH) when combined with daily systemic (intraperitoneal) injections of CL

316243 (0.5mg/kg) or VEHon bodyweight, adiposity, food intake and brown adipose

tissue temperature (TIBAT). OT and CL 316243 monotherapy decreased body weight

by 8.0 ± 0.9% (P<0.05) and 8.6 ± 0.6% (P<0.05), respectively, but OT in combination

with CL 316243 produced more substantial weight loss (14.9 ± 1.0%; P<0.05)

compared to either treatment alone. These effects were associated with decreased

adiposity, energy intake and elevated TIBAT during the treatment period. The findings

from the current study suggest that the effects of systemicOT andCL 316243 to elicit

weight loss are additive and appear to be driven primarily by OT-elicited changes in

food intake and CL 316243-elicited increases in BAT thermogenesis.
KEYWORDS

obesity, brown adipose tissue (BAT), white adipose tissue (WAT), food intake,
thermogenesis, oxytocin
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Introduction

The obesity epidemic and its associated complications increase

the risk for cardiovascular disease (CVD), hypertension, cancer,

type 2 diabetes, and COVID-19 (1, 2). Many of the monotherapies

to treat obesity are of limited effectiveness, associated with adverse

and/or unwanted side effects (i.e. diarrhea, nausea, vomiting, sleep

disturbance and depression) and/or are poorly tolerated.

Improvements have been made in monotherapies to treat obesity,

particularly within the family of drugs that target the glucagon-like

peptide-1 receptor (GLP-1R). Although the FDA recently approved

the use of the long-acting and highly effective GLP-1R agonist,

semaglutide (3), it can also be associated with mild to moderate

gastrointestinal (GI) side effects (3, 4), underscoring the need for

continued optimization of existing treatments.

Recent studies suggest that combination therapy (co-

administration of different compounds) and monomeric therapy

(dual or triple agonists in single molecule) are more effective than

monotherapy for prolonged weight loss (5, 6). Marked weight loss has

been reported in long-term (20 weeks to ≥ 1 year) clinical studies in

humans treated with the amylin analogue, cagrilintide, and

semaglutide (≈ 15.6 to 17.1% of initial body weight (7, 8)) and the

FDA-approved drug, Qsymia (topiramate + phentermine) (≈ 10.9%

of initial body weight (9). Alternatively, the monomeric compound,

tirzepatide (Zepbound™), targets both GLP-1R and glucose-

dependent insulinotropic polypeptide receptor (GIPR), and was

recently reported to elicit 20.9% and 25.3% weight loss in humans

with obesity over 72- (10) and 88-week trials (11). Similarly, a

recently described drug conjugate, GLP-1-MK-801, which serves as

both a GLP-1R agonist and an NMDA receptor antagonist, resulted

in 23.2% weight loss following a 14-day treatment regimen in DIO

mice (12). In addition, retatrutide, a triple-agonist that targets GIPR,

glucagon receptors (GCGR) and GLP-1R was reported to reduce

body weight by 24.2% over a 48-week trial (13). Despite the

considerable improvements that have been made with respect to

weight loss, these treatments are still associated with adverse

gastrointestinal side effects (10), leading, in some cases, to the

discontinuation of the drug in up to 7.1% of participants (10).

While the hypothalamic neuropeptide, oxytocin (OT) is largely

associated with reproductive behavior (14), recent studies implicate

an important role for OT in the regulation of body weight (15–18).

Studies to date indicate that OT elicits weight loss, in part, by

reducing food intake and increasing lipolysis (19–21) and energy

expenditure (19, 22–24). While OT is effective at evoking prolonged

weight loss in DIO rodents (20, 23–29) and nonhuman primates

(19), its overall effectiveness as a monotherapy to treat obesity is

relatively modest following 4-8 week treatments in DIO mice

(≈4.9%) (29), rats (≈8.7%) (29) and rhesus monkeys (≈3.3%) (19)

thus making it more suited as a combination therapy with other

drugs that work through other mechanisms. Head and colleagues

recently reported that systemic OT and the opioid antagonist,

naltrexone, resulted in an enhanced reduction of high-fat, high-

sugar meal in rats (30). Recently, we found that hindbrain (fourth

ventricle; 4V) OT treatment in combination with systemic

treatment with CL 316243, a drug that directly targets beta-3

adrenergic receptors (b3-AR) to increase brown adipose tissue
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(BAT) thermogenesis (29, 31–34), resulted in greater weight loss

(15.5 ± 1.2% weight loss) than either OT (7.8 ± 1.3% weight loss) or

CL 316243 (9.1 ± 2.1% weight loss) alone (35).

The goal of the current study aimed to determine whether

systemic OT treatment could be used as an adjunct with the b3-
AR agonist, CL 316243, to increase BAT thermogenesis and elicit

weight loss in DIO rats when using a more translational route of

administration for OT delivery. We hypothesized that systemic OT

and b3-AR agonist (CL 316243) treatment would produce an

additive effect to reduce body weight and adiposity in DIO rats by

decreasing food intake and stimulating BAT thermogenesis. To test

this, we determined the effects of systemic (subcutaneous) infusions

of OT (50 nmol/day) or vehicle (VEH) when combined with daily

systemic (intraperitoneal (IP)) injections of CL 316243 (0.5 mg/kg)

or VEH on body weight, adiposity, food intake, brown adipose tissue

temperature (TIBAT) and thermogenic gene expression.

Methods

Animals

Adult male Long-Evans rats [~ 8-9 weeks old, 292-349 grams at

start of high fat dietary intervention/~ 8-10 months old, 526-929 g

body weight at study onset] were initially obtained from Envigo

(Indianapolis, IN) and maintained for at least 4 months on a high

fat diet (HFD) prior to study onset. All animals were housed

individually in Plexiglas cages in a temperature-controlled room

(22 ± 2°C) under a 12:12-h light-dark cycle. All rats were maintained

on a 1 a.m./1 p.m. light cycle (lights on at 1 a.m./lights off at 1 p.m.).

Rats had ad libitum access to water and a HFD providing 60% kcal

from fat (approximately 6.8% kcal from sucrose and 8.9% of the diet

from sucrose) (D12492; Research Diets, Inc., New Brunswick, NJ). The

research protocols were approved both by the Institutional Animal

Care and Use Committee of the Veterans Affairs Puget Sound Health

Care System (VAPSHCS) and the University of Washington in

accordance with NIH’s Guide for the Care and Use of Laboratory

Animals (NAS, 2011) (36). We have used the ARRIVE Essential 10

checklist for reporting animal studies.
Drug preparation

Fresh solutions of OT acetate salt (Bachem Americas, Inc.,

Torrance, CA) were solubilized in sterile water. Each minipump was

placed into a test tube containing sterile 0.9% saline and then into a

water bath at 37° C for approximately 40 hours prior to minipump

implantation based on manufacturer’s recommended priming

instructions for ALZET® model 2004 minipumps. CL 316243

(Tocris/Bio-Techne Corporation, Minneapolis, MN) was

solubilized in sterile water each day of each experiment. CL

316243 was used in place of the FDA-approved b3-AR agonist,

Mirabegron, due to the well-established effects of CL 316243 on

lipolysis in isolated white adipocytes cells (37) and on BAT

thermogenesis and energy expenditure in rodent models in our

lab (35) and other labs (33, 34, 38, 39). In contrast to CL 316243,

Mirabegron is not water soluble.
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Subcutaneous implantations of
osmotic minipumps

The approach for implanting minipumps has been described

previously (35). Briefly, animals received a subcutaneous

implantation of osmotic minipump (model 2004, DURECT

Corporation Cupertino, CA) one week prior to CL 316243

treatment as previously described (35). Animals were treated once

with the analgesic ketoprofen (2 mg/kg; Fort Dodge Animal Health)

at the completion of the minipump implantations.
Implantation of implantable telemetry
devices (PDT-4000 HR E-Mitter or PDT-
4000) into the abdominal cavity

Animals were anesthetized with isoflurane and subsequently

received implantations of a sterile PDT-4000 HR E-Mitter (26 mm

long × 8 mm wide; Starr Life Sciences Company) or PDT-4000 E-

Mitter (23mm long × 8mmwide) into the intraperitoneal cavity. The

abdominal opening was closed with 4-0 Vicryl absorbable suture and

the skin was closed with 4-0 monofilament nonabsorbable suture.

Vetbond glue was used to seal the wound and bind any tissue together

between the sutures. Animals were treated with the analgesic

ketoprofen (2 mg/kg; Fort Dodge Animal Health; once/day for 3

consecutive days, including day of surgery) and the antibiotic

enrofloxacin (5 mg/kg; Bayer Healthcare LLC., Animal Health

Division Shawnee Mission, KS, United States; once per day for 4

consecutive days, including day of surgery) at the completion of the

intra-abdominal implantations. Sutures were removed within two

weeks after the PDT-4000 HR and PDT-4000 E-Mitter implantation.

