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for indeterminate thyroid
nodules—a systematic review
and meta-analysis
Karishma Jassal1,2*, Melissa Edwards1, Afsaneh Koohestani1,2,
Wendy Brown2, Jonathan W. Serpell1,2 and James C. Lee1,2

1Monash University Endocrine Surgery Unit, Alfred Hospital, Melbourne, VIC, Australia, 2Department of
Surgery, Central Clinical School, Monash University, Melbourne, VIC, Australia
Introduction: In recent years, artificial intelligence (AI) tools have become widely

studied for thyroid ultrasonography (USG) classification. The real-world

applicability of these developed tools as pre-operative diagnostic aids is limited

due to model overfitting, clinician trust, and a lack of gold standard surgical

histology as ground truth class label. The ongoing dilemma within clinical

thyroidology is surgical decision making for indeterminate thyroid nodules

(ITN). Genomic sequencing classifiers (GSC) have been utilised for this

purpose; however, costs and availability preclude universal adoption creating

an inequity gap. We conducted this review to analyse the current evidence of AI

in ITN diagnosis without the use of GSC.

Methods: English language articles evaluating the diagnostic accuracy of AI for

ITNs were identified. A systematic search of PubMed, Google Scholar, and

Scopus from inception to 18 February 2025 was performed using

comprehensive search strategies incorporating MeSH headings and keywords

relating to AI, indeterminate thyroid nodules, and pre-operative diagnosis. This

systematic review and meta-analysis was conducted in accordance with

methods recommended by the Cochrane Collaboration (PROSPERO

ID CRD42023438011).

Results: The search strategy yielded 134 records after the removal of duplicates.

A total of 20 models were presented in the seven studies included, five of which

were radiological driven, one utilised natural language processing, and one

focused on cytology. The pooled meta-analysis incorporated 16 area under

the curve (AUC) results derived from 15 models across three studies yielding a

combined estimate of 0.82 (95% CI: 0.81–0.84) indicating moderate-to-good

classification performance across machine learning (ML) and deep learning (DL)

architectures. However, substantial heterogeneity was observed, particularly

among DL models (I² = 99.7%, pooled AUC = 0.85, 95% CI: 0.85–0.86).

Minimal heterogeneity was observed among ML models (I² = 0.7%), with a

pooled AUC of 0.75 (95% CI: 0.70–0.81). Meta-regression analysis performed

suggests potential publication bias or systematic differences in model

architectures, dataset composition, and validation methodologies.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1506729/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1506729/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1506729/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1506729/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1506729/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1506729&domain=pdf&date_stamp=2025-05-05
mailto:Karishma.Jassal@monash.edu
https://doi.org/10.3389/fendo.2025.1506729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1506729
https://www.frontiersin.org/journals/endocrinology


Jassal et al. 10.3389/fendo.2025.1506729

Frontiers in Endocrinology
Conclusion: This review demonstrated the burgeoning potential of AI to be of

clinical value in surgical decision making for ITNs; however, study-developed

models were unsuitable for clinical implementation based on performance alone

at their current states or lacked robust independent external validation. There is

substantial capacity for further development in this field.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42023438011.
KEYWORDS

artificial intelligence, thyroid cancer, thyroid nodule - diagnosis, meta - analysis,
machine learning
1 Introduction

The prevalence of incidentally detected thyroid nodules in

adults is estimated to be between 30% and 70%, the majority of

which are inconsequential, and only approximately 5% are

ultimately proven to be malignant (1–4). Evaluation of nodules

conventionally begins with ultrasonography (USG) where

standardised acquisition of radiological features in accordance to

one of several Thyroid Image Reporting and Data Systems

(TIRADS) leads to further diagnostic steps (5–7). Fine-needle

aspiration cytology (FNAC) subsequently facilitates the

categorisation of thyroid nodules as malignant, benign, or

indeterminate according to the six-tiered Bethesda classification

(8). Whilst studies have shown that 95% of samples are adequate for

interpretation, 20%–25% of aspirates are reported as indeterminate

(Bethesda categories III–V), with substantial variability in the

probability of malignancy within this category (9–11).

