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Ahi Evran University Medicine Faculty
Department of Physiology, Türkiye

*CORRESPONDENCE

Song Yuan

yuansong@sysush.com

Changze Song

songchz@mail.sysu.edu.cn

Xiaoli Li

lixiaoli@sysush.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 02 October 2024

ACCEPTED 25 April 2025
PUBLISHED 21 May 2025

CITATION

Wang Z, Li D, Zhou G, Xu Z, Wang X, Tan S,
Li Z, Li X, Song C and Yuan S (2025)
Deciphering the role of reactive oxygen
species in idiopathic asthenozoospermia.
Front. Endocrinol. 16:1505213.
doi: 10.3389/fendo.2025.1505213

COPYRIGHT

© 2025 Wang, Li, Zhou, Xu, Wang, Tan, Li, Li,
Song and Yuan. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 21 May 2025

DOI 10.3389/fendo.2025.1505213
Deciphering the role of reactive
oxygen species in idiopathic
asthenozoospermia
Zilong Wang1,2†, Dandan Li3†, Guoyi Zhou1†, Zhen Xu1,
Xinkun Wang1, Senbao Tan1, Zhenghao Li1, Xiaoli Li4*,
Changze Song1* and Song Yuan4*

1Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,
2Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University,
Shenzhen, China, 3Department of Radiation Therapy, Dongguan Hospital of Guangzhou University of
Chinese Medicine (Dongguan Traditional Chinese Medicine Hospital), Dongguan, China, 4Surgery and
Anesthesia Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
Asthenozoospermia is a severe condition characterized by abnormal sperm

motil ity, contributing to 50% of male inferti l ity cases. Idiopathic

asthenozoospermia refers to a form of this condition with no identifiable causes

through routine clinical examinations, potentially linked to apoptosis and oxidative

stress induced by excessive reactive oxygen species (ROS). At low concentrations,

ROS positively influence physiological processes, including sperm mature and

motility. However, elevated ROS levels can harm human spermatozoa through

oxidative stress, primarily due to the absence of effective DNA damage repair

mechanisms and inadequate antioxidant defenses. In this review, we summarize the

physiological and pathophysiological roles, endogenous and exogenous sources,

and therapeutic strategies related to ROS in idiopathic asthenozoospermia.

Ultimately, maintaining a proper balance between ROS concentrations and

antioxidants is crucial for ensuring male reproductive health.
KEYWORDS

reactive oxygen species, idiopathic asthenozoospermia, oxidative stress, spermmotility,
antioxidants, male infertility
1 Introduction

Sperm motility is a crucial capability of human spermatozoa necessary for their journey

across the female genital tract post-ejaculation (1), with progressive motility (PR) serving as

a key metric (2, 3). In recent years, sperm parameters have witnessed a declining trend,

especially with a sharp drop in sperm motility, which, in severe cases, leading to male

infertility in severe instances (4). Currently, male infertility is responsible for the 14% of

couples experiencing fertility issues (1, 2). Asthenozoospermia (AZS) is a severe condition

characterized by abnormal sperm motility, defined by progressive motility of less than 32%

(PR<32%) among sperm parameters (2, 3). The majority of patients with male infertility

also present with asthenozoospermia. The common causes of AZS include varicocele,
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endocrine abnormalities, environmental factors, inflammation,

drug-induced injury, and certain underlying diseases (5, 6).

Nevertheless, in numerous cases, routine clinical examinations fail

to identify clear causes, leading to a classification of idiopathic AZS

(iAZS) (5).

The exact pathogenesis of iAZS remains unclear, but it is

currently believed that excessive reactive oxygen species (ROS)

leading to apoptosis and oxidative stress is a key factor in its

development. ROS is a group of highly reactive oxygen-

containing molecules that include superoxide anion (O2
-),

hydrogen peroxide (H2O2), hydroxyl radicals (OH-), and singlet

oxygen (1O2) (7). Due to their short half-life (8), they cannot be

directly detected in human specimens. The OH- is particularly

unstable and rapidly reacts with nearby biomolecules. Furthermore,

H2O2 is a predominant form of ROS capable of crossing cell

membranes to exert effects beyond cellular boundaries (9).

The intracellular levels of ROS are closely regulated by various

synthesis and degradation pathways. Maintaining physiological levels

of ROS is critical for redox regulation involved in processes such as

repair, survival, and differentiation (10). However, when ROS are

produced in excess, they can damage sperm cells, leading to impaired

motility, DNA fragmentation, and cellular apoptosis, significantly

affecting male fertility (11). Additionally, excessive ROS can induce

lipid peroxidation in the sperm plasma membrane, which is rich in

polyunsaturated fatty acids, disrupting membrane integrity and

impairing sperm function and morphology (12). While ROS are

often considered detrimental, they also play a vital physiological role

in sperm function (13, 14). In spermatozoa, these molecules play

essential roles in sperm capacitation, acrosome reaction, and

fertilization (15). The challenge lies in the delicate balance between

the beneficial and harmful effects of ROS (16). The role of ROS in

idiopathic asthenozoospermia remains unclear (17). Furthermore,

the mechanisms for maintaining the dynamic balance of ROS in

sperm to manage oxidative stress in idiopathic asthenozoospermia

require further investigation.

Idiopathic asthenozoospermia (iAZS) may be linked to

apoptosis and oxidative stress caused by excessive ROS (18, 19).