All PDT-4000 HR and PDT-4000 E-Mitters were confirmed to have

remained within the abdominal cavity at the conclusion of the study.
Implantation of temperature transponders
underneath interscapular brown
adipose tissue

The approach for implanting temperature transponders has been

described previously (35). Rats were anesthetized with isoflurane prior

to having the dorsal surface along the upper midline of the back shaved

and scrubbed with 70% ethanol followed by betadine swabs as

previously described (29). Following an incision (1 “) along the

midline of the interscapular area a temperature transponder (14 mm

long/2 mm wide) (HTEC IPTT-300; Bio Medic Data Systems, Inc.,

Seaford, DE) was implanted underneath the left IBAT pad as

previously described (29, 40, 41). The transponder was subsequently

secured in place by suturing it to the brown fat pad with sterile silk

suture. The interscapular incision was closed with Nylon sutures (5-0),

which were removed in awake animals approximately 10-14 days post-

surgery. Animals were treated once with the analgesic ketoprofen (2

mg/kg; Fort Dodge Animal Health) at the completion of the

temperature transponder implantations. HTEC IPTT-300

transponders were used in place of IPTT-300 transponders to

enhance accuracy in our measurements as previously described (29).
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Acute IP injections and measurements
of TIBAT

CL 316243 (or saline vehicle; 0.1 ml/kg injection volume) was

administered immediately prior to the start of the dark cycle

following 4 hours of food deprivation. Animals remained without

access to food for an additional 1 (Study 3) or 4 h (Studies 1-2)

during the course of the TIBAT measurements. The purpose of the

fast was to minimize the potential confound of diet-induced

thermogenesis (42) on TIBAT, which was a key measurement in

our studies. A handheld reader (DAS-8007-IUS Reader System; Bio

Medic Data Systems, Inc.) was used to collect measurements of

TIBAT. Measurements were taken under dimmed red light.
Body composition

Determinations of lean body mass and fat mass were made on

un-anesthetized rats by quantitative magnetic resonance using an

EchoMRI 4-in-1-700™ instrument (Echo Medical Systems,

Houston, TX) at the VAPSHCS Rodent Metabolic Phenotyping

Core. Measurements were taken prior to subcutaneous minipump

implantations as well as at the end of the infusion period.
Study protocols

Study 1: Determine the dose-response effects of
systemic CL 316243 on body weight, energy
Intake, TIBAT, core temperature and gross motor
activity in male DIO rats

Rats (N=10 at study onset) (~ 9mo old; 517-823 g at start of study)

were fed ad libitum and maintained on HFD for approximately 8

months prior to being implanted with temperature transponders

(HTEC IPTT-300) underneath the left IBAT depot. Following a 2-

week period, animals were subsequently implanted with a PDT-4000

HR E-Mitter telemetry device into the abdominal cavity. Following a 3-

week recovery period, CL 316243 or vehicle was administered once per

animal at approximately 1-week intervals so that each animal served as

its own control. TIBAT was measured daily at baseline (-4 h; 9:00 a.m.),

immediately prior to IP injections (0 h; 12:45-1:00 p.m.), and at 0.25,

0.5, 0.75, 1, 20 and 24-h post-injection. The doses of CL 316243 (0.01,

0.1, 0.5 and 1 mg/kg) were selected based on doses of CL 316243 found

to be effective at increasing TIBAT when administered intraperitoneally

(35) into DIO rats.
Changes of core temperature and gross
motor activity

The protocol for measuring core temperature and gross motor

activity has been described previously (43). Briefly, core

temperature (surrogate marker of energy expenditure) and gross

motor activity were recorded non-invasively in unanesthetized rats

in the home cage every 30 sec throughout the study.
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Study 2: Determine the dose-response
effects of systemic infusion of OT (16 and
50 nmol/day) on body weight, adiposity,
energy intake and kaolin intake in male
DIO rats

Rats (N=20 at study onset) (~ 10.5 mo old; 577-962 g at start of

study) were fed ad libitum and maintained on HFD for

approximately 8.5 months prior to prior to being implanted with

a temperature transponder underneath the left IBAT depot.

Following a 2-week period, animals were matched for both body

weight and adiposity prior to being implanted with minipumps.

Rats were subsequently maintained on a daily 4-h fast and received

minipumps to infuse vehicle or OT (16 or 50 nmol/day) over 29

days. These doses were selected based on a dose of OT found to be

effective at reducing body weight or body weight gain when

administered subcutaneously (19, 20) or into the 4V (44) of

HFD-fed rats. Daily food intake and body weight were collected

across the 29-day infusion period.
Study 3: Effect of chronic systemic OT
infusions (50 nmol/day) and systemic beta-
3 receptor agonist (CL 316243)
administration (0.5 mg/kg) on body weight,
body adiposity, energy intake and TIBAT in
male DIO rats

Rats (N=43 at study onset) (~ 10 mo old; 526-929 g at start of

study) were fed ad libitum and maintained on HFD for

approximately 9 months prior to receiving implantations of

temperature transponders underneath the left IBAT pad.

Following a 1-week recovery period, a subset of animals (N=15)

was implanted with a PDT-4000 E-Mitter telemetry device into the

abdominal cavity or received sham implantations (N=10).

Following up to a 1-month recovery period, animals were

matched for both body weight and adiposity and were

subsequently implanted with minipumps to infuse vehicle or OT

(50 nmol/day) over 29 days, respectively. After having matched

animals for OT-elicited reductions in body weight (infusion day 7),

DIO rats subsequently received single daily IP injections of VEH or

CL 316243 (0.5 mg/kg). We selected this dose of CL 316243 because

it reduced energy intake and body weight gain and elevated both

TIBAT and core temperature and (Study 1). Importantly, we found

that this dose of CL 3162243 and CNS administration of OT were

found to produce an additive effect on weight loss in DIO rats (35).

In addition, we selected the dose of OT (50 nmol/day) because it

produced comparable weight loss to that of OT alone in Study 1.

TIBAT was measured daily at baseline (-4 h; 9:00 a.m.), immediately

prior to IP injections (0 h; 12:45-1:00 p.m.), and at 0.25, 0.5, 0.75, 1,

20 and 24-h post-injection. In addition, daily food intake and body

weight were collected across the 29-day infusion period. Data from

animals that received the single dose of CL-316243 were analyzed

over the 29-day infusion period.
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Kaolin measurements

Kaolin (K50001, Research Diets, Inc.) intake (g) was assessed

over 29 days following implantation of minipumps containing

vehicle (saline) or OT (16 or 50 nmol/day). Placement of kaolin

and high fat diet was reversed every other day within each

treatment condition.
Adipose tissue processing for adipocyte
size and UCP-1 analysis

Inguinal white adipose tissue (IWAT) and epididymal white

adipose tissue (EWAT) depots were collected at the end of the

infusion period in rats from Study 3. Rats from each group were

euthanized following a 3-h fast. Rats were euthanized with

intraperitoneal injections of ketamine cocktail [ketamine

hydrochloride (214.3 mg/kg), xylazine (10.71 mg/kg) and

acepromazine (3.3 mg/kg) in an injection volume up to 2 mL/rat]

and transcardially exsanguinated with PBS followed by perfusion

with 4% paraformaldehyde in 0.1 M PBS. Adipose tissue (IBAT,

IWAT, and EWAT) was dissected and placed in 4%

paraformaldehyde-PBS for 24 h and then placed in 70% ethanol

(EtOH) prior to paraffin embedding. Sections (5 mm) sampled were

obtained using a rotary microtome, slide-mounted using a

floatation water bath (37°C), and baked for 30 min at 60°C to

give approximately 15-16 slides/fat depot with two sections/slide.
Adipocyte size analysis and
immunohistochemical staining of UCP-1

Adipocyte size analysis was performed on deparaffinized,

airdried, unstained and uncovered sections. Slightly underexposed

photographs of dry sectioned produced clear, highly contrasted

black and white images suitable for a built-in particle counting

method of ImageJ software (National Institutes of Health, Bethesda,

MD). Images were first converted to 16-bit files and then modified

and analyzed with a cell shape factor 0.35-1 (a shape factor of 0

represents a straight line and a shape factor of 1 indicates a circle)

(methods modified from (45)). Fixed (4% PFA), paraffin-embedded

adipose tissue was sectioned and stained with aprimary rabbit anti-

UCP-1 antibody (1:100; Abcam, Cambridge, MA (#ab10983/RRID:

AB_2241462)] as has been previously described in lean C57BL/6J

mice (46) and both lean and DIO C57BL/6 mice after having been

screened in both IBAT and IWAT of Ucp1+/- and Ucp1-/- mice (47).

