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Xiaodong Ding1, Jian Huang2* and Xiangyuan Yu1,3*
 

1The School of Public Health, Guilin Medical University, Guilin, China, 2Institute of Biomedical 
Research, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China, 
3Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China 
Background: Gestational diabetes mellitus (GDM) is an endocrine disorder that 
occurs easily in women during pregnancy. HLA-DQA1/DQB1 genes play a crucial 
role in the regulation of the human immune and endocrine systems, potentially 
influencing the pathogenesis of GDM. 

Objective:  To  explore  the  associations  between  single  nucleotide  
polymorphisms (SNPs) in HLA-DQA1/DQB1 genes and the risk of GDM. 

Methods: Seven functional SNPs of HLA-DQA1/DQB1 genes were selected and 
genotyped in 523 GDM patients and 638 normal pregnant women. The odds 
ratio (OR) and its corresponding 95% confidence interval (CI) were utilized to 
assess the association between candidate SNPs and the risk of GDM. And then, 
false positive report probability (FPRP), multifactor dimensionality reduction 
(MDR) and haplotype analysis were employed to validate the statistically 
significant associations between studied SNPs and GDM risk. 

Results: Compared to those with 0–1 risk genotypes, individuals with 2–7 
unfavorable genotypes presented an increased risk of GDM (adjusted OR = 
1.54, 95% CI=1.04-2.28, P=0.033). A dose- accumulation effect was detected 
between the number of unfavorable genotypes and GDM risk (Ptrend=0.024). 
Furthermore, stratified analysis revealed that the increased GDM risk was more 
likely to occur in individuals with higher blood pressure and TG, and lower HDL-c 
levels (P<0.05). Multifactor dimensionality reduction (MDR) analysis revealed that 
rs9274666 was the best single locus model, whereas the 7-loci model was the 
best multifactor interaction model for predicting GDM risk (c²=134.28, 
P<0.0001). Finally, haplotype analysis revealed that the ACGAGTA and 
ACGGATA haplotypes were significantly associated with the increased GDM 
risk. HLA-DQA1/DQB1 SNPs can significantly alter individuals’ genetic 
susceptibility to GDM. 
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Conclusions: The genetic variations in the HLA-DQA1 and HLA-DQB1 genes may 
collectively contribute to the susceptibility to gestational diabetes mellitus. These 
findings suggest that these genetic markers could be useful for early prediction of 
GDM, and further validation in larger cohorts is warranted. 
KEYWORDS 
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1 Introduction 

Gestational diabetes mellitus (GDM) is defined as any degree of 
glucose intolerance first recognized during pregnancy, typically 
diagnosed through an oral glucose tolerance test during the 
second trimester. Globally, the incidence of GDM ranges from 
2% to 25% (1, 2). As a major complication during pregnancy, GDM 
not only increases reproductive risk for expectant mothers but also 
has potential genetic implications for offspring. These genetic effects 
may increase the risk of chronic conditions such as obesity and 
diabetes, and lead to abnormal fetal growth patterns, including both 
excessive and restricted growth (3, 4). Despite its significant impact, 
the pathogenesis of GDM remains complex and has not yet been 
fully elucidated. 

Clinically, GDM primarily arises from the persistent insulin 
resistance in pregnant women. Additional risk factors include 
advanced maternal age, a family history of diabetes, a previous 
history of GDM, immune factors, overweight or obesity, dietary 
habits, and physical inactivity (5–7). Given these risk factors, recent 
research has shifted toward exploring novel contributors to the 
prevalence of GDM, particularly genetic and epigenetic factors, 
including gene-environment interactions (7–9). Understanding 
genetic susceptibility is crucial, as it can lead to early 
identification and targeted interventions for at-risk populations. 

Numerous studies have aimed to clarify the specific impact and 
risk levels associated with genetic variations in the development of 
GDM. Single nucleotide polymorphisms (SNPs), which are 
variations at a single position in a DNA sequence among 
individuals, provide critical information about genetic 
predispositions to complex diseases (10). These genetic variations 
may directly influence GDM risk or interact with clinical traits such 
as age, pre-pregnancy body mass index (pre-BMI), insulin 
secretion, pancreatic b-cell function, and blood glucose levels 
(4, 11–13). To date, genome-wide association studies and 
candidate gene studies have identified numerous SNPs associated 
with GDM (10, 14), offering new insights into its pathogenesis. 