Standard strategies for clarifying the diagnosis are either

diagnostic thyroid lobectomy or repeating FNAC typically for

Bethesda III lesions at 3 months from the initial procedure to

allow for the resolution of inflammatory changes, which is a safe

procedure and a practical approach (8, 12). Clinical and

sonographic considerations are recommended when electing for

repeat sampling and, in the majority of cases, do not lead to

diagnostic resolution potentially risking delaying treatment of

malignancy (8, 12–14). The important caveat in real clinical

practice is that the patient still needs to be informed of the

highest implied malignancy risk of any FNAC sample, which can

lead to confusion and anxiety. Diagnostic lobectomy requires

multiple considered steps to preserve parathyroid and recurrent

laryngeal nerve function, in addition to the risks of haematoma,

infection, and post-operative hypothyroidism (15–18). Patients

with malignancy may subsequently require a second-stage

operation for completion of surgical treatment, which can be

more technically challenging due to post-operative tissue changes.

More recently, genomic sequencing classifiers (GSC) have been

utilised to interrogate indeterminate cytology thyroid nodules
02
(ITNs). GSC displays high specificity and allows avoiding

diagnostic surgery in up to 61% of patients on the basis of a

benign test (19–22). This enables a more accurate pre-operative

assessment of ITNs. However, the tests are costly, requires

additional samples taken, and are not available in many countries.

These barriers preclude the universal adoption of GSC, and as such,

hemithyroidectomy remains a key diagnostic tool.

Developments in computational technology have led to the

development of artificial intelligence (AI) tools beyond GSC that

may be useful in thyroid nodule diagnostics. AI tools in thyroid

nodule diagnosis are mostly reported using a single diagnostic

modality, such as ultrasonographic or cytological characteristics

(23–27). These single-entity tools tend to have functionality within

a particular branch of medicine, but the question remains if they are

applicable within surgical decision making where the process

is multifaceted.

We therefore sought to conduct a systematic review and meta-

analysis to appraise the available evidence related to the pre-

operative diagnostic accuracy of AI tools for indeterminate

cytology thyroid nodules, excluding GSC.
2 Materials and methods

This systematic review and meta-analysis was conducted in

accordance with methods recommended by the Cochrane

Collaboration and registered with the International Prospective

Register of Systematic Reviews (PROSPERO), reference no.

CRD42023438011 (28). Reporting follows the standards of the

Preferred Reporting Items for Systematic Reviews and Meta-

analysis Statement (PRISMA) (29, 30).
2.1 Search strategy

English language articles evaluating the diagnostic accuracy of AI

for ITNs were identified. A systematic search of PubMed, Google
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Scholar, and Scopus from inception to 18 February 2025 was

performed using comprehensive search strategies incorporating

MeSH headings and keywords relating to AI, indeterminate thyroid

nodules, and diagnosis [Boolean string; preop* AND (diagno* OR

evaluat*) AND (“artificial intelligence” OR “machine learning”) AND

“indeterminate thyroid nodules”—molecular]. An additional search was

conducted specifically to target cytology-based studies [Boolean string;

(“thyroid nodule/pathology” OR “biopsy, fine-needle/methods”) AND

(“artificial intelligence” OR “machine learning”)]. Screening on the title

was performed until saturation, which was reached at 50 studies. The

papers in the reference lists of included articles and relevant reviews

were reviewed to identify additional eligible publications. The inclusion

criteria for this review were developed in accordance with the following

PICO framework: Can pre-operative patients with ITNs (P) be

evaluated using AI models to predict malignancy (I) in terms of

diagnostic accuracy measures (O), compared to standard reference

diagnoses, such as final histopathology or other established diagnostic

methods (C), excluding studies involving GSC? Both randomised and

non-randomised studies were included. Qualitative studies, abstracts,

reviews, editorials, and case studies were excluded.

As Bethesda III–V nodules are usually managed similarly

surgically, the search targeted articles, which included adult

patients with ITNs (Bethesda categories III–V on FNAC) who

underwent surgery. “Artificial intelligence” was defined as a

machine learning (ML) or deep learning (DL) tool that identifies

patterns resulting in a prediction. Application of any type of AI

models, including classifiers, neural networks, or natural language

processing (NLP), was accepted (31). Both model development and

validation studies were included. Only studies that provided a clear

distinction between benign and malignant prediction outcomes

were considered. For studies that reported results based on

histological subtypes or other stratifications, only outcomes

relevant to benign and malignant classification were extracted for

statistical analysis. Where a study included patients with all

Bethesda categories, only outcomes relating to those with

indeterminate cytology were considered. The primary outcome

measure was model performance, including diagnostic accuracy,

area under the curve (AUC), sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV).
2.2 Data abstraction

