AUTHOR=Li Yuan , Li Ting , He Kai , Cui Xiao-xiao , Zhang Lu-lu , Wei Xiu-liang , Liu Zhi , Wu Mei TITLE=A predictive nomogram of thyroid nodules based on deep learning ultrasound image analysis JOURNAL=Frontiers in Endocrinology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2025.1504412 DOI=10.3389/fendo.2025.1504412 ISSN=1664-2392 ABSTRACT=ObjectivesThe ultrasound characteristics of benign and malignant thyroid nodules were compared to develop a deep learning model, aiming to establish a nomogram model based on deep learning ultrasound image analysis to improve the predictive performance of thyroid nodules.Materials and methodsThis retrospective study analyzed the clinical and ultrasound characteristics of 2247 thyroid nodules from March 2016 to October 2023. Among them, 1573 nodules were used for training and testing the deep learning models, and 674 nodules were used for validation, and the deep learning predicted values were obtained. These 674 nodules were randomly divided into a training set and a validation set in a 7:3 ratio to construct a nomogram model.ResultsThe accuracy of the deep learning model in 674 thyroid nodules was 0.886, with a precision of 0.900, a recall rate of 0.889, and an F1-score of 0.895. The binary logistic analysis of the training set revealed that age, echogenic foci, and deep learning predicted values were statistically significant (P<0.05). These three indicators were used to construct the nomogram model, showing higher accuracy compared to the China thyroid imaging reports and data systems (C-TIRADS) classification and deep learning models. Moreover, the nomogram model exhibited high calibration and clinical benefits.ConclusionAge, deep learning predicted values, and echogenic foci can be used as independent predictive factors to distinguish between benign and malignant thyroid nodules. The nomogram integrates deep learning and patient clinical ultrasound characteristics, yielding higher accuracy than the application of C-TIRADS or deep learning models alone.