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Objectives: The ultrasound characteristics of benign and malignant thyroid

nodules were compared to develop a deep learning model, aiming to establish

a nomogram model based on deep learning ultrasound image analysis to

improve the predictive performance of thyroid nodules.

Materials and methods: This retrospective study analyzed the clinical and

ultrasound characteristics of 2247 thyroid nodules from March 2016 to

October 2023. Among them, 1573 nodules were used for training and testing

the deep learning models, and 674 nodules were used for validation, and the

deep learning predicted values were obtained. These 674 nodules were

randomly divided into a training set and a validation set in a 7:3 ratio to

construct a nomogram model.

Results: The accuracy of the deep learning model in 674 thyroid nodules was

0.886, with a precision of 0.900, a recall rate of 0.889, and an F1-score of 0.895.

The binary logistic analysis of the training set revealed that age, echogenic foci,

and deep learning predicted values were statistically significant (P<0.05). These

three indicators were used to construct the nomogram model, showing higher

accuracy compared to the China thyroid imaging reports and data systems (C-

TIRADS) classification and deep learning models. Moreover, the nomogram

model exhibited high calibration and clinical benefits.

Conclusion: Age, deep learning predicted values, and echogenic foci can be

used as independent predictive factors to distinguish between benign and

malignant thyroid nodules. The nomogram integrates deep learning and

patient clinical ultrasound characteristics, yielding higher accuracy than the

application of C-TIRADS or deep learning models alone.
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1 Introduction

Thyroid nodules are common clinical findings and have a

prevalence rate ranging from 34-66%, showing regional differences

(1). In China, the prevalence of thyroid nodules is nearly 40%, with

women exhibiting significantly higher rates than men (2). The

incidence rate of thyroid cancer is about 7-15%. The most

common pathological type is papillary thyroid cancer, accounting

for 80-90% of all thyroid malignant tumors (3, 4). Since the 1980s, the

incidence rate of thyroid cancer has gradually increased, but the

mortality rate has remained relatively stable and the prognosis is

usually good. Therefore, excessive diagnosis and treatment should be

avoided (4, 5). At present, ultrasound remains the best imaging

method for the thyroid gland and plays an essential role in the

diagnosis of thyroid nodules (3). To standardize thyroid ultrasound

results, various thyroid imaging reports and data systems (TI-RADS)

have been proposed, such as the American Society of Radiology TI-

RADS (ACR TI-RADS) (6), the European Thyroid Association TI-

RADS (EU-TIRADS) (7), and the Korean Society of Thyroid

Radiology TI-RADS (K-TIRADS) (8). In 2020, the Chinese

Medical Association proposed the Chinese guidelines, also known

as C-TIRADS, for ultrasoundmalignancy risk stratification of thyroid

nodules, which were developed based on China’s national conditions

and medical status (9). Traditionally, ultrasound examination has

been shown to be highly subjective, depending on the operator’s

ability. Different physicians may report different descriptions of the

same ultrasound features (10, 11). However, fine needle aspiration for

pathological examination of thyroid nodules is the gold standard for

the diagnosis of thyroid nodules (12).

In recent years, due to the improvement in computing power

and the availability of large-scale data, artificial intelligence,

represented by deep learning has emerged as an essential tool in

the field of medical imaging. Deep learning algorithms have

promoted the development of precision medicine (13, 14). At

present, deep learning has been widely applied in the ultrasound

diagnosis of thyroid diseases, improving the classification,

segmentation, and detection of thyroid images. These advances

have facilitated the differential diagnosis of thyroid nodules (15, 16),

the prediction of cervical lymph node metastasis (17, 18) or distant

metastasis of thyroid cancer (19), and the analysis of the prognosis

of thyroid cancer (20). Traditional convolutional neural networks

(CNNs) represent an integral component of medical image analysis

(21–25). However, due to the internal limitations of the algorithm,

CNNs cannot model long-range dependencies. CNNs only focus on

local pixels in the entire image, analyzing local features rather than

learning global patterns (26). The Vision Transformer (ViT) model

is a deep neural network based on an attention model proposed by

Alexey Dosovitskiy. Its main feature is its ability to effectively store

global structural information of images, which has been proven to

be superior to the CNN models in the field of medical imaging (27,

28). This study uses ViT algorithm and aims to establish a

nomogram based on deep learning ultrasound image analysis,

integrating clinical data, ultrasound features, and deep learning

results of thyroid nodules to assist in predicting the diagnosis of

thyroid nodules.
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2 Materials and methods