Titles and abstracts were independently and manually screened

by two reviewers (KJ and ME) using explicit pre-determined

criteria. Inconsistencies were resolved through consultation with a

third reviewer (JL). Data were extracted from each eligible study by

one reviewer (KJ) using a standardised electronic form.
2.3 Risk of bias assessment

The Prediction model Risk Of Bias Assessment Tool

(PROBAST), used to evaluate the risk of bias (ROB) and

applicability of diagnostic and prognostic prediction model
Frontiers in Endocrinology 03
studies, was used to assess the included studies (32, 33). ROB and

concerns regarding applicability were evaluated with respect to the

randomisation process, appropriateness of inclusion/exclusion

criteria of participants, assessment of predictors of models

created, completeness of outcome data, and model analysis.

Overall, ROB was judged as low if all domains assessed returned

a low-risk result.
2.4 Data synthesis and analysis

Narrative synthesis was used to summarise the main outcomes of

interest. Meta-analysis was performed where three or more models

assessing a specific outcome measure with an estimate of precision

were included.With these criteria, meta-analysis of the area under the

curve (AUC) was possible. Statistical analysis was performed using

the metan estimation package from Stata/IC for Windows, version

14.2. Given the variability in study designs, random effect models

were applied. A value of p < 0.05 was considered statistically

significant. Heterogeneity was assessed using Cochran’s Q test

(Chi-square test) and quantified using I². Meta-regression was

conducted using weighted least squares regression, with standard

error (SE) of AUC as the predictor and inverse variance (1/SE²) as

weights. Publication bias was evaluated using Egger’s test. A funnel

plot was generated using the metafunnel estimation package.
3 Results

3.1 Study selection

The search strategy yielded 134 records after removal of

duplicates. Fourteen papers were identified for full text

assessment with seven studies meeting the criteria for inclusion in

the systematic review (PRISMA flowchart of study selection shown

in Figure 1). A summary of results from the included studies and

models is given in Table 1.
3.2 Study characteristics

A total of 20 models were presented in the seven studies

included. Of these, 17 models from six studies were

independently developed by the corresponding research groups

(34–38), and two studies (34, 39) presented external evaluations

of previously constructed models without additional pretraining

(40, 41). Five studies (34, 36, 37, 39, 42) in this review utilised USG

images or characteristics, one study (35) employed an NLP

approach, and one study (38) focused on cytological analysis.
3.3 Model outcome measures

Five studies based their outcome measures on surgical

histopathology sourced from previously established databases (34,
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36, 37, 39, 42). One study utilised histopathology to determine

malignant outcomes, while a combination of histopathology and

close follow-up was used for benign diagnoses (38). In the

remaining study, a previously validated clinical NLP software

(Apache cTAKES) extracted data from electronic medical record

pathology reports to determine outcomes (35, 43). Performance

metrics of most models were reported using standardised

classification metrics, namely, AUC, accuracy, sensitivity,

specificity, PPV, and NPV.
3.4 Imaging-based models

Two previously developed USG recognition models were

externally evaluated without institution-specific fine-tuning,

retraining, or adaptation in separate studies. Gild et al. (34, 36)

tested ThyNet’s performance on their patient dataset. ThyNet is a

DL network with a reported accuracy of 89.1% in its original study

(41). ThyNet achieved an overall accuracy of 64% in this external
Frontiers in Endocrinology 04
evaluation (34). Swan et al. (39) retrospectively analysed the

performance of AIBx (40) on Bethesda III–V nodules. AIBx is a

USG image similarity AI model for the risk stratification of thyroid

nodules. The external evaluation of AIBx vs. European Thyroid

Association TIRADS for ITNs reports an accuracy of 53.0% vs.

32.2%, PPV of 27.9% vs. 25.2%, NPV of 81.5% vs. 91.7%, sensitivity

of 96.3% vs. 63.0%, and specificity of 50.0% vs. 12.5% (39).

One study (34) tested the performance of their two trained models:

an image classification convolutional neural network (CNN) utilising

the ResNet-50 (44) architecture and a random forest (RF) classifier for

first-order statistics of extracted radiomic features. Only Bethesda III

nodules were included. The reported AUC for internal validation of the

CNN model was 0.74 and 0.75 for the RF radiomics model.