Immunostaining specificity controls included omission of the

primary antibody and replacement of the primary antibody with

normal rabbit serum at the same dilution as the respective primary

antibody. Area quantification for UCP-1 staining was performed on

digital images of immunostained tissue sections using image

analysis software (Image Pro Plus software, Media Cybernetics,

Rockville, MD, USA). Slides were visualized using bright field on an

Olympus BX51 microscope (Olympus Corporation of the
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Americas; Center Valley, PA) and photographed using a Canon

EOS 5D SR DSLR (Canon U.S.A., Inc., Melville, NY) camera at

100X magnification. Values for each tissue within a treatment were

averaged to obtain the mean of the treatment group.
Blood collection

Blood was collected from 4-h (Study 1) or 6-h fasted rats

(Studies 2-3) within a 2-h window towards the end of the light

cycle (10:00 a.m.-12:00 p.m.) as previously described in DIO CD®

IGS rats and mice (25, 29). Animals from Study 3 were euthanized

at 2-h post-CL 316243 or VEH treatment. Treatment groups were

counterbalanced at time of euthanasia to avoid time of day bias.

Blood samples [up to 3 mL] were collected immediately prior to

transcardial perfusion by cardiac puncture in chilled K2 EDTA

Microtainer Tubes (Becton-Dickinson, Franklin Lakes, NJ). Whole

blood was centrifuged at 6,000 rpm for 1.5-min at 4°C; plasma was

removed, aliquoted and stored at −80°C for subsequent analysis.
Plasma hormone measurements

Plasma lep t in and insu l in were measured us ing

electrochemiluminescence detection [Meso Scale Discovery

(MSD®), Rockville, MD] using established procedures (29, 48).

Intra-assay coefficient of variation (CV) for leptin was 2.7% and

3.2% for insulin. The range of detectability for the leptin assay is

0.137-100 ng/mL and 0.069-50 ng/mL for insulin. Plasma fibroblast

growth factor-21 (FGF-21) (R&D Systems, Minneapolis, MN) and

irisin (AdipoGen, San Diego, CA) levels were determined by ELISA.

The intra-assay CV for FGF-21 and irisin were 4.5% and 8.4%,

respectively; the ranges of detectability were 31.3-2000 pg/mL

(FGF-21) and 0.078-5 mg/mL (irisin). Plasma adiponectin was

also measured using electrochemiluminescence detection Meso

Scale Discovery (MSD®), Rockville, MD] using established

procedures (29, 48). Intra-assay CV for adiponectin was 1.1%.

The range of detectability for the adiponectin assay is 2.8-178 ng/

mL. The data were normalized to historical values using a pooled

plasma quality control sample that was assayed in each plate.
Blood glucose and lipid measurements

Blood was collected for glucose measurements by tail vein nick

following a 4 (Study 1) or 6-h fast (Studies 2-3) and measured with a

glucometer using the AlphaTRAK 2 blood glucose monitoring

system (Abbott Laboratories, Abbott Park, IL) (49). Tail vein

glucose was measured at 2-h post-CL 316243 or VEH treatment

(Study 3). Total cholesterol (TC) [Fisher Diagnostics (Middletown,

VA)] and free fatty acids (FFAs) [Wako Chemicals USA, Inc.,

Richmond, VA)] were measured using an enzymatic-based kits.

Intra-assay CVs for TC and FFAs were 1.4 and 2.3%, respectively.

These assay procedures have been validated for rodents (50).
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Tissue collection for quantitative
real-time PCR

IBAT, EWAT and IWAT tissue was collected from 4 (Study 1) or

6-h fasted rats (Study 3). In addition, animals from Study 3 were

euthanized at 2-h post-CL 316243 (0.5 mg/kg) or VEH administration.

IBAT, EWAT and IWAT were collected within a 2-h window towards

the end of the light cycle (10:00 a.m.-12:00 p.m.) as previously

described in DIO CD® IGS/Long-Evans rats and C57BL/6J mice (25,

29, 44). Tissue was rapidly removed, wrapped in foil and frozen in

liquid N2. Samples were stored frozen at -80°C until analysis.
qPCR

RNA extracted from samples of IBAT, EWAT and IWAT

(Study 3) were analyzed using the RNeasy Lipid Mini Kit (Qiagen

Sciences Inc, Germantown, MD) followed by reverse transcription

into cDNA using a high-capacity cDNA archive kit (Applied

Biosystems, Foster City, CA). Quantitative analysis for relative

levels of mRNA in the RNA extracts was measured in duplicate

by qPCR on an Applied Biosystems 7500 Real-Time PCR system

(Thermo Fisher Scientific, Waltham, MA). The TaqMan® probe for

rat Nono (Rn01418995_g1), Ucp1 (catalog no. Rn00562126_m1),

Adrb1 (catalog no. Rn00824536_s1), Adrb3 (catalog no.

Rn01478698_g1), type 2 deiodinase (Dio2) (catalog no.

Rn00581867_m1), G-protein coupled receptor 120 (Gpr120;

catalog no. Rn01759772_m1), cell death-inducing DNA

fragmentation factor a-like effector A (Cidea; catalog no.

Rn04181355_m1), peroxisome proliferator-activated receptor

gamma coactivator 1a (Ppargc1a; catalog no. Rn00580241_m1)

and PR domain containing 16 (Prdm16 ; cata log no.

Rn01516224_m1) were acquired from Thermo Fisher Scientific

(Thermo Fisher Scientific Gene Expression Assay probes).

Relative amounts of target mRNA were determined using the

Comparative CT or 2-DDCT method (51) following adjustment for

the housekeeping gene, Nono. Specific mRNA levels of all genes of

interest were normalized to the cycle threshold value of Nono

mRNA in each sample and expressed as changes normalized to

controls (vehicle/vehicle treatment).
Verification of transponder and telemetry
device (E-Mitter) placement

All temperature transponders, PDT-4000 HR E-Mitters and

PDT-4000 E-Mitters were confirmed to have remained underneath

the IBAT depot and within the abdominal cavity, respectively, at the

conclusion of the study.
Statistical analyses

All results are expressed as means ± SE. Comparisons between

multiple groups involving between-subjects designs were made
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using one- or two-way ANOVA as appropriate, followed by a post-

hoc Fisher’s least significant difference test. Comparisons involving

within-subjects designs were made using a one-way repeated-

measures ANOVA followed by a post-hoc Fisher’s least significant

difference test. Analyses were performed using the statistical

program SYSTAT (Systat Software, Point Richmond, CA).

Differences were considered significant at P<0.05, 2-tailed.
Results

Study 1: Determine the dose-response
effects of acute systemic CL 316243 on
body weight, energy intake, TIBAT, core
temperature and gross motor activity in
male DIO rats

The goal of this study was to identify a dose range of the beta-3

receptor agonist, CL 316243, that resulted in weight loss, reduced

energy intake and an elevation in IBAT and core temperature in

DIO rats. The effective dosing data from this study was used to

select a dose range (0.01-1 mg/kg, IP) for use in the subsequent

chronic dose escalation study (Study 3). By design, DIO rats were

obese as determined by both body weight (782.1 ± 22.2 g) and

adiposity (288.4 ± 12.4 g fat mass; 36.8 ± 0.8% adiposity) after

maintenance on the HFD for approximately 8 months.
Body weight

As in our previous study in DIO rats (35), there was an overall

significant main effect of CL 316243 to reduce body weight gain at

20- [(F(4,36) = 4.347, P=0.006], 44- [(F(4,36) = 4.734, P=0.004], 68-

[(F(4,36) = 7.316, P<0.01], 92- [(F(4,36) = 3.858, P=0.010], 116- [(F

(4,36) = 8.203, P<0.01], 140- [(F(4,36) = 7.531, P<0.01], 164- [(F

(4,36) = 6.100, P=0.001] and 188-h post-injection [(F(4,36) =

5.129, P=0.002].