2.1 General information and grouping of
patients

This retrospective study included 2247 cases of thyroid nodules

(including 927 benign nodules and 1320 malignant nodules) treated

at the Second Hospital of Shandong University fromMarch 2016 to

October 2023. All patients underwent thyroid ultrasound

examinations before surgery or puncture. The digital ultrasound

images were gathered from the ultrasound workstation.

Inclusion criteria (1): Preoperative or pre-puncture thyroid

ultrasound examination; (2) Clear ultrasound image, with

complete transverse and longitudinal images of the same nodule;

(3) Complete clinical data; (4) Clear pathological diagnosis after

surgery or puncture. Exclusion criteria: (1) Multiple (more than

one) nodules on the same ultrasound section; (2) The required

image section overlaps with measurement scales, Color Doppler

Flow Imaging (CDFI) information, or elastography information,

etc.; (3) Nodule puncture was performed before the ultrasound

examination in our hospital; (4) Incomplete clinical data; (5) The

pathological diagnosis is unclear.

All nodules were randomly divided in a 7:3 ratio, with 1573

nodules used for training and testing the deep learning model and

674 nodules used for validation. A external public database TN3K

(29) was also used for testing; then the deep learning prediction

results were obtained for the benign and malignant nodules.

Thereafter, 674 nodules were divided into the benign group (308

cases) and the malignant group (366 cases) based on pathological

results. About 70% of benign and malignant nodules were randomly

selected as the training set to construct a nomogram chart, and 30%

of benign and malignant nodules were assigned to the validation set

to evaluate the nomogram chart. This study was approved by the

Ethics Review Committee of the Second Hospital of Shandong

University (KYLL2024752), and all patients provided signed

informed consent. All procedures were conducted in compliance

with the Helsinki Declaration. The flowchart of this study is shown

in Figure 1A.
2.2 Analysis of ultrasound images

The ultrasound diagnostic instruments included GE Logic E9

(linear probe, frequency 9-15MHz, Wauwatosa, America) and

Mindray Resona 7S (linear probe, frequency 9-14MHz, Shenzhen,

China). The patient was placed in the supine position with excessive

neck extension, fully exposing the anterior cervical area, and a

comprehensive scan of the thyroid gland was performed. Two

physicians with over five years of experience in ultrasound

diagnosis conducted a retrospective analysis of ultrasound images

of thyroid nodules based on the C-TIRADS criteria (9), recording the

size (maximum diameter of the nodule), location (upper lobe, middle

lobe, lower lobe, and isthmus), orientation (vertical, horizontal),

margin (clear, unclear), shape (regular, irregular), internal

composition (solid, solid-cystic, cystic, spongiform), echogenicity
frontiersin.org
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(anechoic, hyperechoic, isoechoic, hypoechoic, markedly

hypoechoic), echotexture (homogeneous, heterogeneous), echogenic

foci (no echogenic foci or comet-tail artifacts, macrocalcifications and

peripheral calcifications, microcalcifications and punctate echogenic

foci), halo (absent halo, even thickness halo, uneven thickness halo),

posterior feature (no posterior feature, enhancement, shadowing),

and relationship with the capsule (distant, adjacent, or breakthrough).

Moreover, the C-TIRADS classification of thyroid nodules was

determined. Among them, nodules classified as class 3 or below by

C-TIRADS were defined as benign; in contrast, nodules with a C-

TIRADS classification of class 4a or above indicate ultrasound

malignancy diagnosis. During this process, both physicians were

blinded to the pathological results. Discrepancies in the ultrasound

classification between the two physicians were settled by discussion

until a consensus was reached to determine the final category of the

nodule. While reviewing the images, the two doctors selected

transverse and longitudinal images of each nodule to prepare for

the training of the deep learning model.
2.3 Deep learning algorithms

In this study, we employed a transformer-based approach to

classify thyroid nodules into two categories. Thyroid ultrasound

images were first cropped to a uniform 224×224 pixel size and then

processed using the ViT model (27), which divided each image into

16×16 pixel patches. These patches were flattened from the original

(H×W×C) format into a sequence with shape N×(P2×C) (where N

= HW/P2) and projected into D dimensions via a trainable linear

layer, with a learnable embedding prepended to preserve spatial
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information. Thyroid ultrasound images were subsequently

processed through Transformer blocks that leverage multi-head

self-attention, layer normalization, and residual connections for

deep feature extraction and contextual modeling. Finally, the

combined outputs were passed through a two-layer MLP with

GELU activation to generate global representations for effective

binary classification.