Similarly, Keutgen et al. (42) extracted radiomics features from

thyroid nodule USG images obtained from two institutions and

utilised a two-class Bayesian artificial neural network classifier to

predict the final surgical histopathology of indeterminate cytology

nodules. Internal validation results demonstrated an AUC of 0.88 for

malignant vs. benign classification and 0.68 on external validation.
FIGURE 1

PRISMA flowchart of identification of studies.
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TABLE 1 Summary of study characteristics and results.

Bethesda
N Accuracy Sensitivity Specificity PPV NPV AUC 95% CI

88 – – – – – 0.750 (0.620–0.840)

88 74.0 82.0 59.0 56.0 84.0 0.740 (0.590–0.830)

88 64.0 – – – – –

155 53.0 96.3 50.0 27.9 81.5 –

19 – – – – – 0.880 (0.700–1.060)

20 – – – – – 0.680 (0.460–0.900)

355 79.1 75.5 82.4 80.3 79.0 0.859 (0.700–0.970)

355 64.4 52.7 75.3 66.9 63.5 0.664 (0.460–0.800)

355 65.7 58.6 72.3 66.6 58.5 0.694 (0.480–0.850)

355 61.4 30.9 89.8 74.2 58.5 0.694 (0.520–0.870)

355 63.1 60.8 65.3 62.2 64.5 0.683 (0.490–0.840)

355 74.8 70.5 78.8 76.0 74.8 0.832 (0.660–0.940)

355 72.1 65.1 78.7 74.5 71.2 0.778 (0.620–0.910)

355 77.7 74.5 80.7 78.7 77.8 0.830 (0.680–0.950)

11 – 100 100 – – 1.000 (0.540–1.000)

194 71.8 93.8 56.5 60 92.9 –

1670 79.1 86.5 65.8 81.5 74.5 0.803 (0.794–0.812)

1670 81.6 85.4 69.3 84.0 77.2 0.836 (0.830–0.842)

1670 80.4 88.7 69.9 83.4 73.8 0.840 (0.834–0.846)

1670 90.8 92.7 89.6 93.9 85.9 0.935 (0.929–0.941)

aïve Bayes; SVM, support vector machine; ET, Extra Trees; AB, AdaBoost; GB, gradient boosting; SI, single institution;
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Author Subgroup
category

Model Evaluation Dataset

Gild ML III RF – SI—Internal

Gild DL III ResNet-50 10-fold cross validation SI—Internal

Gild DL III ThyNet Direct classification SI—External

Swan DL III, IV, V
AIBx - ResNet, ResNext,
DenseNet ensemble

Direct classification SI—External

Keutgen ML III, IV, V BANN 5-fold cross validation SI—Internal

Keutgen ML III, IV, V BANN Direct classification SI—External

Luong ML III, IV, V RF 10-fold cross validation MC—Internal

Luong ML III, IV, V KNN 10-fold cross validation MC—Internal

Luong ML III, IV, V Ridge 10-fold cross validation MC—Internal

Luong ML III, IV, V GNB 10-fold cross validation MC—Internal

Luong ML III, IV, V SVM 10-fold cross validation MC—Internal

Luong ML III, IV, V ET 10-fold cross validation MC—Internal

Luong ML III, IV, V AB 10-fold cross validation MC—Internal

Luong ML III, IV, V GB 10-fold cross validation MC—Internal

Saini ML III ANN Direct classification MC—Internal

Chen ML III, IV, V SVM 5-fold cross validation SI—Internal

Yao DL IV ResNet50 10-fold cross validation MC—Internal

Yao DL IV RadImageNet 10-fold cross validation MC—Internal

Yao DL IV ThyNet 10-fold cross validation MC—Internal

Yao DL IV Swin Transformer 10-fold cross validation MC—Internal

ML, machine learning; DL, deep learning; RF, random forest; BANN, Bayesian artificial neural network; KNN, K-Nearest Neighbour; GNB, Gaussian N
MC, multicentre.
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A study by Yao et al. (36) evaluated multiple AI models for

diagnosing Bethesda IV nodules using USG imaging data collected

from five hospitals. Four AI models were trained using a transfer-

learning approach, including Swin Transformer, ThyNet,

RadImageNet, and ResNet-50 to predict histological outcomes of

follicular thyroid cancer (FTC) vs. follicular variant papillary

thyroid cancer (FVPTC) vs. benign nodules (41, 45). Model

performance was consistent across test sets and 10-fold cross

validation, with Swin Transformer achieving the highest AUC

(0.917–0.945). PPV and NPV were 93.9% and 85.9%, respectively.