Specifically, the highest dose (1 mg/kg) reduced body weight

gain across all post-injection time intervals (P<0.05 vs VEH)

(Figure 1A). The second highest dose of CL 316243 (0.5 mg/kg)

also reduced weight gain at 20, 44, 68, 92, 1116, 140, and 164-h post-

injection. A lower dose of CL 31243 (0.1 mg/kg) was also effective at

reducing weight gain at 20-, 44-, 68-, 116, 140, 164 and 188-h post-

0injection. The lowest dose (0.01 mg/kg) reduced body weight gain

at 44-, 116-h post-injection and tended to reduce body weight gain

at 68-h post-injection.
Energy intake

As in our previous study in DIO rats (35), there was a significant

main effect of CL 316243 to reduce energy intake at 20-h [(F(4,36) =

17.431, P<0.01], 44-h [(F(4,36) = 3.688, P=0.013], 116-h [(F(4,36) =

3.094, P=0.027] and 140-h post-injection [(F(4,36) = 4.416,

P=0.007]. In addition, there was a near significant effect at 68-h

post-injection [(F(4,36) = 2.131, P=0.097].
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Specifically, CL 316243 reduced 20-h energy intake at 0.01, 0.1,

0.5 and 1 mg/kg (P<0.05) by 28.4 ± 5.5, 41.4 ± 5.4, 45.0 ± 6.0, and

56.5 ± 5.8% (Figure 1B). The higher doses (0.1, 0.5 and 1 mg/kg)

also reduced energy intake by 18.0 ± 11.1, 17.8 ± 12.1, and 37.8 ±

7.7% (P<0.05) at 44-h post-injection (P<0.05). Furthermore, the

highest dose (1 mg/kg) reduced energy intake by 25.7 ± 10.3, 13.0 ±

11.6, 22.8 ± 5.7 and 13.0 ± 11.6% at 68-, 92-, 116- and 140-h post-

injection (P<0.05).
TIBAT

As in our previous study in DIO rats (35), there was a significant

main effect of CL 316243 to elevate TIBAT at 0.25- [(F(4,36) =

22.639, P<0.01], 0.5- [(F(4,36) = 31.681, P<0.01], 0.75- [(F(4,36) =

19.777, P<0.01], 1- [(F(4,36) = 14.901, P<0.01], 1.25- [(F(4,36)

= 19.606, P<0.01], 1.5- [(F(4,36) = 12.651, P<0.01], 1.75- [(F(4,36) =

18.074, P<0.01], 2- [(F(4,36) = 25.583, P<0.01], 3- [(F(4,36) =

23.501, P<0.01], 4- [(F(4,36) = 30.853, P<0.01] and 16-h post-

injection [(F(4,36) = 13.296, P<0.01]. We also found a significant

effect of time [(F(10,450) = 99.883, P<0.01] and a significant

interactive effect between time and dose [(F(40,450) = 2.635,

P<0.01] across 11 time points over the 16-h measurement period.

Specifically, systemic injections of CL 316243 (0.01-1 mg/kg)

(Figure 1C) increased TIBAT at all time points between 0.25-h and 4-

h post-injection. The higher doses (0.1-1 mg/kg) also increased

TIBAT at 16-h post-injection (P<0.05).
Core temperature

There was a significant main effect of CL 316243 to elevate core

temperature at 2- [(F(4,28) = 5.833, P<0.01], 3- [(F(4,28) = 7.394,

P<0.01], 4- [(F(4,28) = 9.207, P<0.01], 5- [(F(4,28) = 3.534,

P=0.019], 14- [(F(4,28) = 4.497, P=0.006], 16- [(F(4,28) = 7.136,

P<0.01], 22- [(F(4,28) = 3.382, P=0.022], 24- [(F(4,28) = 14.967,

P<0.01] and 40-h post-injection [(F(4,28) = 4.718, P=0.005].

CL 316243 produced a near significant main effect to elevate core

temperature at 1.75- [(F(4,28) = 2.211, P=0.093] and 6-h post-injection

[(F(4,28) = 2.419, P=0.072]. We also found a significant effect of time

[(F(12,420) = 25.873, P<0.01] and a significant interactive effect

between time and dose [(F(48,420) = 1.830, P=0.001] across 13 time

points over the initial 16-h measurement period.

Specifically, systemic injections of CL 316243 increased core

temperature at 0.5- (0.01 and 0.1 mg), 1.5- (0.5 mg/kg), 2- (0.01, 0.1

and 0.5 mg/kg), 3- (0.01, 0.1, 0.5 and 1 mg/kg), 4- (0.01, 0.1, 0.5 and 1

mg/kg), 5- (0.1 and 1 mg/kg), 6- (0.1, 0.5 and 1 mg/kg), 14- (0.01, 0.1,

0.5 and 1 mg/kg), 16- (0.1, 0.5 and 1 mg/kg), 22- (0.5 and 1 mg/kg),

24- (0.5 and 1 mg/kg), and 40-h post-injection (1 mg/kg) (Figure 1D).

There was also a near significant effect of CL 316243 to

stimulate core temperature at 0.5-h (0.5 mg/kg), 0.75-h (0.1 mg/

kg), 1.75-h (0.01, 0.1 and 0.5 mg/kg), 5-h (0.01 and 0.5 mg/kg), 6-h

(0.01 mg/kg), 12-h (0.1 and 0.5 mg/kg), 16- (0.01 mg/kg), 20-h post-

injection (0.5 mg/kg) and 24-h post-injection (0.01 mg/kg).

Two animals were removed from the core temperature and

gross motor activity analysis due to defective telemetry devices.
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Gross motor activity

There was a significant main effect of CL 316243 to reduce gross

motor activity at 1-h post-injection [(F(4,28) = 5.603, P=0.002].

There was also a near significant main effect of CL 316243 to reduce

gross motor activity at 0.75-h post-injection [(F(4,28) =

2.375, P=0.076].
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Specifically, CL 316243 reduced gross motor activity at 0.75-

(0.01, 0.1 and 0.5 mg/kg), and 1-h post-injection (0.01, 0.1, 0.5 and 1

mg/kg) (P<0.05; data not shown). There was also a near significant

effect of CL 316243 (0.01 and 1 mg/kg) to reduce core temperature

at 22-h post-injection (0.05<P<0.01). Otherwise, CL 316243 was

ineffective at altering gross motor activity at any other time point

(P=NS vs vehicle; data not shown).
FIGURE 1

Dose-response effects of the beta-3 receptor agonist, CL 316243, on body weight, energy intake, TIBAT, core temperature and gross motor activity in
male DIO rats. Ad libitum fed rats were maintained on HFD (60% kcal from fat; N=10-12/group) for approximately 8 months prior to receiving IP
injections of CL 316243 (0.01-1 mg/kg) or vehicle (sterile water) where each animal received each treatment approximately once per week. (A) Effect
of CL 316243 on body weight change in DIO rats, (B) Effect of CL 316243 on energy intake (kcal/day) in DIO rats, (C) Effect of CL 316243 on TIBAT in
DIO rats; (D) Effect of CL 316243 on core temperature in DIO rats. Data are expressed as mean ± SEM. *P<0.05, †0.05<P<0.1 CL 316243 vs. vehicle.
The comma symbols delineate multiple points of significance at the same time point. The different colors represent each dose that was significant at
that particular time point.
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Study 2: Determine the dose-response
effects of systemic infusion of OT (16 and
50 nmol/day) on body weight, adiposity,
energy intake and kaolin intake in male
DIO rats

By design, rats were DIO as determined by both body weight

(771 ± 24.5 g) and adiposity (312.3 ± 16.7 g fat mass; 40.1 ± 1.1%

adiposity) after maintenance on the HFD for approximately 8.5

months. Following temperature transponder implantations and

prior to minipump implantations, groups were again matched for

body weight and adiposity (vehicle: 760 ± 56.5 grams/36.8 ± 1.7%

fat/283.3 ± 31.9 g fat mass); OT (16 nmol/day): 758.6 ± 39.9 grams/

36.8 ± 2.0% fat/282.0 ± 28.1 g fat mass; OT (50 nmol/day): 763.6 ±

45.7 grams/36.6 ± 1.8% fat/284.5 ± 31.1 g fat mass. There was no

difference in body weight [(F(2,17) = 0.027, P=NS)] or percent

adiposity [(F(2,17) = 0.003, P=NS)] between groups prior to

treatment onset. As expected, body weight of DIO rats remained

stable over the month of vehicle treatment relative to pre-treatment

[(F(1,5) = 2.865, P=0.151)] (Figure 2A). In contrast to vehicle

treatment, systemic OT (16 nmol/day) resulted in a significant

reduction of body weight relative to OT pre-treatment [(F(1,6) =

140.799, P<0.01)] (Figure 2A; P<0.05). Furthermore, SC OT, at a 3-

fold higher dose (50 nmol/day), also resulted in a significant

reduction of body weight relative to pre-treatment [(F(1,6) =

47.271, P<0.01)].

In addition, SC OT (16 and 50 nmol/day) was able to reduce

weight gain (Figure 2B) relative to vehicle treatment throughout the

28-day infusion period. SC OT (50 nmol/day), at a dose that was at

least 3-fold higher than the centrally effective dose (16 nmol/day),

reduced weight gain throughout the entire 28-day infusion period.

SC OT (16 nmol/day) treated rats had reduced weight gain between

days 2-29 (P<0.05) while SC OT (50 nmol/day) reduced weight gain

between days 1-29 (P<0.05). There was an overall effect of OT to

reduce relative fat mass (pre- vs post-intervention) [(F(2,17) =

6.052, P=0.010)]. SC OT (50 nmol/day) reduced fat mass (P<0.05)

and there was also a tendency for the lower dose (16 nmol/day) to

reduce relative fat mass (P=0.066) (Figure 2C; P<0.05).