Nevertheless, the exact pathogenesis of iAZS remains unclear. This

review explores the sources of ROS, their physiological and

pathological roles in sperm motility, and potential therapeutic

strategies targeting ROS in iAZS. By investigating these aspects,

we offer new insights for the clinical management of iAZS and

provide a comprehensive framework for understanding the

complex interplay between ROS and sperm function.
2 Physiological roles of low
concentrations of ROS in sperm
maturation and motility

At low concentrations, ROS positively influence physiological

processes such as spermatogenesis, sperm motility, and fertilization

(20, 21). This process might be associated with phosphorylation, the

expression of regulatory transcription factor and oxidative effects

(Figure 1) (22).
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2.1 Phosphorylation

During spermatogenesis, the DNA replication process of meiosis

relies on energy supplied through oxygen consumption and ROS

generation in mitochondria, which also provide the necessary ATP

for sperm motility (23). The proliferation of spermatogonia and the

differentiation of spermatocytes into spermatozoa, including the

formation of sperm flagella crucial for motility, depend on various

internal environmental factors (24). These factors include receptor-

tyrosine kinase (RTK) phosphorylation signaling pathways, which are

mediated by ROS in some somatic cells (25). Therefore, physiological

concentrations of ROS play beneficial roles by modulating

phosphatases and facilitating phosphorylation (Figure 1).
2.2 Regulatory transcription factor

ROS at appropriate concentrations play a crucial role in the

transcriptional processes of spermatogenesis by functioning as

regulatory transcription factors (26). Several sex hormones,

including follicle-stimulating hormone (FSH) and luteinizing

hormone (LH), are also involved in the mechanism of

transcriptional regulation (27). In the testes, Sertoli cells are the

primary targets of FSH (28). The cAMP response element-binding

protein (CREB), whose receptors are activated by optimal levels of

ROS, serves as a pivotal transcription factor within Sertoli cells

under the influence of FSH-mediated signaling pathways (29).

However, the role of ROS as regulatory transcription factors

varies distinctly from that of various sex hormones (Figure 1) (30).
2.3 Oxidative effect

Sperm maturation in the epididymis is influenced by the

oxidative effects of ROS (22). Due to the lack of histone

packaging, spermatozoa struggle to maintain the integrity of their

genetic material through DNA damage repair processes (21).

Consequently, the histone-to-protamine replacement during

spermiogenesis provides an alternative mechanism for

maintaining genetic stability, which results from the oxidation of

small nuclear thiol group proteins in protamine (31). Additionally,

ROS, as oxidants derived from redox reactions, are implicated in the

formation of chromatin packaging and the mitochondrial capsule—

a protective cover surrounding the chromatin and mitochondria

(32). Improper formation of these structures can compromise both

the integrity and energy generation required for sperm motility,

leading to functional impairments in spermatozoa (Figure 1)

(33, 34).
3 Pathophysiological roles of ROS in
idiopathic asthenozoospermia

Sperm motility is an essential capability of human spermatozoa

required for their journey through the female genital tract post-
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ejaculation (1). Due to the lack of adequate oxygen radical-

scavenging enzymes in their cytoplasm, human spermatozoa are

highly vulnerable to oxidative stress induced by reactive oxygen

species (ROS), leading to idiopathic asthenozoospermia without a

clear etiology (35). ROS produced by mitochondrial complex I can

cause mitochondrial dysfunction through peroxidation in the mid-

piece of spermatozoa, resulting in a rapid depletion of ATP, which

adversely affects sperm motility (36, 37). The primary sites of ATP

generation in human spermatozoa are the mitochondria, the central

part of the flagella, and the sperm head (38). The key metabolic

pathways involved are oxidative phosphorylation and glycolysis

(18). ATP production via oxidative phosphorylation primarily

occurs in the mitochondrial respiratory chain complexes through

respiration, while glycolysis takes place in the central part of the

flagella (Figure 1) (39, 40).
3.1 Impaired mitochondrial function

The specific activity of mitochondrial enzymes, which depend

on the mitochondrial electron transfer chain complexes (ETCs), can

influence sperm motility and potentially lead to idiopathic

asthenozoospermia (41). Sperm motility has been shown to

correlate with oxygen consumption and the efficiency of

mitochondrial respiration. Several inhibitors of ETCs have been

observed to impair sperm motility. Complex I in the mitochondria
Frontiers in Endocrinology 03
is particularly sensitive to excessive ROS (42), and this sensitivity

arises because ROS generated through unsaturated fatty acids

inhibit complex I (42). Meanwhile, the absence of mitochondrial

protein OPA1 leads to disorganization of mitochondrial cristae

structure and impaired assembly of ETC Complexes I, III, IV, and

V, but does not affect the assembly of Complex II. OPA1 plays a role

in the accumulation of mitochondrial ROS and lipid ROS induced

by cysteine deprivation. Additionally, ferroptosis is a form of iron-

dependent non-apoptotic cell death primarily triggered by the

accumulation of intracellular iron and lipid peroxidation.

Mitochondria-targeted antioxidants such as SkQ1 and redox

mediators like methylene blue can inhibit the production of ROS

in Complex I of the mitochondrial electron transport chain,

preventing mitochondrial lipid peroxidation and ferroptosis (13).

The primary characteristics of non-motile sperm include the

disruption of the mitochondrial dysfunction (43–45).

Mitochondrial DNA (mtDNA) damage resulting from

interactions between nitric oxide (NO) and superoxide (O2⁻) can
also affect sperm motility and function (12, 46). And mtDNA repair

is inadequate because of the complete absence of nucleotide-

excision repair pathways (47, 48). Mitochondria are crucial for

the energy metabolism of sperm, primarily generating ATP through

oxidative phosphorylation (OXPHOS) to fuel sperm motility (49).