To train the model, we used the Adam optimizer. This

optimizer was configured with a momentum of 0.9 to ensure

stable learning and a weight decay of 0.05 to help prevent

overfitting. Additionally, we applied a dynamic learning rate

strategy—starting at 0.0004 and gradually decreasing it following

a cosine schedule—to facilitate a smoother training process. The

training was conducted over 150 epochs with a batch size of 24

images per iteration.

All experiments were implemented using the PyTorch 2.1.1 and

Timm 0.9.1 frameworks on an Ubuntu 18.04 system. The

computational setup included an Intel Xeon Gold 6230 CPU

running at 2.10 GHz and an NVIDIA GeForce RTX 3090 GPU

with 24GB of memory, ensuring robust performance for our deep

learning tasks. The flowchart of deep learning model is shown

in Figure 1B.
2.4 Statistical methods

SPSS 21.0 statistical software was used for analysis. Categorical

variables were presented as numbers and percentages and analyzed

by the c2 test and Fisher’s exact test. Continuous variables were

analyzed using a single sample K-S test to determine if the variables
A B

FIGURE 1

Flowchart. (A) Flowchart of the study. (B) Flowchart of ViT model.
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followed a normal distribution. Variables conforming to a normal

distribution were analyzed using a t-test. In contrast, variables not

conforming to a normal distribution were analyzed using the U-test.

Multivariate analysis was conducted using logistic regression

analysis. R (4.2.3) was used to construct and evaluate nomogram

model. The receiver operating characteristic (ROC) curves of the

model were plotted, and the area under the curve (AUC) and 95%

confidence interval (CI) were calculated to evaluate the predictive

ability of the models. Furthermore, the DeLong test was used to

determine the statistical significance of differences in AUC between

different models. A calibration curve was constructed to evaluate

the calibration degree of the model and decision curve analysis

(DCA) was performed to evaluate clinical benefits. The online

interactive nomogram was constructed by Shinny. Violin plots

were used to illustrate the age distribution differences between

patients with benign and malignant nodules. P<0.05 indicated

statistical significance.
3 Results

3.1 General features of deep learning
model training and validation sets

Statistically significant differences (P<0.05) in age, size, and C-

TIRADS classification were observed between benign and

malignant nodules in both the deep learning model training set

and the validation set. The general features of the deep learning

model training and validation sets are shown in Table 1. The exact

pathological types of all thyroid nodules are shown in

Supplementary Table 1.
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3.2 Prediction performance of the deep
learning model

The accuracy of this model in the validation set of 674 nodules

is 0.886, while the accuracy of TN3K is 0.825. This model showed

high precision, recall rate, and F1-score in all nodules, benign

nodules, and malignant nodules in the validation set respectively

(Table 2). The confusion matrix of 674 nodules in the model is

shown in Figure 2.
3.3 Clinical-ultrasound features of thyroid
nodules identified from the nomogram
training set and validation set

In the nomogram training set, 14 indicators, including age, size,

orientation, location, internal composition, echogenicity, shape,

margin, echotexture, posterior features, echogenic foci, halo,

relationship with the capsule, and deep learning predicted values,

showed statistically significant differences (P<0.05) between the

benign and malignant groups, while gender showed no

statistically significant difference. In the nomogram validation set,

13 indicators, including age, orientation, location, internal

composition, echogenicity, shape, margin, echotexture, posterior

features, echogenic foci, halo, relationship with the capsule, and

deep learning predicted values showed statistically significant

differences (P<0.05) between the benign and malignant groups.