The human leucocyte antigen (HLA) gene complex plays a 
pivotal role in regulating the immune system and is characterized 
by high genetic diversity (15, 16). Various HLA alleles have been 
linked to susceptibility to different types of diabetes (17, 18). For 
example, type 1 diabetes mellitus (T1DM) is an autoimmune 
disorder with a substantial genetic component, where HLA class 
02 
II gene variants such as DQA1*0301, DQB1*0302, DQA1*0501, 
DQB1*0201, DQB1*060, DQB1*0302 (DR4), DRB1*03 and 
DRB1*04 account for 30-50% of its heritability (10, 19, 20). 
Similarly, specific HLA-DQA1 and HLA-DQB1 genes have been 
associated with susceptibility to type 2 diabetes mellitus (T2DM) 
(21, 22). Although studies have explored the relationship between 
HLA-related genes and genetic susceptibility to GDM, identifying 
significant polymorphisms such as HLA-DQB10602 are being 
negatively associated with GDM risk (3, 23), the role of SNPs in 
the HLA-DQA1 and HLA-DQB1 genes in GDM pathogenesis 
remains unclear. 

In this case-control study involving 523 GDM women and 638 
normoglycemic pregnant women, we genotyped seven SNPs in the 
HLA-DQA1 and HLA-DQB1 genes, which were previously 
identified via the illumina Asian Screening Array (ASA) 
BeadChip. Our objective was to investigate the associations 
between these genetic variants and susceptibility to GDM. These 
findings may pave the way for genetic screening tools that identify 
women at higher risk for GDM, contributing to better prevention 
and management strategies. 
2 Materials and methods 

2.1 Study subjects 

A control group of 638 normoglycemic pregnant women and a 
case group of 523 GDM women were enrolled at the Affiliated 
Hospital of Guilin Medical University from September 2014 to 
April 2016. All participants were genetically unrelated and provided 
written informed consent. Participants with pre-existing diabetes, 
chronic diseases, family history of diabetes or pregnancy 
complications were excluded to ensure a homogenous study 
population. The diagnostic criteria for GDM followed the 
standards established by the International Association of Diabetes 
and Pregnancy Study Groups (IADPSG), which were chosen for 
their sensitivity and international acceptance. According to these 
criteria, pregnant women without a previous diagnosis of diabetes 
underwent a 75-g oral glucose tolerance test (OGTT) after an 
overnight fast at 24–28 weeks of gestation. A diagnosis of GDM 
was made if any one or more of the following conditions were met: 
fasting blood glucose (FBG) ≥ 5.1mmol/L, postprandial 1-hour 
frontiersin.org 
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blood glucose ≥ 10.0mmol/L, or postprandial 2-hour blood glucose 
≥ 8.5mmol/L. Figure 1 provides a detailed flowchart of participant 
recruitment and selection criteria. All participants have signed 
informed consent forms and the research protocol has been 
approved by the Ethics Committee of Guilin Medical University 
(Number: GLMC20131205). 
2.2 Asian Screening Array 

The DNA extraction kit (Tiangen Biotech) was used to extract 
DNA from the samples, and then the gene typing module of 
Genomestudio v2.1 (Illumina) was subsequently used to obtain 
high-quality data suitable for genome-wide association studies. In 
the discovery phase, the dataset needs to meet the following criteria: 
(1) SNP call rate > 95%, in Hardy-Weinberg equilibrium (HWE); 
(2) sample call rate > 95%; and (3) minimum allele frequency 
(MAF) < 1%. 
2.3 Candidate variant selection 