Damage to mitochondrial DNA can result in OXPHOS dysfunction

(50), which in turn impairs ATP production and leads to reduced

sperm motility (36, 37). Additionally, mitochondrial DNA damage
FIGURE 1

The physiological and pathological roles of ROS in human sperm motility.
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can lead to excessive production of reactive oxygen species (ROS),

with elevated ROS levels triggering oxidative stress that further

impairs sperm function (51). Such damage may also interfere with

the expression and function of mitochondria-related proteins. For

instance, mitochondrial transcription factor A (TFAM) is critical

for regulating mitochondrial DNA replication and transcription.

Abnormal TFAM expression may be linked to mitochondrial DNA

damage, consequently affecting sperm vitality (52). Moreover,

mitochondrial DNA damage can compromise the structural

integrity of mitochondria, resulting in reduced sperm motility

(53). Finally, mitochondrial DNA damage can influence sperm

survival and function by affecting apoptotic pathways. Research

indicates that mitochondrial dysfunction may activate apoptotic

signaling pathways, leading to sperm cell death (54). Therefore,

mitochondrial DNA damage impacts sperm vitality through various

mechanisms, including disruptions in energy metabolism, oxidative

stress, alterations in mitochondrial membrane potential, abnormal

protein expression, and apoptosis. These interconnected pathways

collectively result in reduced sperm vitality, ultimately affecting

male fertility.

Furthermore, ROS can compromise the integrity of

mitochondrial membranes, potentially activating apoptotic

signaling cascades and promoting the release of cytochrome C

(55, 56). Apoptosis in spermatozoa is typically initiated by oxidative

stress and lipid peroxidation, leading to the production of
Frontiers in Endocrinology 04
mitochondrial ROS. This cascade results in a rapid loss of sperm

motility, followed by caspase activation and the exposure of

phosphatidylserine on the sperm surface (57). The Sperm

Chromatin Structure Assay (SCSA) and active Caspase-3 levels

correlate with the rate of motility decline post-ejaculation. Elevated

levels of these markers suggest a faster decline in motility, indicating

that apoptosis significantly impacts sperm vitality (58, 59). The

phosphoinositide 3-kinase (PI3K) signaling pathway plays a role in

regulating sperm apoptosis. Inhibition of PI3K activity triggers an

apoptotic cascade characterized by loss of motility and oxidative

DNA damage. Thus, impaired mitochondrial function due to

mtDNA damage and mitochondrial apoptosis may be responsible

for reduced sperm motility and idiopathic asthenozoospermia

(Figure 1) (45).
3.2 Impaired sperm plasma membrane

Sperm plasma membrane may be the major target site of ROS

through cascade signaling reaction (60). ROS affects the fluidity and

integrity of sperm plasma membrane (12). The membrane fluidity

of human spermatozoa depends on the polyunsaturated fatty acids

(PUFA) in the sperm plasma membrane (61). Excessive ROS

converts PUFA into 4-hydroxynonenal (4-HNE) and

malondialdehyde (MDA), byproducts of LPO, to destroy the
FIGURE 2

The endogenous and exogenous sources of ROS in idiopathic asthenozoospermia. (a) Immature spermatozoa; (b) Leukemia; (c) Radiation; (d)
Environment resources; (e) Smoking; (f) Alcohol consumption.
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membrane fluidity of spermatozoa. Meanwhile, the generation of 4-

HNE and MDA also impaired mitochondrial electron transfer

chain complexes, which resulted in reducing ATP production and

corresponding sperm motility, and further increased ROS from

mitochondria as a result of oxidative stress (62). Therefore, ROS

causes damage to membrane fluidity of human spermatozoa

through the generation of MDA and 4-HNE, which in turn

lead to idiopathic asthenozoospermia (Figure 1) (63). What’s

more, loss of glutathione, a kind of antioxidants in the

midpiece of spermatozoa, may also contributes to idiopathic

asthenozoospermia (64).