However, no statistically significant difference was observed in

patient gender and size. The clinical-ultrasound characteristics

analysis of thyroid nodules in the nomogram training set and

validation set are shown in Table 3.
TABLE 1 General features of deep learning model training and validation sets.

Deep learning model training
set (n=1573)

T/U/c2 P

Deep learning model validation
set (n=674)

T/U/c2 P
Benign
(n=619)

Malignant
(n=954)

Benign
(n=308)

Malignant
(n=366)

Sex 2.462 0.117 0.942 0.332

Male 119 (19.2%) 215 (22.5%) 62 (20.1%) 63 (17.2%)

Female 500 (80.8%) 739 (77.5%) 246 (79.9%) 303 (82.8%)

Age 52.80 ± 11.89 46.79 ± 11.45 10.017 <0.001* 51.30 ± 12.66 45.86 ± 12.36 5.631 <0.001*

Size(cm) 1.3 (0.7, 2.9) 0.7 (0.5, 1.2) 11.542 <0.001* 1.0 (0.6, 2.0) 0.7 (0.5, 1.0) 5.726 <0.001*

C-TIRADS 472.573 <0.001* 156.155 <0.001*

Benign 322 (52.0%) 44 (4.6%) 137 (44.5%) 15 (4.1%)

Malignant 297 (48.0%) 910 (95.4%) 171 (55.5%) 352 (95.9%)
fronti
C-TIRADS China thyroid imaging reports and data systems.
*P<0.05.
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3.4 Binary logistics regression analysis and
establishment of the nomogram model

The significant indicators in the single factor analysis of the

training set were included in the binary logistics regression analysis

model, showing statistical significance (c2 = 499.321, P<0.001). The

independent variables included in the model, age, deep learning

predicted values, and echogenic foci (P<0.05). Specifically, the deep

learning malignant predicted value, microcalcifications or punctate

echogenic foci within nodules were indicative of malignant nodules.

Moreover, every 1-year-old increase in age resulted in a 0.04 times

reduction in the risk of malignant nodules. The age distribution of

benign and malignant nodules, as depicted in the violin plots,

followed a normal distribution with similar trends. Patients with

malignant nodules were younger than those with benign nodules in

both the training sets (Figure 3A) and validation sets (Figure 3B).

The results of binary logistics regression analysis on the training set

are shown in Table 4.

These indicators were incorporated into the nomogram model,

and the malignant probability of nodules was predicted. The

nomogram model was shown in Figure 4. Furthermore, an online

interactive nomogram was developed(https://saprediction.

shinyapps.io/DynNomapp/). The score of individual thyroid
Frontiers in Endocrinology 05
nodules can be obtained through each indicator, with the total

score of each indicator corresponding to the probability of the

nodule being diagnosed as malignant (Figure 5).
3.5 Evaluation of the nomogram model

The ROC curves of the training and validation sets revealed that

the model has good accuracy. The AUC of the training set

(Figure 6A): C-TIRADS 0.715 (95% CI: 0.680-0.749), deep

learning 0.898 (95% CI: 0.871-0.925), nomogram model 0.951

(95% CI: 0.932-0.969). Validation set AUC (Figure 6B): C-

TIRADS 0.667 (95% CI: 0.612-0.723), deep learning 0.869 (95%

CI: 0.818-0.919), nomogram model 0.898 (95% CI: 0.850-0.945).

The Delong test showed statistical differences (P<0.05) between the

ROC curves. The calibration curves of the training set (Figure 6C)

and validation set (Figure 6D) showed that the model has good

calibration accuracy, and DCA indicated that the model has clinical

benefits in both the training set (Figure 6E, threshold 0-0.98) and

validation set (Figure 6F, threshold 0-0.93).
4 Discussion

In this study, a deep learning model was trained to

comprehensively analyze the clinical and ultrasound characteristics

of thyroid nodules. Based on the prediction results of the deep

learning model for thyroid nodules, a nomogram model was

developed and validated, which includes an online interactive

nomogram, to predict the risk of malignancy of thyroid nodules.

The nomogram showed good accuracy, calibration, and clinical value.

In this study, age was identified as a predictive factor for

determining the benign or malignant nature of thyroid nodules.