Chen et al. (37) trained a support vector machine (SVM)

classifier to distinguish benign nodules from malignant ones

utilising five ultrasound input parameters along with nodule size,

patient age, and sex. Two radiologists, blinded to clinical and

histopathological outcomes, independently reviewed and scored

the ultrasound features according to the American College of

Radiology TIRADS (ACR TIRADS) criteria—composition,

echogenicity, shape, margin, and echogenic foci. A third senior

radiologist resolved any disagreements. The model achieved a

sensitivity of 93.8%, with a specificity of 56.5%. The NPV for

Bethesda III and IV nodules was 93.9% and 93.8%, respectively.

Compared to the 2017 ACR TIRADS, the SVM model

demonstrated superior performance in distinguishing benign ITNs.
3.5 Natural language-processing models

A study by Luong et al. (35) utilised a previously validated NLP

model, the Mayo clinical text analysis and knowledge extraction

system (cTAKES) (43), to construct several classifier models. This

retrospective study included 355 Bethesda III–V nodules from adult

patients investigating the utility of cTAKES NLP analysis of readily

available electronic medical records (EMR) in predicting

malignancy for ITNs. Features extracted from the EMR were age

of first FNAC, nodule diameter, height, width, echogenicity,

presence of calcification on USG, FNAC results, “largest

dimension on cytology,” race, and sex.

The performance of the following eight classifiers were evaluated:

Gradient Boosting, SVM, Ridge, Gaussian Naïve Bayes, K-Nearest

Neighbour, RF, Extra Trees, and AdaBoost. On average, the accuracy

of the classifiers tested was 70.0%, sensitivity 61.1%, specificity 77.9%,

PPV 72.4%, NPV 69.4%, and AUC 0.754. The RF classifier performed

the best overall, with an accuracy of 79.1%, sensitivity of 75.5%,

specificity of 82.4%, PPV of 80.3%, NPV of 79.0%, and AUC of 0.859.

The K-Nearest Neighbour classifier produced the least successful

results with 64.4% accuracy, 52.7% sensitivity, 75.3% specificity,

66.9% PPV, 63.5% NPV, and 0.664 AUC.
3.6 Cytology-based models

Saini et al. developed an artificial neural network (ANN) model

to predict the risk of malignancy in Bethesda category III nodules

based on FNAC features. Cytological features were subjectively

graded by two independent observers and used as input parameters
Frontiers in Endocrinology 06
within the ANN that was constructed for binary classification. The

features assessed included nuclear pleomorphism, microfollicle

formation, nuclear grooving, intranuclear inclusions, nucleoli

prominence, Hurthle cell changes, colloid presence, cellularity,

and nuclear chromatin characteristics. Each parameter was

graded on a semi-quantitative scale from zero to three based on

its prevalence in the smear. The model successfully classified all

benign and malignant cases within the study’s test set, with an AUC

of 1, indicating perfect discrimination (38).
3.7 Meta-analysis

3.7.1 Model variability and generalisation
challenges

Dissimilarities between studies were acknowledged and accepted to

reach a unified conclusion. A fundamental challenge in AI applications

is the lack of generalisability, as many models demonstrate high

accuracy in controlled environments but underperform when applied

to diverse clinical settings. Given that AI in medical diagnostics is still

in a relatively early phase of development, there is considerable

experimentation with a wide range of models and methodologies.

Consequently, the studies included in this review employed a variety of

AI algorithms, with notable differences in their training and validation

processes. Although this heterogeneity may initially appear to be a

limitation, it is reflective of the ongoing iterative process of AI

development. Moreover, this diversity strengthens our analysis by

providing a more comprehensive evaluation of AI model

performance across different contexts. By integrating these disparate

results, we gain a broader understanding of the current capabilities and

limitations of AI in the pre-operative diagnosis of indeterminate

thyroid nodules, which is essential for guiding future research

and development.