In addition, lipid peroxidation (LPO) induced by excessive ROS

could also adversely affect the fluidity of the sperm plasma

membrane through oxidative stress (65). This process can result

in the complete inactivation of membrane enzymes, subsequently

leading to sperm DNA damage (57). Enzymes on the sperm

membrane, such as phospholipase C (PLC) and phospholipase D

(PLD), play crucial roles in regulating intracellular signal

transduction and membrane lipid metabolism (66). Dysfunction

of these enzymes can lead to disordered membrane lipid

metabolism, increased ROS production, and consequently,

oxidative stress and sperm DNA damage (67). For instance,

overactivation of PLC can lead to an increase in intracellular

calcium ion concentration, which in turn activates a series of

downstream signaling pathways and increases ROS production

(66). These ROS can attack the unsaturated fatty acids on the

sperm membrane, triggering lipid peroxidation reactions that

disrupt the membrane’s integrity, ultimately leading to sperm

DNA damage (67). Additionally, when the functions of

antioxidant enzymes such as superoxide dismutase (SOD),

catalase (CAT), and glutathione peroxidase (GPX) are inhibited

or their activities are reduced, ROS levels rise, leading to lipid

peroxidation of the sperm membrane and consequently affecting

the integrity of sperm DNA, resulting in decreased sperm

motility (68).
3.3 Sperm DNA fragmentation

In spermatozoa, the integrity of DNA is crucial for protecting

genetic material from environmental damage. Uncompacted DNA,

due to its open structure, is more susceptible to attack by ROS,

prompting mitochondria to produce apoptosis-inducing factor

(AIF) and sperm DNA fragmentation (SDF) (69). DNA damage

is assessed by the DNA frag-mentation index (DFI) rate using the

comet assay, the sperm chromatin dispersion assay, terminal

deoxyuridine nick end labeling (TUNEL) assay, and sperm

chromatin structure assay (70, 71). Studies have shown that the

sperm DFI is significantly negatively correlated with progressive

sperm motility (72, 73). Specifically, for every 10% increase in DFI,

the probability of male conception may decrease by up to 30% (1,

74, 75). One study found that a sperm DFI greater than 30% is a

threshold for a significant decline in conception rates; when DFI

exceeds 30%, the success rates of natural conception and

intrauterine insemination (IUI) are nearly zero (1, 74, 75). SDF is
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a type of DNA damage that occurs under conditions involving

sperm caspase and endonuclease activity, which subsequently

affects the transition from histone to protamine (76). The

reduction in sperm motility is also linked to the inhibition of this

histone-to-protamine transition (77, 78). In patients with

asthenozoospermia, the expression levels of protamine are

typically lower, which may affect the motility and fertilization

capacity of spermatozoa (79). Thus, SDF is one of the

manifestations of idiopathic asthenozoospermia.

The relationship between SDF and reduced sperm motility is

complex, involving various molecular mechanisms. Studies suggest

that oxidative stress is a primary factor contributing to SDF. It leads

to the excessive production of ROS within sperm cells, which attack

DNA, causing strand breaks and thereby increasing DNA

fragmentation (80). Moreover, oxidative stress can impair

mitochondrial function, disrupting energy metabolism and

resulting in diminished sperm motility (52). The chromatin

packaging state of sperm is another critical factor. Research has

shown that sperm with poorly packaged chromatin are more prone

to DNA fragmentation and cell death during freeze-thaw processes

(81). This inadequate chromatin packaging may be linked to

insufficient protamine levels, which are essential for the high

degree of chromatin compaction in spermatozoa (82).

Additionally, sperm DNA fragmentation is correlated with the

age of the sperm. As age advances, the integrity of sperm DNA

declines, and DNA fragmentation increases. This is possibly due to

age-related oxidative stress and a decline in antioxidant defense

mechanisms (83).
3.4 Impaired flagella function

Human spermatozoa can utilize various carbohydrates to

generate ATP necessary for sperm motility. However, even in the

absence of impaired mitochondrial function, inhibition of glycolysis

can also affect sperm motility (84). The flagella, which constitute

most of the sperm tail structure, play a crucial role in facilitating

sperm motility. For instance, cAMP can promote the

phosphorylation of protein kinase A (PKA) in sperm flagella (85),

which is followed by the activation of tyrosine kinases and the

phosphorylation of tyrosine residues in sperm proteins, including

AKAP3, AKAP4, FSIP2, CABYR, and VCP (86, 87). The cyclic

AMP (cAMP)-mediated PKA signaling pathway in sperm has been

shown to be downregulated due to oxidative stress in idiopathic

asthenozoospermic males (84). Levels of cAMP are positively

correlated with sperm motility (88). cAMP is activated by

intracellular soluble adenylyl cyclase (sAC), which is encoded by

the ADCY10 gene under the stimulation of Ca2+, and is essential for

sperm motility (89). Mutations in the ADCY10 gene can lead to a

decline in sAC, resulting in idiopathic asthenozoospermia[106].

Meanwhile, AKAP3, a structural protein acting as the regulatory

subunit of PKA, forms the fibrous sheath, maintaining the structural

integrity of the sperm flagella in collaboration with AKAP4 (90). A

deficiency in AKAP3 may impair sperm motility due to the

abnormal accumulation of DNA and RNA metabolites (91).
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Mutations in AKAP3 and AKAP4 can lead to structural

abnormalities in the sperm tail’s flagella (91). FSIP2 anchors

cAMP-mediated PKA into AKAP4 to sustain sperm motility.

Mutations in FSIP2, characterized by the absence of CPC, IDA,

and ODA, can cause idiopathic asthenozoospermia due to the lack of

AKAP4 protein (92). Thus, idiopathic asthenozoospermia can be

monitored through AKAP3, AKAP4, and FSIP2 within the cAMP/

PKA signaling pathway (93).

Additionally, the glycolysis process in the central part of the

flagella provides sufficient ATP for its function to support sperm

movement (94). Researchers have found that GPI, MDH1, PGAM1

and PGAM2A, the glycolysis-mediated proteins, were

downregulated in the spermatozoa of patients with iAZS (95).