The violin plot of age distribution revealed that patients with

malignant nodules were younger compared to those with benign

nodules. However, the role of age in the differentiation of benign

and malignant thyroid nodules remains controversial. In some

previous studies, age was identified as an independent predictor

of malignancy (30, 31), whereas other studies reported that age does

not have statistical significance in the predictive models. This

discrepancy may be attributed to the different attitudes of young

and elderly patients toward the treatment of C-TIRADS 4a-5

nodules. Young patients may prefer surgical treatment, while

elderly patients may prefer conservative treatment, resulting in

missing pathological results (32). Therefore, the differential value

of age in distinguishing benign and malignant thyroid nodules

varies in different studies.

Ultrasound examination, as a non-invasive imaging modality,

remains the most widely used initial examination method for

thyroid assessment (3, 33). In our study, malignant and benign

thyroid nodules showed statistical differences in nodule size,

location, orientation, internal composition, echogenicity, shape,

margin, echotexture, posterior feature, echogenic foci, halo, and

capsule relationship, which is consistent with C-TIRADS (9).

Among them, microcalcifications or punctate echogenic foci were
FIGURE 2

The confusion matrix of deep learning models in the validation set.
The horizontal axis represents the prediction results of the deep
learning model, and the vertical axis represents the
pathological results.
TABLE 2 Prediction performance of deep learning models in
validation sets.

precision recall F1-score

All nodules 0.900 0.889 0.895

Benign nodules 0.870 0.880 0.880

Malignant nodules 0.900 0.890 0.890

TN3K 0.770 0.687 0.726
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TABLE 3 The clinical-ultrasound characteristics analysis of thyroid nodules in the nomogram training set and validation set.

Nomogram training
set (n=496)

T/U/c2 P

Nomogram validation
set (n=178)

T/U/c2 P
Benign
(n=226)

Malignant
(n=270)

Benign
(n=82)

Malignant
(n=96)

Sex 0.872 0.350 0.110 0.740

Male 45 (19.9%) 45 (18.1%) 17 (20.7%) 18 (18.8%)

Female 181 (80.1%) 225 (81.9%) 65 (79.3%) 78 (81.2%)

Age 51.00 ± 12.74 45.14 ± 12.44 5.163 <0.001* 52.13 ± 12.46 47.88 ± 11.96 2.323 0.021*

Size (cm) 1.10
(0.60, 2.10)

0.70
(0.50, 1.10)

5.619 <0.001* 0.80
(0.50, 1.65)

0.70
(0.50, 0.98)

1.708 0.088

Orientation 65.495 <0.001* 8.531 0.003*

Horizontal 181 (80.1%) 122 (45.2%) 53 (64.6%) 41 (42.7%)

Vertical 45 (19.9%) 148 (54.8%) 29 (35.4%) 55 (57.3%)

Location 18.401 <0.001* 8.270 0.041*

Upper lobe 22 (9.7%) 59 (21.9%) 11 (13.4%) 19 (19.8%)

Middle lobe 134 (59.3%) 128 (47.4%) 51 (62.2%) 48 (50.0%)

Lower lobe 60 (26.5%) 60 (22.2%) 20 (24.4%) 22 (22.9%)

Isthmus 10 (4.5%) 23 (8.5%) 0 (0.0%) 7 (7.3%)

Internal composition 99.120 <0.001* 26.069 <0.001*

Cystic 19 (8.4%) 0 (0%) 6 (7.3%) 0 (0%)

Spongiform 13 (5.8%) 1 (0.4%) 2 (2.5%) 0 (0%)

Solid-cystic 47 (20.8%) 3 (1.1%) 10 (12.2%) 1 (1.0%)

Solid 147 (65.0%) 266 (98.5%) 64 (78.0%) 95 (99.0%)

Echogenicity 153.973 <0.001* 41.851 <0.001*

Anechoic 19 (8.4%) 0 (0%) 6 (7.3%) 0 (0%)

Hyperechoic/isoechoic 65 (28.8%) 5 (1.9%) 19 (23.2%) 1 (1.0%)

Hypoechoic 135 (59.7%) 162 (60.0%) 51 (62.2%) 61 (63.5%)

Markedly hypoechoic 7 (3.1%) 103 (38.1%) 6 (7.3%) 34 (35.4%)