There was also an overall effect of OT to reduce relative lean

mass (pre- vs post-intervention) [(F(2,17) = 5.572, P=0.014)].

Specifically, SC OT (16 nmol/day) reduced relative lean mass at

the lower dose (16 nmol/day; P<0.01) while the higher dose (50

nmol/day) tended to reduce relative lean mass (P=0.090). Note that

there was no significant reduction in total fat mass or lean

mass (P=NS).

The changes in body weight and relative fat mass were not

associated with any changes in plasma leptin, insulin, glucose or

total cholesterol (Table 1). These effects that were mediated, at least

in part, by a modest reduction of energy intake that was apparent

during weeks 1 (50 nmol/day) and 2 (16 and 50 nmol/day) of OT

treatment (Figure 2D; P<0.05).

The reduction of energy intake does not appear to be due to an

aversive effect of systemic OT (16 or 50 nmol/day), since there was

no effect on kaolin consumption relative to vehicle-treated DIO rats

(P=NS; data not shown).
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Energy intake data from a vehicle-treated animal during week 3

was deleted on account of an error that was made when recording

the data. Kaolin data from a subset of animals was excluded on

account of these animals shredding the kaolin diet (2 measurements

during week 2, 1 measurement during week 3 and 1 measurement

during week 4) and being significant outliers (Grubb’s test

for outliers).
Study 3: Effect of chronic systemic OT
infusions (50 nmol/day) and systemic b3-
AR agonist (CL 316243) administration (0.5
mg/kg) on body weight, body adiposity,
energy intake and kaolin intake in male
DIO rats.

The goal of this study was to determine the effects of chronic OT

treatment (single dose identified from Study 2) in combination with

a single dose of the b3-AR agonist, CL 316243, on body weight and

adiposity in DIO rats. By design, DIO rats were obese as determined

by both body weight (804 ± 14 g) and adiposity (310 ± 11 g fat mass;

38.3 ± 4.7% adiposity) after maintenance on the HFD for

approximately 7 months. Prior to the onset of CL 316243

treatment on infusion day 7, both OT treatment groups were

matched for OT-elicited reductions of weight gain.

OT and CL 316243 alone reduced body weight by ≈ 7.8 ± 1.3%

(P<0.05) and 9.1 ± 2.3% (P<0.05), respectively, but the combined

treatment produced more pronounced weight loss (pre- vs post-

intervention) (15.5 ± 1.2%; P<0.05) (Figure 3A) than either

treatment alone (P<0.05). OT alone tended to reduce weight gain

on days 16-28 (0.05<P<0.1) while CL 316243 alone tended to reduce

or reduced weight gain on day 24 (0.05<P<0.1), day 25 (P=0.05),

and days 26-28 (P<0.05) (Figure 3B). OT and CL 316243 together

tended to reduce weight gain on day 9 (0.05<P<0.1) reduced weight

gain on days 10-28 (P<0.05). The combination treatment appeared

to produce a more pronounced reduction of weight gain relative to

OT alone on day 25 (0.05<P<0.1) and this reached significance on

days 26-28 (P<0.05).

In addition, the combination treatment tended to produce a

greater reduction of weight gain relative to CL 316243 alone on days

21-22 and 26-28 (0.05<P<0.1). While OT alone did not significantly

reduce fat mass (P=NS), there was a tendency for CL 316243 alone

(0.05<P<0.1), and the combination of OT and CL 316243 (P<0.05)

to reduce fat mass without impacting lean body mass (Figure 3C;

P=NS). However, the combination treatment did not result in a

significant reduction of fat mass relative to OT alone or CL 316243

alone (P=NS). OT and CL 316243 alone did produce a reduction in

relative fat mass (pre- vs post-intervention; P<0.05). OT also

produced a modest reduction in relative lean mass (Figure 3D;

P<0.05). The combination treatment also produced a significant

reduction of relative fat mass (P<0.05) which exceeded that of OT

and CL 316243 alone (P<0.05).

Systemic OT treatment alone reduced energy intake during

week 1 (P<0.05). OT, CL 316243 and the combined treatment were

effective at reducing energy intake at week 2 (Figure 3E; P<0.05). OT
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and the combined treatment reduced energy intake during week 3

(P<0.05) but CL 316243 failed to reduce energy intake during this

time (P=NS). All treatments were ineffective at reducing energy

intake over weeks 3 and 4 (P=NS). The reduction of energy intake in

response to OT alone, CL 316243 alone or the combined treatment
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does not appear to be due to an aversive effect, since there was no

effect on kaolin consumption relative to vehicle-treated DIO rats

(P=NS; data not shown).

Two-way ANOVA revealed an overall significant effect of OT [(F

(1,39) = 63.434, P<0.01)], CL 316243 [(F(1,39) = 74.939, P<0.01)] but
FIGURE 2

(A–D) Determine the dose-response effects of systemic infusions of OT (16 and 50 nmol/day) on body weight, adiposity and energy intake in DIO
rats. (A) Rats were maintained on HFD (60% kcal from fat; N=6-7/group) for approximately 5.5 months prior to being implanted with temperature
transponders and allowed to recover for 1-2 weeks prior to being implanted with subcutaneous minipumps. (A), Effect of chronic subcutaneous OT
or vehicle on body weight in DIO rats; (B) Effect of chronic subcutaneous OT or vehicle on body weight change in DIO rats; (C) Effect of chronic
subcutaneous OT or vehicle on change in fat mass and lean mass in DIO rats; (D) Effect of chronic subcutaneous OT or vehicle on change in weekly
energy intake (kcal/week) in DIO rats. Data are expressed as mean ± SEM. *P<0.05, †0.05<P<0.1 OT vs. vehicle.
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no significant interactive effect between OT and CL 316243 [(F(1,39) =

0.058, P=NS)] on weight loss. Consistent with this finding, two-way

ANOVA revealed consistent overall effects of OT and CL-3162343 on

reduction of body weight gain between days 10-29 but no significant

overall effect. In addition, two-way ANOVA revealed no overall

significant effect of OT [(F(1,39) = 2.003, P=0.165)], a significant

effect of CL 316243 [(F(1,39) = 6.859, P=0.012)] and no significant

interactive effect between OT and CL 316243 [(F(1,39) = 0.005,

P=0.943)] on fat mass. There was no significant overall effect of OT

[(F(1,39) = 2.069, P=0.158)] or CL 316243 [(F(1,39) = 0.217, P=0.644)]

on leanmass and no interactive effect of OT and CL 316243 [(F(1,39) =

0.004, P=0.950)] on lean mass. Lastly, two-way ANOVA revealed an

overall significant effect of OT [(F(1,39) = 21.464, P<0.01)], CL 316243

[(F(1,39) = 62.681, P<0.01)] and a near significant interactive effect

between OT and CL 316243 [(F(1,39) = 3.190, P=0.082)] on energy

intake (week 2).

Overall, these findings suggest an additive effect of OT and CL

316243 to produce sustained weight loss in DIO rats. The effects of

the combination treatment on adiposity and energy intake appear

to be driven largely by CL 316243 and OT, respectively.

CL 316243 elevated TIBAT on injection day 1 at 0.5, 0.75 and 1-h

post-injection (P<0.05; Supplementary Figure 1A) and tended to

elevate TIBAT at 0.25-h post-injection (0.05<P<0.1). Similarly, CL

316243, when given in combination with OT, also increased TIBAT

at 0.5, 0.75 and 1-h post-injection and tended to elevate TIBAT at

0.25-h post-injection on injection day 1 (0.05<P<0.1). Both CL

316243 and CL 316243 + OT treatments elevated TIBAT relative to

vehicle treated animals when the TIBAT data from injection day 1

were averaged over 1-h post-injection (P<0.05). There was no

significant difference in TIBAT response to CL 316243 CL 316243

+ OT treatments when the TIBAT data were averaged over 60

min (P=NS).

CL 316243 also elevated TIBAT on injection day 22 at 0.25, 0.5,

0.75 and 1-h post-injection (P<0.05; Supplementary Figure 1B).

Similarly, CL 316243, when given in combination with OT, also

increased TIBAT at 0.5 and 0.75-h post-injection and tended to

elevate TIBAT at 0.25 and 1-h post-injection on injection day 22

(0.05<P<0.1). Both CL 316243 and CL 316243 + OT treatments

elevated TIBAT relative to vehicle treated animals when the TIBAT

data from injection day 22 were averaged over 1-h post-injection
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(P<0.05). There was no significant difference in the TIBAT response

to CL 316243 and CL 316243 +OT treatments when the TIBAT data

were averaged over 60 min (P=NS).