Meanwhile, a significant number of glycolytic enzymes, including

lactate dehydrogenase, phosphofructokinase, hexokinase,

glyceraldehyde-3-phosphate dehydrogenase (GAPD), and

phosphoglucose isomerase, have been identified in the sheath of

the sperm flagella, maintaining its function (38). Additionally, in

seminal plasma, researchers have demonstrated that citric acid,

malic acid, succinic acid, which are associated with energy

metabolism, and pyruvate were collectively reduced in the iAZS

group, while lactate levels were elevated (96). These findings

indicate a shift towards anaerobic glycolysis, resulting in

decreased production of ATP compared to aerobic catabolism via

the tricarboxylic acid cycle (96). This metabolic alteration likely

contributes to reduced sperm motility (Figure 1).
4 The sources of ROS in human
ejaculate

ROS is produced through both endogenous and exogenous

pathways and play critical roles in sperm function. Human

spermatozoa are significant sites of cellular ROS production (97,

98). Meanwhile in the context of iAZS, endogenous ROS are often

produced in excess.
4.1 Endogenous sources and their effects
on sperm motility

Human ejaculate contains a diverse array of round cell types,

including human spermatozoa at various developmental stages,

leukocytes, and epithelial cells (97, 98). The ROS contributed by

these cells constitute the majority of the endogenous ROS pool,

which is predominantly found in seminal plasma. Among them,

immature spermatozoa and leukocytes, such as neutrophils and

macrophages, are considered major endogenous sources of ROS

(99, 100). The mechanisms of endogenous ROS generation in

immature spermatozoa and leukocytes lied in two primary

pathways: the reduced nicotinamide adenine dinucleotide

(NADH)-dependent oxidoreductase system in the mitochondria

and the nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase system located in the spermatozoa plasma membrane (101).
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The mitochondrial oxidoreductase system is responsible for the

majority of ROS production within human spermatozoa, primarily

due to the abundance of mitochondria, which supply continuous

energy for sperm motility (101). Mitochondrial ROS generation is

fundamentally linked to the process of respiration. NADH

oxidoreductase plays a critical role by catalyzing the oxidation of

O2 to O2
-, a precursor of sperm ROS, while transferring electrons

from NADH to coenzyme Q10 (CoQ10) within the mitochondrial

respiratory chain (102). If mitochondrial O2 concentrations are

elevated, coupled with increased respiratory rates, more superoxide

is released (103).

In the plasma membrane of human spermatozoa, NADPH

oxidase also contributes to the transformation of O2 to

superoxide (104). NOX5, a type of NADPH oxidase located in

the acrosome and midpiece region of human spermatozoa, is

activated through the binding of Ca2+ to its N-terminal

cytoplasmic domain (105). These conformational changes

facilitate the generation of superoxide, making the ROS generated

by NOX5 as a major component of reactive oxygen species in

human spermatozoa (105).

4.1.1 Immature spermatozoa
The synthesis of ROS in semen is influenced by the maturation

level of spermatozoa (106). During their development and

maturation, damaged or immature spermatozoa may retain

residual cytoplasmic droplets, which are remnants of

spermatogenesis. These droplets contain glucose-6-phosphate

dehydrogenase (G6PD), a cytosolic enzyme that produces an

excess of NADPH. This NADPH acts as a substrate for NADPH

oxidase, facilitating the conversion of O2 to O2
- (107).

A significant concentration of mitochondria is found in the

midpiece of spermatozoa, serving as energy reservoirs that support

sperm motility (108). The diaphorase enzyme, an oxidoreductase in

the mitochondrial respiratory chain, maintains a balance between

the oxidized and reduced forms of NADH to sustain spermmotility.

However, a reduction in diaphorase enzyme activity can lead to

superoxide generation, resulting in mitochondrial dysfunction

through ROS-induced oxidative stress, potentially even damaging

the mitochondrial integrity of human spermatozoa (109). Damage

to the mitochondrial membrane by excessive ROS can further

exacerbate ROS generation (110) (Figure 2a).

4.1.2 Leukocyte
In patients with idiopathic asthenozoospermia, less than one

million leukocytes per milliliter are typically found in naturally

ejaculated semen (1). Most of the leukocytes from the prostate and

seminal vesicles are activated leukocytes (106). Activated

leukocytes, particularly peroxidase-positive types such as

polymorphonuclear neutrophils (PMNs) and macrophages, are

significant producers of ROS in human semen (111). These

leukocytes enhance the production of NADPH, thereby increasing

the activity of NADPH oxidases and resulting in elevated levels of

superoxide O2
-. Additionally, myeloperoxidase-positive neutrophils

contribute to the oxidative conversion of O2 (112).
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In addition, leukocyte-mediated signaling can also lead to an

imbalance between oxidative and antioxidative processes. Elevated

proinflammatory cytokines, such as interleukin (IL)-8, and reduced

levels of superoxide dismutase (SOD) promote ROS generation,

triggering oxidative stress. This stress, exacerbated by excessive

leukocytes, ultimately damages spermatozoa (Figure 2b) (74).
4.2 Exogenous sources of ROS and their
effects on sperm motility

The influence of environmental factors on sperm quality and

motility represents a complex and multifaceted challenge. Over

recent years, an expanding corpus of research has been dedicated to

elucidating the mechanisms by which these factors impact male

fertility, with particular emphasis on sperm quality and motility.

This review specifically examines the roles of environmental factors,

encompassing high temperatures, toxicants, and occupational

exposures, as well as lifestyle factors, including obesity, smoking,

alcohol consumption, and daily electronic radiation, in the

generation of ROS and their impact on sperm motility.

4.2.1 Environmental sources
Prolonged exposure to high temperatures and heat radiation can

induce scrotal hyperthermia, promoting the generation of ROS.

Studies have shown that high summer temperatures are associated

with decreased sperm concentration and count, while variations in

sunlight duration and humidity can also affect sperm quality (113).

Research conducted in Argentina found that changes in sunlight

duration and humidity are linked to reductions in sperm

concentration, count, motility, and membrane integrity (113). The

underlying mechanism involves the upregulation of Caspase 3, which

induces apoptosis in Leydig and Sertoli cells of the human testis due

to excessive ROS generated by heat stress (114, 115) (Figure 2c).