3.7.2 Pooled analysis
Our pooled meta-analysis incorporated 16 AUC results derived

from 15 distinct models across three studies. The AUC values from

the two models presented by Gild et al. (34), the four models from

Yao et al. (36), along with the eight models developed by Luong

et al. (35), as well as the results of the model by Keutgen et al. (42),

tested on two distinct cohorts, were combined for analysis

(Figure 2). The model by Saini et al. (38) was excluded due to an

AUC of 1.0 indicating perfect separation in a limited cohort (N =

11), which raises concerns regarding a meaningful estimate of real-

world model discrimination. The pooled analysis of AUC across

studies yielded a combined estimate of 0.82 (95% CI: 0.81–0.84)

indicating moderate to good classification performance across ML

and DL models (Figure 2). However, there is considerable

heterogeneity among the studies, as indicated by a calculated I²

value of 99.3%. The funnel plot was asymmetrical (Figure 3).

3.7.3 Heterogeneity analysis
To further investigate the sources of heterogeneity, a subgroup

analysis was conducted to compare the performance of ML and DL

models. This revealed minimal heterogeneity in ML models (I² =
frontiersin.org
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0.7%, pooled AUC = 0.75, 95% CI: 0.70–0.81), whereas DL models

exhibited substantial heterogeneity (I² = 99.7%, pooled AUC = 0.85,

95% CI: 0.85–0.86) suggesting inconsistent performance. (Figure 2)

Egger’s test was significant (p = 0.0006) indicating potential

publication bias or systematic differences in study characteristics
Frontiers in Endocrinology 07
amongst DL models. Meta-regression found no significant

association between SE and AUC (p = 0.568), suggesting that

heterogeneity is not explained by study precision alone and may

instead be influenced by differences in DL model architectures,

dataset composition, or validation methodologies (33, 35).
FIGURE 2

Forest plot of a random effects meta-analysis of area under the curve (AUC) for the observed AI models predicting malignancy in indeterminate
cytology thyroid nodules. BANN, Bayesian artificial neural network.
FIGURE 3

Funnel plot with pseudo 95% confidence limits of the area under the curve (AUC) versus the standard error (SE) for the each of the included studies
(N = 16). RF, random forest; BANN, Bayesian artificial neural network; KNN, K-Nearest Neighbour; GNB, Gaussian Naïve Bayes; SVM, support vector
machine; ET, Extra Trees; AB, AdaBoost; GB, gradient boosting.
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3.8 Risk of bias assessment with the
PROBAST

Overall, the PROBAST assessment revealed a “low risk of bias”

for the studies by Keutgen et al. (42) and Yao et al. (36), while the

other studies were judged to have an overall “high risk of bias” in

one or more domains (Table 2). All studies exhibited an overall “low

concern” for applicability to the review question. Supplementary

Material 3 provides a narrative risk of bias analysis for each study.
4 Discussion

4.1 Main findings

The efficacy of AI tools for the pre-operative diagnosis of ITNs

without the use of GSC was assessed by seven studies, five of which

were radiologically driven, one cytology based, and one of which

utilised NLP on unstructured EMR data. The 16 AI models suitable

for meta-analysis had varying performances and accuracies, with a

pooled AUC of 0.82. All included studies demonstrate the potential

of AI to be of clinical value; however, there are limitations and

substantial capacity for further development.

The externally validated AIBx model achieved an accuracy of

51% for all included nodules and 53% for ITNs, which restricts

external institution clinical implementation currently based on

performance alone (39). Similarly, the model developed by

Keutgen et al. (42) demonstrated an internal validation AUC of

0.88 indicative of strong predictive performance within its own

institution. However, this markedly decreased to 0.68 upon external

validation suggesting a potential issue with overfitting. Overfitting

occurs when a model performs exceptionally well on the training

data but fails to generalise effectively to new, unseen datasets. This

phenomenon can lead to inflated performance metrics during initial

assessments, which may not reflect the model’s true applicability in

clinical settings. Unlike studies that exhibit strong internal

performance but degrade significantly upon external validation,

Yao et al. (36) employed multicentre data within a 10-fold cross

validation framework, rather than testing on an independent

external dataset. As such, the consistently high AUCs reported in

their study (AUC range: 0.80–0.94) may reflect the advantages of

training and validation strategies rather than true external

generalisability. While the study did compare model performance

across independent test sets within their multicentre dataset, which

provides some assessment of generalisability across institutions, this

validation, however, was not structured to specifically evaluate

performance in distinguishing benign from malignant cases

across an entirely unseen cohort. These findings underscore the

importance of considering dataset handling and model evaluation

design when interpreting validation results.