In addition, in a limited number of subjects (N=3-5/group), we

found that CL 31243 in combination with OT elevated core

temperature at 20-h post-injection relative to vehicle-treated

animals (P<0.05; data not shown). CL 316243 alone also tended

to elevate 20-h core temperature (P=0.1; data not shown). No

changes in 20-h activity occurred in response to the treatments

(data not shown).
Adipocyte size

H&E-stained sections from the four treatment conditions are

shown in Figures 4A–D (EWAT) and Figures 4E–H (IWAT). CL

316243 alone (P<0.05) and in combination with OT (P<0.05)

reduced EWAT adipocyte size in DIO rats relative to vehicle

treatment (Supplementary Figure 2A; Figure 5A). There were no

significant differences in the ability of the combined treatment to

reduce EWAT adipocyte size relative to CL 316243 alone (P=0.156).

Similarly, OT and CL 316243 given in combination reduced IWAT

adipocyte size whereas there was no significant effect of OT or CL

316343 on adipocyte size when given alone (P=NS) (Supplementary

Figure 2B; Figure 5B). A subset of EWAT (N=6) and IWAT (N=5)

samples were excluded from the adipocyte size analysis due to poor

tissue quality or an insufficient amount of tissue.
UCP-1 expression

CL 316243 alone and in combination with OT (P<0.05)

increased UCP-1 expression in EWAT relative to VEH. In

addition, CL 316243 alone also increased UCP-1 relative to OT

(P<0.05). The combination of CL 316243 and OT also increased

UCP-1 relative to OT treatment alone (Figures 6A–D; Figure 7A),

but was not different from CL 316243 alone (P=0.167). Similarly,

CL 316243 in combination with OT (P<0.05) increased UCP-1

expression in IWAT relative to VEH treatment and OT treatment

(Figures 6E–H; Figure 7B). A subset of EWAT (N=10) and IWAT

(N=3) samples were excluded in the UCP-1 expression analysis due

to poor tissue quality or an insufficient amount of tissue.
Plasma hormone concentrations

To characterize the endocrine and metabolic effects of systemic

OT (50 nmol/day) and systemic beta-3 receptor agonist (CL

316243) in DIO rats in a chronic study using as single dose of CL

316243 (Study 3; Table 2), we measured blood glucose levels and

plasma concentrations of leptin, insulin, FGF-21, irisin,

adiponectin, TC, triglycerides, and FFAs. CL 316243 alone or in

combination with OT resulted in a reduction of plasma leptin

relative to OT (P<0.05) or vehicle alone (P<0.05). The combination

treatment was also associated with a reduction of blood glucose and
TABLE 1 Plasma measurements following SC OT (16 and 50 nmol/day).

SC VEH
OT (16

nmol/day)
OT (50

nmol/day)

Leptin (ng/mL) 65.9 ± 7.8 71.3 ± 8.2 59.6 ± 7.7

Insulin (ng/mL) 4.7 ± 1.7 3.4 ± 0.9 4.7 ± 1.3

Blood Glucose
(mg/dL) 137.3 ± 4.5 160.4 ± 8.3* 157.7 ± 7.3

Total Cholesterol
(mg/dL) 108.1 ± 10.4 118.4 ± 13.4 105.5 ± 11.5
Blood was collected in 4-h fasted rats by tail vein nick (glucose) or cardiac stick (leptin, insulin
and total cholesterol).
*P<0.05 vs vehicle.
N=6-7/group.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1503096
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Slattery et al. 10.3389/fendo.2025.1503096
insulin relative to vehicle (P<0.05) and OT treatment (P<0.05) but it

was not statistically different from CL 316243 (P=NS). We also

found that FGF-21 was reduced in response to CL 316243 and CL

316243 in combination with OT relative to vehicle and OT

treatment (P<0.05). In addition, the combination treatment was
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associated with an elevation of adiponectin relative to vehicle

(P<0.05) and OT treatment (P<0.05) but it was not statistically

different from CL 316243 (P=NS). A subset of data (N=2) was

excluded from the plasma hormone analysis from Study 3 due to

gross hemolysis or samples having been misplaced.
FIGURE 3

(A–E) Effect of chronic systemic OT infusions (50 nmol/day) and systemic beta-3 receptor agonist (CL 316243) administration (0.5 mg/kg) on body
weight, body adiposity and energy intake in male DIO rats. Ad libitum fed rats were maintained on HFD (60% kcal from fat; N=8-10/group) for
approximately 8 months prior to receiving continuous infusions of vehicle or OT (50 nmol/day) in combination with a single dose of CL 316243 (0.5
mg/kg). (A) Effect of chronic subcutaneous OT or vehicle in combination with systemic CL 316243 or vehicle on body weight in DIO rats; (B) Effect
of chronic subcutaneous OT or vehicle in combination with systemic CL 316243 or vehicle on body weight change in HFD-fed DIO rats; (C) Effect
of chronic subcutaneous OT or vehicle in combination with systemic CL 316243 or vehicle on fat mass and lean mass in DIO rats; (D) Effect of
chronic subcutaneous OT or vehicle in combination with systemic CL 316243 or vehicle on change in fat mass and lean mass in DIO rats; (E) Effect
of chronic subcutaneous OT or vehicle in combination with systemic CL 316243 or vehicle on change in weekly energy intake (kcal/week) in DIO
rats. ↑ indicate 1x daily injections. Colored bars represent specific group comparisons vs vehicle. Data are expressed as mean ± SEM. *P<0.05,
†0.05<P<0.1 vs. vehicle or baseline [pre-treatment; (A)].
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Gene expression data

We next determined the extent to which CL 316243 (0.5 mg/

kg), OT (50 nmol/day), or the combination treatment increased

thermogenic gene expression in IBAT, EWAT and IWAT relative to

vehicle at 2-hour post-CL 316243/vehicle injections.

IBAT: Consistent with published findings in mice and rats,

chronic CL 316243 administration elevated relative levels of the

thermogenic markers Ucp1 (33, 52, 53), Dio2 (35, 54), Ppargc1a

(53) and Gpr120 (35, 53) (Table 3A; P<0.05). CL 316243 in

combination with OT also elevated Ucp1, Dio2, Ppargc1a and
Frontiers in Endocrinology 12
Gpr120 (P<0.05). In addition, chronic CL 316243 alone and in

combination with OT reduced Adrb3 (b3-AR) mRNA expression

in IBAT (Table 3A; P<0.05).

EWAT: CL 316243 elevated relative levels of the thermogenic

marker Ucp1 relative to vehicle treatment (P<0.05; Table 3B). CL

316243 in combination with OT also elevated Ucp1, Dio2, Ppargc1a

and Adrb3 relative to vehicle controls (P<0.05; Table 3B).

A subset of EWAT data [(N=5 (Ucp1); N=3 (Dio2); N=3

(Ppargc1a); N=1 (Adrb3)] was excluded from the EWAT gene

expression analysis on account of missing samples, samples with

undetectable values or statistical outliers (Grubbs’ test for outliers).
FIGURE 4

(A–D): Representative image of H&E-stained section from EWAT and IWAT following chronic systemic OT infusions (50 nmol/day) and systemic
beta-3 receptor agonist (CL 316243) administration (0.5 mg/kg). Images taken from fixed (4% PFA) paraffin embedded sections (5 mm) containing
EWAT (A–D) or IWAT (E–H) in HFD-fed rats treated with systemic OT (50 nmol/day) or vehicle in combination with IP CL 316243 (0.5 mg/kg) or IP
vehicle. A/E, Veh/Veh. B/F, OT/Veh. C/G, Veh/CL 316243. D/H, OT-CL 316243; (A–H) all visualized at 100X magnification. Images were obtained
using Image Pro Plus software.
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IWAT: There were no significant differences in the thermogenic

markers Ucp1, Dio2, Ppargc1a or Adrb3 in response to chronic CL

316243 alone or in combination with OT (Table 3C; P=NS).

A subset of IWAT data [(N=3 (Ucp1); N=3 (Dio2); N=1

(Ppargc1a); N=2 (Adrb3)] was excluded from the IWAT gene
Frontiers in Endocrinology 13
expression analysis on account of missing samples, samples with

undetectable values or statistical outliers (Grubbs’ test for outliers).