Shape 162.150 <0.001* 62.862 <0.001*

Regular 151 (66.8%) 31 (11.5%) 52 (63.4%) 7 (7.3%)

Irregular 75 (33.2%) 239 (88.5%) 30 (36.6%) 89 (92.7%)

Margin 130.516 <0.001* 38.267 <0.001*

Clear 144 (63.7%) 38 (14.1%) 46 (56.1%) 12 (12.5%)

Unclear 82 (36.3%) 232 (85.9%) 36 (43.9%) 84 (87.5%)

Echotexture 89.009 <0.001* 32.320 <0.001*

Homogeneous 71 (31.4%) 3 (1.1%) 26 (31.7%) 1 (1.0%)

Heterogeneous 155 (68.6%) 267 (98.9%) 56 (68.3%) 95 (99.0%)

Posterior feature 30.204 <0.001* 11.969 0.003*

No 99 (43.8%) 130 (48.1%) 38 (46.3%) 47 (49.0%)

Enhancement 77 (34.1%) 39 (14.4%) 23 (28.0%) 9 (9.4%)

Shadowing 50 (22.1%) 101 (37.5%) 21 (25.7%) 40 (41.6%)

(Continued)
F
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TABLE 3 Continued

Nomogram training
set (n=496)

T/U/c2 P

Nomogram validation
set (n=178)

T/U/c2 P
Benign
(n=226)

Malignant
(n=270)

Benign
(n=82)

Malignant
(n=96)

Echogenic foci 85.570 <0.001* 23.604 <0.001*

No echogenic foci or comet-
tail artifacts

160 (70.8%) 96 (35.6%) 56 (68.3%) 37 (38.5%)

Macrocalcifications and
peripheral calcifications

33 (14.6%) 27 (10.0%) 15 (18.3%) 14 (14.6%)

Microcalcifications and
punctate echogenic foci

33 (14.6%) 147 (54.4%) 11 (17.4%) 45 (46.9%)

Halo 26.307 <0.001* 9.515 0.009*

Absent 187 (82.7%) 256 (94.8%) 67 (81.7%) 89 (92.7%)

Uneven thickness 18 (8.0%) 13 (4.8%) 5 (6.1%) 6 (6.3%)

Even thickness 21 (9.3%) 1 (0.4%) 10 (12.2%) 1 (1.0%)

Relationship with capsule 62.638 <0.001* 23.716 <0.001*

Distant 168 (74.3%) 120 (44.4%) 63 (76.8%) 43 (44.8%)

Adjacent 58 (25.7%) 106 (39.3%) 19 (23.2%) 39 (40.6%)

Breakthrough 0 (0%) 44 (16.3%) 0 (0.0%) 14 (14.6%)

Deep learning predicted value 323.124 <0.001* 97.393 <0.001*

Benign 190 (84.1%) 12 (4.4%) 69 (84.1%) 10 (10.4%)

Malignant 36 (15.9%) 258 (95.6%) 13 (15.9%) 86 (89.6%)
F
rontiers in Endocrinology
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*P<0.05. Bold values: P<0.05.
A B

FIGURE 3

Violin plot of the age distribution of benign and malignant nodules. (A) in the training set; (B) in the validation set. The white solid line and box in the
figure represent the quartiles of age.
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found to be independent risk factors for malignant nodules.

However, some benign nodules in this study also exhibited

vertical growth, markedly hypoechoic features, irregular shape,

unclear margin, microcalcifications, and posterior shadow, which

may lead to higher C-TIRADS classification in ultrasound

diagnosis, resulting in higher sensitivity and lower specificity of

the C-TIRADS classification. Moreover, ultrasound examination

involves a certain degree of subjectivity and relies heavily on the

diagnostic experience of the physician (33). Therefore, more

objective tools are required to eliminate potential observer bias,

and assist in the ultrasound diagnosis of thyroid nodules. Deep

learning constructs models by automatically learning features from

data layers, which can automatically extract deep features from

images without the need for manual intervention, reducing the

subjective influence of doctors (34).