On the basis of the ASA Bead Chip, at the statistical level of 
5*10-4, SNPs were screened. In reference to the NCBI (http:// 
www.ncbi.nlm.nih.gov/projects/SNP) and SNP info web server 
(http://snpinfo.niehs.nih.gov/), potential SNPs are located in the 
functional regions of the HLA-DQA1 and HLA-DQB1 genes, such 
Frontiers in Endocrinology 03 
as gene regulatory regions, microRNA binding site (MBS), 
transcription factor binding site (TFBS), splicing site (SS), etc. 
with minor allele frequency (MAF)  greater than 5% in the

Chinese Han Beijing population; Finally, seven SNPs, namely, 
rs1391371, rs9272425, rs9272426, rs9272460, rs9273368, 
rs9273505 and rs9274666 were selected. 
2.4 Clinical and biochemical data 

Comprehensive data on age, pre-pregnancy body mass index 
(pre-BMI), systolic blood pressure (SBP), diastolic blood pressure 
(DBP), and biochemical parameters were systematically collected 
from all participants. For biochemical analyses of triglyceride (TG), 
total cholesterol (TC), and high-density lipoprotein cholesterol 
(HDL-c) levels, blood samples were collected in no anticoagulant 
tubes after the participants had fasted for at least 12 hours. Blood 
samples for fasting blood glucose (FBG), 1-hour OGTT, and 2-hour 
OGTT were collected in tubes containing sodium fluoride-
potassium oxalate as an anticoagulant to inhibit glycolysis. 
Hemoglobin A1c (HbA1c) testing requires blood samples 
collected in tubes containing EDTA as an anticoagulant. A 
minimum of 3 milliliters of blood were collected for each test to 
ensure sufficient volume for accurate analysis. All biochemical 
assays were performed in the hospital’s clinical laboratory via 
standardized procedures and calibrated equipment to ensure the 
reliability and validity. 
FIGURE 1 

The flow chart of study participant recruitment. 
frontiersin.org 
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2.5 Genomic DNA extraction and 
genotyping 

Genomic DNA was extracted from EDTA-anticoagulated whole 
blood samples via a commercial DNA extraction kit (Aidlab 
Biotechnologies Co., Ltd., China) according to the manufacturer’s 
protocol. The concentration of the extracted DNA was assessed by 
measuring the absorbance at 260 nm and 280 nm via a UV 
spectrophotometer, ensuring that the A260/A280 ratio was 
between 1.80 and 2.00 for optimal quality. 

The specific amplification primers used for the selected SNPs 
are listed in Supplementary Table S1. The total volume of the PCR 
system was 5 mL, including 1 mL of template DNA (20~100 ng/mL), 
1.850 mL of ddH2O, 0.625 mL of 1.25×PCR buffer (15 mmol/L 
MgCl2), 0.325 mL of 25 mmol/L MgCl2, 0.1 mL of 25 mmol/L dNTP 
mixture, 1 mL of 0.5 mmol/L primer mixture, and 0.1 mL of 5 U/mL 
HotStar Taq polymerase. The PCR amplification program was as 
follows: first, 15 minutes of predenaturation at 94°C was performed, 
followed by 45 cycles. Each cycle included denaturation at 94°C for 
20 seconds, annealing at 56°C for 30 seconds, and extension at 72°C 
for 1 minute. Finally, a final incubation was carried out at 72°C for 
3 minutes. 

The amplified PCR products were analyzed via the Sequenom 
MassARRAY platform, which employs matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry (MALDI­

TOF MS) for SNP genotyping. The genotype data were processed 
and analyzed via TYPER 4.0 software. Representative genotyping 
scatter plots are presented in Supplementary Figure S1, 
demonstrating the reliability and accuracy of the genotyping. 
2.6 Statistical analysis 

The changes in the clinical and biochemical test data are 
represented as the mean (SD), whereas the differences in the 
demographic variables were evaluated using chi-square tests. The 
Hardy-Weinberg equilibrium of the genotype distribution was 
tested using chi-square (c2) goodness-of-fit test. Binary logistic 
regression analysis was used to assess the risk of GDM by 
calculating odds ratios (ORs) and their corresponding 95% 
confidence intervals (CIs). All statistical analyses were performed 
using the IBM SPSS Statistics 28 for Windows (IBM Corp, Armonk, 
NY, USA) with two-tailed tests, and  P<0.05 was considered 
statistically significant. 