As a functional readout of BAT thermogenesis for the gene

expression analyses, we measured TIBAT in response to CL 316243

alone or CL 316243 + OT during the time period that preceded
FIGURE 5

(A, B) Effect of chronic systemic OT infusions (50 nmol/day) and systemic beta-3 receptor agonist (CL 316243) administration (0.5 mg/kg) on
adipocyte size in EWAT and IWAT in male DIO rats. (A) Adipocyte size (mm2) was measured in EWAT from rats that received chronic systemic infusion
of OT (50 nmol/day) or vehicle in combination with daily CL 316243 (0.5 mg/kg) or vehicle treatment (N=9-10/group). (B) Adipocyte size (mm2) was
measured in IWAT from rats that received chronic systemic infusion of OT (50 nmol/day) or vehicle in combination with daily CL 316243 (0.5 mg/kg)
or vehicle treatment (N=9-10/group). Data are expressed as mean ± SEM. *P<0.05, †0.05<P<0.1.
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tissue collection. CL 316243 alone resulted in an increase in TIBAT at

0.25, 0.5, 0.75 and 1-h post-injection (Supplementary Figure 3;

P<0.05). Similarly, CL 316243 + OT resulted in an increase in TIBAT

at 0.5-h post-injection (Supplementary Figure 3; P<0.05) and it also

tended to increase TIBAT at 0.75-h post-injection (Supplementary

Figure 3; 0.05<P<0.1).
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Discussion

The goal of the current study was to determine the extent to

which systemic OT could be used as an adjunct with the b3-AR
agonist, CL 316243, to increase BAT thermogenesis and elicit

weight loss in DIO rats. We hypothesized that systemic OT and
FIGURE 6

(A–D) Representative image to illustrate the effect of chronic systemic OT infusions (50 nmol/day) and systemic beta-3 receptor agonist (CL 316243)
administration (0.5 mg/kg) on UCP-1 content in EWAT and IWAT in male DIO rats. UCP-1 was analyzed using Image Pro Plus software. Images were
taken from fixed (4% PFA) paraffin embedded sections (5 mm) containing EWAT (A–D) in HFD-fed rats treated with SC OT (50 nmol/day) or SC
vehicle in combination with IP CL 316243 (0.5 mg/kg) or IP vehicle. (A) Veh/Veh. (B) OT/Veh. (C) Veh/CL 316243 (D) OT/CL 316243; (A–H) all
visualized at 100X magnification.
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beta-3 agonist (CL 316243) treatment would produce an additive

effect to reduce body weight and adiposity in DIO rats by decreasing

food intake and stimulating BAT thermogenesis. To test this

hypothesis, we determined the effects of systemic (subcutaneous)

infusions of OT (50 nmol/day) or vehicle (VEH) when combined

with daily systemic (intraperitoneal) injections of CL 316243 (0.5
Frontiers in Endocrinology 15
mg/kg) or VEH on body weight, adiposity, food intake and TIBAT.

OT and CL 316243 monotherapy decreased body weight by 8.0 ±

0.9% (P<0.05) and 8.6 ± 0.6% (P<0.05), respectively, but OT in

combination with CL 316243 produced more substantial weight

loss (14.9 ± 1.0%; P<0.05) compared to either treatment alone.

These effects were associated with decreased adiposity, energy
FIGURE 7

(A, B) Effect of chronic systemic OT infusions (50 nmol/day) and systemic beta-3 receptor agonist (CL 316243) administration (0.5 mg/kg) on UCP-1
content in EWAT and IWAT in male DIO rats. (A) UCP-1 expression was measured in EWAT from rats that received chronic systemic infusion of OT
(50 nmol/day) or vehicle in combination with daily CL 316243 (0.5 mg/kg) or vehicle treatment (N=9-11/group). (B) UCP-1 expression was measured
in IWAT from rats that received chronic systemic infusion of OT (50 nmol/day) or vehicle in combination with daily CL 316243 (0.5 mg/kg) or vehicle
treatment (N=7-10/group). Data are expressed as mean ± SEM. *P<0.05, †0.05<P<0.1.
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TABLE 2 Plasma measurements following SC OT +/- CL 316243 in DIO rats.

SC VEH/VEH OT/VEH VEH/CL 316243 OT/CL 316243

Leptin (ng/mL) 47.2 ± 6.0 45.9 ± 4.9 25.8 ± 3.4* 22.0 ± 2.4*

Insulin (ng/mL) 10.9 ± 2.3 11.7 ± 1.5 6.6 ± 1.2 4.3 ± 0.8*

FGF-21 (pg/mL) 187.3 ± 22.5 163.9 ± 9.1 87.7 ± 8.0* 101.5 ± 11.6*

Irisin (mg/mL) 3.9 ± 0.3 4.5 ± 0.6 4.6 ± 0.4 4.4 ± 0.4

Adiponectin (mg/mL) 6.4 ± 0.6 6.3 ± 0.6 7.3 ± 0.6 8.7 ± 0.5*

Blood Glucose (mg/dL) 179.3 ± 24.5 174.9 ± 9.3 150 ± 3.7 138 ± 4.5*

Triglycerides (mg/dL) 81.5 ± 13.7 97.5 ± 33.1 39.8 ± 3.9 47.8 ± 3.3

FFA (mEq/L) 0.5 ± 0.1 0.5 ± 0.1 0.2 ± 0.02* 0.3 ± 0.03

Total Cholesterol (mg/dL) 100.0 ± 6.0 108.1 ± 9.7 94.5 ± 5.1 107.0 ± 10.2
F
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Blood was collected in 6-h fasted rats by tail vein nick (glucose) or cardiac stick (leptin, insulin, FGF-21, adiponectin, triglycerides, FFA and total cholesterol) at 2-h post-injection of vehicle or CL
316243 (0.5 mg/kg).
*P<0.05 vs vehicle.
N=10-12/group.
TABLE 3A Changes in IBAT mRNA expression following SC OT and CL 316243 treatment in male DIO rats.

SC Treatment VEH/VEH OT/VEH VEH/CL 316243 OT/CL 316243

IBAT

Adrb1 1.0 ± 0.3 1.0 ± 0.1 0.8 ± 0.1 0.9 ± 0.4

Adrb3 1.0 ± 0.1 0.9 ± 0.2 0.5 ± 0.1* 0.5 ± 0.04*

Ucp1 1.0 ± 0.1 1.0 ± 0.1 1.6 ± 0.1* 1.6 ± 0.1*

Cidea 1.0 ± 0.1 1.0 ± 0.1 1.0± 0.1 0.9 ± 0.1

Dio2 1.0 ± 0.1 1.5 ± 0.2 3.3 ± 0.4* 3.5 ± 0.3*

Gpr120 1.0 ± 0.2 0.9 ± 0.2 19.8 ± 2.4* 15.9 ± 2.1*

Prdm16 1.0 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.9 ± 0.1

Ppargc1a 1.0 ± 0.05 1.0 ± 0.2 4.8 ± 0.4* 5.9 ± 0.5*
IBAT was collected in 6-h fasted rats at 2-h post-injection of vehicle or CL 316243 (0.5 mg/kg).
*P<0.05 vs vehicle.
N=10-12/group.
TABLE 3B Changes in EWAT mRNA expression following SC OT and CL 316243 treatment in male DIO rats.

SC Treatment VEH/VEH OT/VEH VEH/CL 316243 OT/CL 316243

EWAT

Adrb1 1.0 ± 0.2 1.0 ± 0.2 1.2 ± 0.2 1.0 ± 0.2

Adrb3 1.0 ± 0.2 1.1 ± 0.2 1.3 ± 0.1 1.8 ± 0.2*

Ucp1 1.0 ± 0.3 0.7 ± 0.2 38.8 ± 12.2* 60.5 ± 15.8*

Cidea 1.0 ± 0.2 0.9 ± 0.1 1.0± 0.2 1.3 ± 0.2

Dio2 1.0 ± 0.5 1.0 ± 0.4 2.0 ± 0.6 9.7 ± 3.8*

Gpr120 1.0 ± 0.2 1.0 ± 0.2 1.3 ± 0.2 1.2 ± 0.2

Prdm16 1.0 ± 0.1 1.0 ± 0.1 1.3 ± 0.2 1.3 ± 0.2

Ppargc1a 1.0 ± 0.3 0.7 ± 0.2 1.6 ± 0.2 13.7 ± 7.3*
EWAT was collected in 6-h fasted rats at 2-h post-injection of vehicle or CL 316243 (0.5 mg/kg).
*P<0.05 vs vehicle.
N=8-11/group.
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intake and elevated TIBAT during the treatment period. In addition,

systemic OT and CL 316243 combination therapy increased IBAT

thermogenic gene expression suggesting that increased BAT

thermogenesis may also contribute to these effects. The findings

from the current study suggest that the effects of systemic OT and

CL 316243 to reduce body weight and adiposity are additive and

appear to be driven primarily by OT-elicited changes in food intake

and CL 316243-elicited increases in BAT thermogenesis.