A similar methodology was employed by Gild et al. (34), who

also applied 10-fold cross validation but on a significantly smaller,

single-centre dataset (N = 88). Their ResNet-50 model achieved an

AUC of 0.740 (95% CI: 0.590–0.830) notably lower than the AUC of

0.803 (95% CI: 0.794–0.812) reported by Yao et al. (36) for the same
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architecture. This discrepancy likely reflects differences in dataset

size and diversity, as the multicentre cohort provided greater

heterogeneity and a larger sample for training. The greater

performance variability in the results of Gild et al. suggests that

their model was more susceptible to overfitting due to the limited

dataset size. Yao et al. (36) also retrained ThyNet on their dataset

achieving a higher AUC of 0.840 (95% CI: 0.834–0.846). In contrast,

Gild et al. (34) tested it directly on their dataset, where it yielded an

overall accuracy of 0.64. The lower performance of ThyNet in this

setting suggests that, despite being specifically trained for thyroid

imaging on 18,049 images, it struggled to generalise effectively when

applied to an unseen dataset without adaptation.

It is notable that the Swin Transformer, despite being originally

trained on a general purpose ImageNet-1000 (46) dataset,

outperformed the institutionally fine-tuned ThyNet. This may be

attributed to the Swin Transformer’s shifted window attention

mechanism, which enhances the model’s ability to process medical

images more effectively (47). The observed performance advantage

aligns with our heterogeneity analysis, which suggests that variations in

model architectures contribute significantly to differences in model

performance. The lack of a significant association between SE and

AUC in the meta-regression further reinforces this notion indicating

that small-study effects do not fully explain the observed heterogeneity.

Instead, systematic differences in DL architectures and methodological

choices emerge as primary contributors. These findings emphasise the

need for standardised evaluation frameworks and rigorous validation

practices in AI research to enhance reproducibility.

The NLP-driven models produced a mean accuracy of 70% and

mean AUC of 0.754 across all classifiers (35). Notably, the study

indicated that echogenicity and calcification were of low feature

importance in predicting malignancy, a finding that contradicts the

established TIRADS criteria. This discrepancy may be attributable

to the high rate of missingness associated with these two variables,

thereby limiting the generalisability of the results. Data imputation

techniques were utilised to populate the missing values of these

categorical variables. However, echogenicity and calcification had a

missing rate of 99% and 88%, respectively, and in such high

proportions of incomplete data, estimates are likely to be biased.

Both Saini et al. (38) and Chen et al. (37) rely on manually

assessed imaging or cytological parameters making their models

prone to inter-reader variability and limiting reproducibility. The

ANN is trained on semi-quantitative cytological features, which

depend on subjective grading by independent observers,

introducing variability in how key predictors are assessed (38).

Chen et al. (37) similarly employs an SVM model trained on USG

features manually evaluated by radiologists. The retrospective

reassessment of included images, all obtained using high-

frequency linear transducers, potentially leads to inconsistencies

in real-world applications. Since neither study incorporates

automated feature extraction, their performance may vary across

institutions and readers with different expertise levels. Without

independent validation, the generalisability of these models remains

uncertain. Future DL approaches that extract imaging features

directly from raw data could enhance clinical applicability by

reducing dependence on subjective interpretation.
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4.2 Related works

Swan et al. (39) externally validated AIBx, which was developed in

2019 at Mercy Hospital, USA, utilising USG images of thyroid nodules

obtained from patients who underwent biopsy or thyroid surgery

between February 2012 and February 2017. Only nodules with a

definitive diagnosis of benign or malignant were included in AIBx’s

construct. A total of 482 nodules fulfilled the inclusion criteria, with all

available images used to create their image similarity AI model. The

architecture comprised of a 34-layer CNN known as ResNet-34. The

CNN generated image embeddings, which are N-dimensional vectors

representing unique images. These embeddings were used to find

similar images from a database using a nearest neighbour algorithm.

The output includes N number of nearest neighbours along with their

corresponding labels of benign vs. malignant (48, 49). The model was

internally validated using 103 thyroid nodules that underwent biopsy

or surgery from March 2017 to July 2018. Accuracy, sensitivity,

specificity, PPV and NPV of the model were 81.5%, 87.8%, 78.5%,

65.9%, and 93.2%, respectively (40). Compared to USG thyroid cancer

risk stratification systems, AIBx exhibited comparable performance

suggesting that from an institutional perspective, the model has the

potential to avoid unnecessary FNAC (5, 6).