Chemical toxicants such as phthalates, originating from

microplastic pollution, can lead to an overproduction of ROS in

human spermatozoa and testicular germlines cells (116, 117). This

condition is characterized by a reduction in testicular antioxidants

and hormone levels, causing mitochondrial dysfunction and

decreased sperm motility as a result of oxidative stress (116, 117).

Similarly, heavy metal ions like cadmium, copper, iron, and lead can

reduce sperm motility and affect other sperm parameters. These

effects are attributed to mitochondrial DNA damage caused by

excessive ROS (118–120). A study involving coke oven workers

identified a dose-response relationship between exposure to metal

mixtures and diminished sperm quality (121). Furthermore, air

pollution can also impact sperm motility by compromising the

integrity of the spermatic plasma membrane through excessive ROS

production. Research conducted in southern China has revealed a

significant association between exposure to air pollutants like CO,

NO2, O3, PM10, and PM2.5 and reductions in sperm count and

motility, particularly during critical periods of sperm development

(122) (Figure 2d).

Occupational exposure and pesticides pose a global concern

regarding male reproductive health, particularly in industrialized
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nations (12, 123). Research has indicated that exposure to

environmental toxicants such as cadmium, mercury and

bisphenol A (BPA) can lead to male infertility, a condition

associated with oxidative stress (123). These toxicants instigate

oxidative stress, thereby disrupting the normal function of

reproductive cells and consequently affecting the quality and

motility of sperm (124). For instance, cadmium and mercury can

interfere with the intracellular antioxidant defense systems, leading

to an overproduction of ROS, which in turn damage sperm DNA

and membrane lipids (125). BPA and pesticides may mimic or

disrupt endocrine functions, thereby affecting the balance of

reproductive hormones and subsequently influencing

spermatogenesis (126, 127). Therefore, reducing occupational

exposure and the use of pesticides is crucial for the protection of

male reproductive health.

4.2.2 Lifestyle factors
Lifestyle factors and occupational exposures are considered

significant influences on sperm quality. Studies indicate that

obesity and irregular sleep patterns are associated with declines in

sperm quality (128). In a study involving 1,060 participants, these

lifestyle factors were significantly correlated with lower sperm

quality (128). Research indicates that obesity leads to an increased

accumulation of body fat, thereby triggering oxidative stress. This

condition has a negative impact on sperm quality, particularly

contributing to the occurrence of AZS (129). The oxidative stress

induced by obesity not only affects the quality of sperm but may also

exacerbate reproductive dysfunction by influencing the function of

the reproductive axis (130). For instance, the disruption of tightly

regulated metabolic pathways can lead to adverse reproductive

outcomes, such as an inefficient energy supply to germ cells,

defects in sperm motility, or arrest of spermatogenesis (129).

Moreover, testicular metabolic alterations induced by obesity may

also result in mitochondrial dysfunction, which is closely associated

with the overproduction of ROS and oxidative stress readily

targeting spermatozoa DNA and lipids, thereby contributing to a

decrease in sperm quality (129).

Cigarette smoking is a major etiological factor in idiopathic

asthenozoospermia. A meta-analysis of 20 studies conducted by

Sharma et al. highlighted that cigarette smoking has an overall

negative effect on sperm motility and other semen parameters (131).

The accumulation of excessive ROS due to hazardous chemicals,

carcinogens, and mutagenic substances in tobacco can damage

mitochondrial DNA, inducing oxidative stress. Substances such as

nicotine in cigarettes ultimately impair sperm motility by causing

oxidative damage to the integrity of plasma membranes, altering

protein and enzyme conformations and activation, and

compromising the mitochondrial DNA sequence integrity. Creatine

kinase (CK), a protein serving as a cellular energy reserve for fast ATP

buffering and rebuilding in human spermatozoa, exhibits decreased

activity in smokers. Elevated levels of reactive oxygen species (ROS)

lead to additional oxidative damage to mitochondrial DNA, reducing

ATP production and available energy, which, coupled with reduced CK

activity, results in a rapid decline in sperm motility. Furthermore, the

decline in sperm motility due to smoking is associated with protein
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phosphorylation, inhibition of histone-to-protamine transition, and

disruptions in the expression of microribonucleic acids (miRNAs).

Additionally, second-hand smoke also damages sperm motility

through mitochondrial DNA damage and methylation, caused by

excessive ROS (Figure 2e) (99, 100).

Sperm motility, concentration and morphology are deleteriously

affected by excessive alcohol consumption as a result of spermatic

chromatin abnormalities through apoptosis, oxidative stress for

elevated ROS production and mitochondrial DNA damage (132).

Ethanol from alcohol consumption leads to mitochondrial

dysfunction and decreased ATP generation in hepatic metabolic

processes (110). Cytochrome P450 enzymes (CYP2E), as a kind of

catalyst for NADPH oxidase in oxidative stress, promote the

concentrations of Cu2+ and Fe3+ under alcohol intake, which,

through various pathways, enhance the generation of ROS (133).

The generation of nitric oxide (NO) from inducible nitric oxide

synthase (iNOS), which is secreted by macrophages, and its

metabolite peroxynitrite will induce mitochondrial dysfunction under

the stimulus of excessive ROS (Figure 2f) (134).