Recent findings also indicate that other agents, namely the GLP-

1R agonist, liraglutide, and the fat signal, oleoylethanolamide

(OEA), act in an additive fashion with CL 316243 to reduce body

weight or body weight gain. Oliveira recently reported that the

combination of liraglutide and CL 316243 produce additive effects

to reduce the change in body weight in a mouse model (55). These

effects appeared to be attributed to additive effects on energy intake

and increased oxygen consumption in IBAT and IWAT. In

addition, the combined treatment increased expression of UCP-1

in IWAT (indicative of browning). Similarly, Suarez and colleagues

demonstrated that the peroxisome proliferator-activating receptor-

a (PPARa) agonist and fat signal, OEA, act in an additive fashion

with CL 316243 produced to reduce food intake and weight gain in

rats (33). These effects were associated with pronounced reductions

in fat mass and increases in expression of thermogenic genes

(PPARa and Ucp1) in EWAT (33). Of interest is the finding that

systemic OT and central OT can increase OEA expression in

EWAT (20). Furthermore, Deblon reported that the effectiveness

of OT to decrease body weight was partially blocked in PPARa null

mice (20), indicating that PPARa may partially mediate OT’s

thermogenic effects in EWAT. OEA has also been found to

stimulate 1) hypothalamic expression of OT mRNA (56), 2) PVN

OT neurons (57), and 3) OT release within the PVN (57). In

addition, OEA also decreases food intake, in part, through OT

receptor signaling (56). Thus, it is possible that high fat diet-elicited

stimulation of OEA (58) may reduce food intake, in part, through

an OTR signaling and that the effects of OT to stimulate WAT

thermogenesis might occur through PPARa. Additional studies
that utilize adipose depot knockdown of PPARa will enable us to

determine if PPARa in specific adipose depots may contribute to

the ability of OT and CL 316243 to reduce body weight

and adiposity.

Our findings and others raise the possibility that systemic OT

could be reducing food intake and adiposity, in part, through a
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direct effect on peripheral OT receptors. Asker reported that OT-

B12, a BBB-impermeable OT analogue, reduced food intake in rats,

thus providing evidence that peripheral OTR signaling is important

in the control of food intake (59). Consistent with these findings,

Iwasaki found that the ability of peripheral administration of OT to

reduce food intake was attenuated in vagotomized mice (60, 61). In

addition, Brierley extended these findings and found that the effect

of systemic administration of OT to suppress food intake required

NTS preproglucagon neurons that receive direct synaptic input

OTR-expressing vagal afferent neurons (62). We also found that

systemic administration of a non-BBB penetrant OTR antagonist,

L-371257, stimulated food intake and body weight gain in rats (63).

Several studies have also found that subcutaneous infusion of OT

reduced adipocyte size in 1) visceral fat in female Wistar rats that

were peri- and postmenopausal (64) and 2) visceral fat in a

dihydrotestosterone-elicited model of polycystic ovary syndrome

in female Wistar rats (65), 3) subcutaneous fat in female

ovariectomized Wistar rats (66), and 4) EWAT in male Zucker

fatty rats (67). More recent studies have confirmed that peripheral

administration of long-acting OT analogues (including ASK2131

and ASK1476) also reduced both food intake and body weight (68,

69). Together, these findings suggest that OT may also act in the

periphery to decrease adipocyte size by a direct effect on OTRs

found on adipose tissue (20, 21, 70). Of translational importance is

the finding that subcutaneous (20, 25–28, 71) or intraperitoneal (28)

administration of OT or long-acting OT analogues can recapitulate

the effects of chronic CNS administration of OT on reductions of

food intake and body weight.

The combination treatment and CL 316243 monotherapy

reduced body weight and adiposity, in part, through increased

BAT thermogenesis. Both CL 316243 alone and in combination

with OT elevated TIBAT throughout the course of the injection study

and increased IBAT thermogenic genes (Ucp1, Dio2 and Ppargc1a)

and UCP-1 content in IBAT. These findings coincided with CL-

316243-elicited increases in TIBAT from the same animals during

the time that preceded tissue collection. These findings are

consistent with our previously published findings in rats (35) and

other studies mice and rats that found chronic CL 316243

administration to increase the thermogenic markers Dio2 (54)

and Gpr120 (33, 52, 53). Similar to our findings, others also

reported that systemic CL 316243 increased Ucp1 mRNA

expression in mice (72). We also found that the combination
TABLE 3C Changes in IWAT mRNA expression following SC OT and CL 316243 treatment in male DIO rats.

SC Treatment VEH/VEH OT/VEH VEH/CL 316243 OT/CL 316243

IWAT

Adrb3 1.0 ± 0.4 1.1 ± 0.6 1.0 ± 0.3 0.5 ± 0.2

Ucp1 1.0 ± 0.4 0.3 ± 0.1 0.5 ± 0.2 1.7 ± 0.8

Dio2 1.0 ± 0.3 1.0 ± 0.2 0.6 ± 0.2 0.9 ± 0.3

Ppargc1a 1.0 ± 0.7 0.5 ± 0.4 1.5 ± 1.0 0.04 ± 0.02
IWAT was collected in 6-h fasted rats at 2-h post-injection of vehicle or CL 316243 (0.5 mg/kg).
N=9-12/group.
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treatment and CL 316243 alone caused a downregulation of Adrb3

mRNA expression at 2-h post-injection. This finding is consistent

with we have previously reported (35) and others who have

reported that both cold exposure and norepinephrine reduced

Adrb3 mRNA expression and mouse IBAT (73, 74) and mouse

brown adipocytes (75). In summary, our results indicate that

systemic administration of OT in combination with systemic CL

316243 treatment results in more profound reductions of body

weight compared to either OT or CL 316243 alone. Moreover, the

combined treatment of OT and CL 316243 stimulated BAT

thermogenesis as determined by increased TIBAT and thermogenic

gene expression in IBAT. Together, our data support the hypothesis

that systemic OT and b3-AR agonist (CL 316243) treatment

produce an additive effect to reduce body weight and adiposity in

DIO rats. The effects of the combined treatment on body weight and

adiposity appeared to be additive and driven predominantly by OT-

elicited reductions of food intake and CL-316243-elicited increases

in BAT thermogenesis.

Collectively, these findings suggest that systemic OT treatment

could be a viable adjunct to other anti-obesity treatment strategies.

While intranasal OT has been found to reduce body weight by

approximately 9.3% in a small study with limited subjects (9-11/

group) (76), it was not found, however, to have any effect on body

weight in a larger scale well-controlled clinical study (N=30-31/

group) in which subjects were matched well for body weight,

adiposity and gender (77). Importantly, Plessow, Lawson and

colleagues did find a significant effect of intranasal OT to reduce

energy intake at 6-weeks post-treatment, which served as an

important control. It is possible that a more extended length of

treatment might have been required to take advantage of the

reductions of energy intake that were not observed until the 6-

week post-treatment time point. In addition, changes in dose,

dosing frequency, or co-administration with Mg2+ (78, 79) might

need to be taken into consideration in order to maximize the effects

of intranasal OT on body weight in humans who are overweight or

obese. Given that OT can be an effective delivery approach to reduce

energy intake and elicit weight loss in several rodent models (see

(16, 80, 81) for review) and obese nonhuman primates (19), it will

also be important to determine if chronic systemic OT treatment

can elicit weight loss when given in combination with CL 316243 at

doses that are sub-threshold for producing adverse effects on heart

rate or blood pressure (82). Recent findings indicate that OT can be

effective at reducing food intake and/or body weight in female rats

(83) and DIO male and female mice (26), respectively. Thus, it will

be important to examine if this combination treatment produces an

additive effect to reduce body weight and adiposity in female DIO

rodents and nonhuman primates.
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SUPPLEMENTARY FIGURE 1

(A, B) TIBAT measurements following acute systemic administration of the

beta‐3 receptor agonist (CL 316243) or vehicle in male DIO rats. (A), injection
day 1 (0.5 mg/kg) and (B), injection day 22 (0.5 mg/kg). Data are expressed as

mean ± SEM. *P<0.05 vs VEH;
†
0.05<P<0.1 vs VEH.

SUPPLEMENTARY FIGURE 2

(A–H): Representative image to illustrate the effect of chronic systemic OT
infusions (50 nmol/day) and systemic beta-3 receptor agonist (CL 316243)

administration (0.5 mg/kg) on adipocyte size in EWAT and IWAT in male DIO
rats. Adipocyte size was analyzed using ImageJ. Images were taken from fixed

(4% PFA) paraffin embedded sections (5 mm) containing EWAT (A–D) or IWAT

(E–H) in HFD-fed rats treated with systemic OT (50 nmol/day) or vehicle in
combination with IP CL 316243 (0.5 mg/kg) or IP vehicle. A/E, Veh/Veh. B/F,

OT/Veh. C/G, Veh/CL 316243. D/H, OT-CL 316243; (A–H) all visualized at
100X magnification.

SUPPLEMENTARY FIGURE 3

TIBAT measurements following acute systemic administration of the beta‐3

receptor agonist (CL 316243) or vehicle in male DIO rats. A, injection day 23
prior to euthanasia (0.5 mg/kg), euthanasia day. Data are expressed as mean ±

SEM. *P<0.05 vs VEH;
†
0.05<P<0.1 vs VEH.
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