Similar to AIBx, ThyNet was designed as a strategy to help

radiologists avoid unnecessary FNAC. Its structure is an integrated

network of ResNet (50), ResNext (51), and DenseNet (50), which,

when evaluated individually on internal validation sets, achieved

AUCs of 0.9376, 0.9348, and 0.9401, respectively, in classifying

nodules into benign or malignant. After model ensemble, the AUC

achieved was 0.9504, which outperformed any one individual

model. In a simulated scenario, a radiologist assisted by ThyNet

strategy was reported to decrease the number of FNAC from 61.9%

to 35.2%, and the missed malignancy rate decreased from 18.9% to

17.0%. In the real-world clinical setting test of ThyNet, the AUC of

a thyroid nodule diagnosis, where radiologists reviewed static

images only, was 0.823 (95% CI 0.812–0.835); the AUC of a

diagnosis where radiologists reviewed both videos and images

improved to 0.862 (0.851–0.872; p < 0.0001); and finally, when

radiologists were assisted by ThyNet, the AUC improved to 0.873

(0.863–0.883; p < 0.0001) (41). These findings suggest that the

ThyNet system could potentially be used to complement the

decision-making process of FNAC alongside radiologists;

however, as a stand-alone diagnostic system for Bethesda III

nodules, it has restricted applicability (34).

The clinical narrative has unique characteristics different from

other forms of literature and text. NLP within healthcare leverages this

distinctive lexicon, and these models are trained to extract precise

information from large amounts of unstructured clinical text while

considering contextual factors. This form of language-based AI has

been explored in aiding the interpretation of thyroid USG reports as

these can be rather challenging due to the lack of standardised synoptic

reporting despite the TIRADS score. In two studies by the same group,

USG reports were interpretated by clinicians as a gold standard and

compared with NLP data extraction using cTAKES. Results suggest the

need for improved synoptic reporting of thyroid USG, as NLP was

effective in automated extraction of data from USG reports; however,
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the lack of standardised synoptic reporting caused a significant

difference between gold standard and NLP performance (43, 52, 53).
4.3 Limitations

A meta-analysis for the performance AI models in healthcare

presents inherent challenges. Traditional meta-analysis requires

studies to have similar interventions; however, at present, AI

research attempts to investigate intrinsically different model

architectures and their optimal applicability tested on identical

patient cohorts. These difficulties are a result of data scarcity,

early-stage research, and a presently evolving landscape. However,

to provide a synthesised inference of the current available evidence,

we did conduct a meta-analysis. Additionally, there are limitations

to AI tools in healthcare apart from a model’s performance

compared with a human expert. The ability for widespread

application and adaptability is a major drawback. This challenge

arises from a dataset bias, as most AI models are trained on a single

institution or hubs’ data. Once trained on a particular demographic,

AI models tend to lose their diversity in transferability and are

unable to perform as well in an external setting similar to the

findings from the external validation of AIBx and ThyNet (34, 39).

Informed consent is significant in decision-making tools. AI as a

“black box,” however, presents a narrative challenge. It is a difficult

and time-consuming effort to explicate a process that lacks a state of

explainability. Radiologically driven models in this review generally

lacked meaningful decision-making interpretability or model

uncertainty assessments. Heat maps were explored alongside image

classification algorithms but were often unhelpful for clinical decision

support. Alternative approaches, such as image similarity algorithms,

have provided more intuitive interfaces for clinicians allowing them

to review matched USG images. Yet, the underlying indexing

mechanisms remain opaque (40). Feature energy mapping has also

been investigated as a way to visualise model attention, but without

clear correlation to established radiological markers, its clinical

relevance remains uncertain (36). A potential solution to these

challenges is the integration of interactive interpretability

frameworks, such as those used in ThyGPT, which allows clinicians

to query AI-generated heat maps, adjust inputs, and observe changes

in diagnostic predictions (54). It additionally incorporates language

models that generate structured explanations based on clinical

guidelines. While this does not fully resolve model opacity, it

improves clinician oversight and aligns AI interpretations more

closely with expert reasoning.
5 Conclusion

This review highlights the current lack of clinically applicable

evidence to support the reliable pre-operative diagnosis of ITNs

using AI. These tools have a potential role in the risk stratification of

thyroid nodules and are in their early stages of establishment. There

is a need to investigate the generalisability of models created, as the

majority are developed and tested within an institutional setting.
Frontiers in Endocrinology 10
Consideration must also be given to ethical issues and trust

surrounding the use of AI in healthcare.
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