The biological impact of radiation on sperm motility is

influenced by the type of radiation, as well as the dose and

duration of exposure (135). In recent years, electronic devices

such as mobile phones, computers, and microwave ovens have

significantly increased exposure to ionizing radiation (136). It has

been demonstrated that mobile phone radiation negatively affects

the count, morphology, and motility of spermatogenic cells and

spermatozoa (137). This radiation can damage the integrity of the

plasma membrane and activate NADPH oxidase, leading to

oxidative stress driven by elevated ROS and lipid peroxidation

(LPO) (138). Electromagnetic radiation emitted by computers and

mobile phones exerts adverse effects on sperm motility,

capacitation, and acrosome reaction through oxidative stress

induced by radiofrequency. This stress results from damage to

mitochondrial DNA and disruptions in the electron transport

chain within the mitochondrial respiratory complex (20).

Additionally, sperm motility affected by oxidative stress is

exacerbated by radiofrequency radiation due to decreased

glutathione levels and compromised plasma membrane integrity

(136). Furthermore, exposure to microwave radiation for two hours

daily over 35 days has been shown to induce oxidative stress in

human spermatozoa (Figure 2c) (139).
5 Therapeutic strategy of idiopathic
athenozoospermia

Currently, there is no radical treatment for idiopathic

asthenozoospermia that can fundamentally preserve sperm

motility, primarily due to genetic alterations caused by ROS-

mediated oxidative stress (140, 141). However, appropriate

antioxidants and healthy lifestyle choices can help protect sperm

motility (142). As previously mentioned, unhealthy lifestyle habits

and endogenous sources such as immature spermatozoa and

leukocytes contribute to excessive ROS in idiopathic

asthenozoospermia (143–145).
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Antioxidants mainly function by suppressing ROS levels,

inactivating ROS generated by metabolic processes and enzymatic

reactions, thereby preventing lipid peroxidative damage to the plasma

membrane of human spermatozoa (36, 37). Most antioxidants

primarily have positive effects on reducing ROS levels (146), while

a few can also repair oxidative stress damage in human spermatozoa

caused by excessive ROS. Agarwal et al. found that approximately

85.6% of urologists and andrologists prescribed oral antioxidants to

patients with abnormal semen parameters (147), demonstrating

therapeutic effects on idiopathic asthenozoospermia (148, 149).

Besides improving sperm motility, antioxidants may also

upregulate the expression of fertility-associated sperm proteins in

patients with idiopathic asthenozoospermia (150). Antioxidants

protecting sperm motility include vitamins E and C, glutathione,

hypotaurine, albumin, taurine, as well as superoxide dismutase

(SOD) and catalase, while those elevating sperm motility are

CoQ10 and N-acetyl cysteine (Figure 3) (12).
5.1 Vitamin C

Vitamin C, as an antioxidant, plays a critical role in alleviating

oxidative stress, a recognized factor contributing to male infertility. It

safeguards sperm from oxidative damage, thereby enhancing sperm

quality and motility. Combination therapies that include Vitamin C

have demonstrated promising results in improving spermmotility. For

example, one study reported that while individual parameters such as

sperm concentration and motility did not show significant changes, a

regimen incorporating multiple antioxidants, including Vitamin C,

significantly increased the total number of motile sperm (151). Another

study emphasized the role of Vitamin C as an adjunct therapy

following varicocelectomy, where it significantly improved sperm

motility and morphology, highlighting its potential to enhance sperm

quality post-surgery (152). Vitamin C effectively mitigates the adverse

effects of environmental stressors, such as cigarette smoke and

tetrahydrocannabinol exposure. It improved the motility and

morphology of sperm exposed to cigarette smoke, underscoring its

protective antioxidant properties (153). In vitro studies further

demonstrated that Vitamin C could alleviate reductions in sperm

motility and kinematics caused by tetrahydrocannabinol, further

supporting its role in protecting sperm from various stressors

(Figure 3) (153).
5.2 Vitamin E

Vitamin E serves as an oxygen radical scavenger, protecting

sperm motility from reactive oxygen species (ROS)-mediated

oxidative stress. It prevents the propagation of ROS, thus

ensuring the integrity of the membrane and plasma lipoproteins

of human spermatozoa (154). The level of malondialdehyde

(MDA), a biomarker of lipid peroxidation (LPO) in oxidative

stress, can be reduced by Vitamin E, thereby improving sperm

motility (155). Additionally, Vitamin E can prevent DNA damage

and fragmentation in human spermatozoa and their mitochondria
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caused by ROS (156, 157). Therefore, Vitamin E is potentially an

effective treatment strategy for idiopathic asthenozoospermia,

warranting a level B recommendation (Figure 3).
5.3 Coenzyme Q10

Coenzyme Q10 (CoQ10) primarily participates in the electron

transport of oxidative phosphorylation during the respiratory

process (158). It receives electrons from complex I and complex

II, transferring them to complex III, to generate sufficient ATP

necessary for maintaining sperm motility. Additionally, CoQ10

plays a role in transferring protons from fatty acids to the matrix

(159). CoQ10 may positively influence nutrient uptake through the

outer mitochondrial membrane, supporting the mitochondrial

function of human spermatozoa (Figure 3) (160, 161).
5.4 Levocarnitine

Levocarnitine is a naturally occurring compound that has been

demonstrated to enhance sperm motility, rendering it a promising

candidate for the treatment of asthenozoospermia. The enhancement

in spermmotility is attributed to several mechanisms, notably its role in
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energy metabolism and its influence on various molecular pathways.