Nomogram is a commonly used visualization tool in medical

research, which integrates different variables to generate the

probability of clinical events, with accuracy and intuitiveness (35,

36). Previous studies have shown that a nomogram model that
Frontiers in Endocrinology 08
integrates clinical, ultrasound, and deep learning models is superior

to ultrasound features or deep learning alone in identifying the

nature of thyroid nodules (31, 34, 37). Du et al. (34) analyzed

ultrasound images of 1076 cases of thyroid nodules and

constructed a nomogram model based on deep learning, which

showed high diagnostic performance (AUC>0.9). Zhang et al. (31)

collected ultrasound images of 500 thyroid nodules in a similar

retrospective study and performed deep learning of thyroid

ultrasound images with the YOLOv3 model, and constructed a

nomogram model to improve prediction ability. The model

achieved 84% accuracy in identifying TI-RADS category 4 thyroid

nodules. Zhong et al. (37) constructed a clinical-ultrasound-

radiomics nomogram to differentiate between benign and

malignant indeterminate cytology thyroid nodules, with higher

accuracy than a single clinical or radiomics model. Our study

incorporated clinical information of thyroid nodule patients,

ultrasound features of nodules, and deep learning prediction results

into a nomogram model. The ROC curve of the model reached an

AUC of 0.898 in the validation set. The predictive ability of the model
FIGURE 4

Nomogram model.
TABLE 4 Binary logistics regression analysis results of training set.

b P OR 95% CI of OR

Lower limit Upper limit

age -0.038 0.023* 0.963 0.931 0.995

Deep learning malignant prediction value 4.658 0.000* 105.440 35.935 309.375

microcalcifications or punctate echogenic foci 1.816 0.000* 6.149 2.230 16.951
OR, Odds ratio; CI, confidence interval. *P<0.05.
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was improved compared to C-TIRADS and the application of deep

learning models alone, which was consistent with previous research

results. But compared with these, our study included a larger total

number of ultrasound images and a larger sample size of ultrasound

images was used for deep model training. Moreover, the present

study developed an online interactive nomogram, directly displaying

the malignancy probability of nodules, eliminating the step of adding
Frontiers in Endocrinology 09
scores in traditional nomograms. It can be used as a more convenient

tool in clinical practice.

The diagnosis of thyroid diseases is facilitated by the

comprehensive analysis of clinical, morphological, molecular, and

epigenetic features using artificial intelligence algorithms (12).

Therefore, the combination of deep learning models and clinical

ultrasound features in this study is of great significance. Future
FIGURE 5

Example of application of the nomogram model. A 56-year-old female with a solid nodule in the middle of the right lobe of the thyroid gland,
measuring 1.7x1.5cm. The nodule was vertically oriented, with unclear margins and microcalcifications. The C-TIRADS classification was 4c, and the
deep learning model predicted a benign nodule. The total score of the nomogram model was about 70 points, corresponding to a malignant
prediction probability of 0.17, and the prediction result was benign. Pathological result: nodular goiter. C-TIRADS China thyroid imaging reports and
data systems.
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studies can improve the predictive model of this study by

incorporating pathological indicators and optimizing the model.

Nevertheless, the limitations of the present study should be

acknowledged. Firstly, as a single-center retrospective study, this
Frontiers in Endocrinology 10
study has certain biases and lacks validation with large sample data

from multiple centers. This requires further improvement of multi-

center data in our future research work. Secondly, this study only

included two-dimensional grayscale ultrasound information and
A B

C D

E F

FIGURE 6

Evaluation of the nomogram model. (A) ROC curve of training set; (B) ROC curve of validation set; (C) Nomogram model calibration curve of
training set; (D) Nomogram model calibration curve of validation set; (E) Nomogram model DCA of training set; (F) Nomogram model DCA of
validation set. ROC receiver operating characteristic, DCA decision curve analysis.
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lacked multimodal ultrasound images and dynamic images, which

will be further optimized in our future research.
5 Conclusion

Age, deep learning predicted values, and echogenic foci can be

used as independent predictive factors for the benign or malignant

judgment of thyroid nodules. The deep learning models showed

superior diagnostic accuracy compared to the C-TIRADS

classification. The nomogram integrates deep learning and

clinical-ultrasound characteristics, yielding a higher accuracy than

C-TIRADS or deep learning models alone. The online interactive

nomogram provides a more convenient tool for clinical practice.
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