Specifically, levocarnitine upregulates the expression of PI3K, p-Akt,

and BCL-2 proteins, thereby decreasing sperm cell apoptosis and

improving both sperm count and motility (162). Additionally,

levocarnitine modulates the expression of specific miRNAs, such as

Hsa-mir-27b-3p and hsa-MIR-206, which are integral to energy

metabolism pathways like ATP synthase activity and cAMP

signaling. These pathways are crucial for sperm motility, providing a

molecular foundation for the effectiveness of levocarnitine in the

treatment of asthenozoospermia (163). In a randomized controlled

trial, levocarnitine significantly enhanced sperm motility, morphology,

and concentration when compared to coenzyme Q10 and vitamin E

(164). It also increased testosterone and luteinizing hormone levels,

suggesting a more extensive hormonal impact. A meta-analysis

corroborated that levocarnitine and its derivatives substantially im-

prove sperm motility and morphology relative to placebo, albeit

without significant effects on serum hormone levels (165). Although

levocarnitine demonstrates significant potential in treating

asthenozoospermia, its precise molecular mechanisms remain

partially elucidated, necessitating additional research to fully explore

its capabilities and long-term effects. Moreover, while levocarnitine is

efficacious, its combination with other therapeutic modalities may

enhance its benefits, indicating that a multifaceted approach could be

more beneficial for patients (Figure 3).
FIGURE 3

The therapeutic strategy of idiopathic athenozoospermia.
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5.5 Curcumin

Curcumin, a natural compound derived from Curcuma longa

(turmeric), exhibits numerous biological effects, including anti-

inflammatory, antioxidant, anti-proliferative, and anti-metastatic

activities. It is also recognized as a scavenger of reactive oxygen

species (ROS) in both in vitro and in vivo settings (166, 167).

Adequate levels of curcumin can enhance spermmotility by binding

to promoters of antioxidant genes, thereby promoting the release of

antioxidative enzymes and upregulating the expression of these

genes to suppress ROS generation (158). It is also believed to aid in

the cryopreservation of spermatozoa. However, excessive curcumin

has been reported to mediate oxidative stress in the testes of rats.

Notably, it is renowned as a potent non-steroidal contraceptive due

to its ability to block sperm motility within the female reproductive

tract (168). Therefore, the dosage of curcumin is crucial for

regulating sperm motility (Figure 3).
5.6 Traditional Chinese medicine

The clinical application of Traditional Chinese Medicine in

enhancing sperm motility involves a multifaceted approach

combining herbal medicine, acupuncture, and integrative

therapies. These methods have shown promising results in

improving sperm motility and overall semen quality, providing a

complementary treatment option for male infertility. One study

indicated that acupuncture at the Fuxi point combined with

tamoxifen citrate tablets significantly improved sperm motility

parameters in patients with asthenozoospermia. This combination

therapy enhanced sperm motility, average path velocity, and the

percentage of motile sperm, outperforming tamoxifen alone (169).

Cynoglossum amabile, a traditional Chinese herb, contains

bioactive compounds with various pharmacological activities,

including anti-inflammatory and cardiovascular effects. Although

there is insufficient evidence for its direct application to sperm

motility, its traditional use in treating reproductive issues suggests

potential benefits (Figure 3) (170).

The multi-target approach of Traditional Chinese Medicine,

involving compounds like kaempferol and quercetin, has been

shown to regulate hormones, reduce oxidative stress, and improve

sperm quality. These components are integral to the effectiveness of

Traditional Chinese Medicine in treating male infertility (171). An

integrated approach combining data mining, network

pharmacology, and experimental validation has identified key

components and mechanisms of Traditional Chinese Medicine

prescriptions that enhance sperm motility. This approach

underscores the multi-component, multi-target strategy of

Traditional Chinese Medicine in treating male infertility (171).

While Traditional Chinese Medicine offers promising avenues

for improving sperm motility, potential risks must be considered,

such as hepatotoxicity associated with certain herbs like

Cynoglossum amabile. Further research and clinical trials are

needed to validate these therapies and ensure their safety and

efficacy in broader applications (170).
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6 The limitations and future
prospects

Despite significant research into the relationship between ROS

and sperm motility, several limitations have also persisted. For

instance, accurately measuring ROS levels in semen and effectively

assessing the efficacy of antioxidant treatments require further

investigation (16). The short half-life of ROS poses challenges for

their direct detection in human specimens (8). In addition, despite

the availability of various antioxidant therapies for treating

idiopathic asthenozoospermia, there is still no more effective

clinical strategy to develop sperm motility. Furthermore,

individual variability and the complex mechanisms of ROS and

oxidative stress add to the challenges of research in this area (16).

Consequently, future studies should delve deeper into the specific

mechanisms by which oxidative stress affects sperm motility. The

development of more effective diagnostic and therapeutic strategies

is crucial to enhancing treatment outcomes for male infertility.

In summary, ROS plays a dual role in maintaining sperm

motility. A moderate amount of ROS is essential for normal sperm

function as they participate in energy acquisition, motility, and the

capacitation process. However, excessive ROS can lead to oxidative

stress, damaging the lipid bilayer structure of sperm membranes,

impairing mitochondrial function, and affecting DNA integrity,

which significantly reduces sperm motility and fertilization

capacity. Therefore, maintaining an appropriate balance of ROS is

crucial for ensuring male reproductive health. Further research

should focus on exploring the potential benefits of antioxidant

supplementation and its application in improving sperm quality

and enhancing the effectiveness of male infertility treatments.
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