Multifactor Dimensionality Reduction (MDR) software 
(version 3.0.2) was used to identifying interaction effects across 
the studied SNPs and construct the best multifactor model through 
1000 permutations under 100-fold cross-validation consistency 
(CVC) without associations. 

Linkage disequilibrium (LD) analysis of each SNP locus and 
construction of haplotypes were conducted using SHEsis software 
(http://analysis.bio-x.cn/) (24, 25). SNPs were considered to exhibit 
strong linkage when r2 > 0.6 and D′ > 0.7, moderate linkage when 
0.3≤ r2 ≤ 0.6 and 0.4 ≤ D′ ≤ 0.7, and weak linkage when r2 < 0.3 and 
Frontiers in Endocrinology 04
D′ < 0.4 (26). Understanding the LD between SNPs allows for the 
identification of haplotypes that may be associated with GDM risk. 

The false positive report probability (FPRP) was estimated to 
assess the robustness of findings with a statistically significant 
association with a prior probability set at 0.1 and a relatively 
strict cutoff value of 0.2 (27). 
3 Results 

3.1 Characteristics of the subjects 

This study included a total of 1161 pregnant women. A 
comparison between the control group and the GDM group 
revealed that pregnant women with GDM had significantly higher 
values for age, pre-BMI, SBP, DBP, TG, HbA1c, FPG, and 1-hour 
and 2-hour OGTT than those of the normoglycemic pregnant 
women (P<0.05), as shown in Table 1. 

In the term of the association between genetic variant genotype 
and GDM risk, the genotype frequencies of the four loci of HLA­
DQA1 and the three loci of HLA-DQB1 were all in accordance with 
the Hardy-Weinberg equilibrium as shown in Table 2. 

Given the lack of significant associations with individual 
genotypes, we conducted a combined- genotype effect analysis 
based on the basis of the number of risk genotypes. All putative 
risk genotypes, those with an odds ratio (OR) greater than 1.0 (and 
for OR < 1.0, the reference group was reversed), from the studied 
SNPs were categorized into new variables according to the number 
of risk genotypes (28). The risk genotypes used for the calculation 
were HLA-DQA1 gene rs1391371 AT/TT, rs9272425 TT, rs9272426 
AA and rs99272460 AA, and HLA-DQB1 gene rs9273368 GG, 
rs9273505 CT and rs9274666 AG/GG. 

As shown in Table 2, we observed that the likelihood of 
developing GDM increased with the number of risk genotypes. 
Compared with individuals with 0–1 risk genotypes, those carrying 
all 7 unfavorable genotypes had a significantly increased risk of 
GDM (adjusted OR = 2.34, 95% CI = 1.24-4.41, P=0.008). 
Additionally, individuals with 2–7 unfavorable genotypes 
presented increased GDM risk (adjusted OR = 1.54, 95% CI = 
1.04-2.28, P= 0.033) compared with those with 0–1 risk genotypes. 
Notably, this cumulative effect on GDM risk appeared to be dose-
dependent with respect to the number of risk genotypes (Ptrend 

= 0.024). 
3.2 Stratified analysis of risk genotypes 

We conducted a stratified analysis to assess the association 
between the number of risk genotypes (2–7 unfavorable genotypes) 
and GDM risk within subgroups defined by the mean values of clinical 
variables. As shown in Table 3, the increased GDM risk associated 
with carrying 2–7 unfavorable genotypes was more pronounced 
among participants with TG > 2.53 (OR=1.94, 95% CI=1.10-3.42, 
P=0.022), age ≤ 30.04 (adjusted OR=1.85, 95% CI=1.05-3.27, 
P=0.033), SBP >110.03 (adjusted OR=1.83, 95% CI=1.00-3.33, 
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TABLE 1 Characteristics of GDM cases and controls. 

Variables Controls (n=638), 
mean (SD) 

Cases (n=523), 
mean (SD) t P 

Age (years) 28.90 ± 4.15 31.43 ± 4.78 9.50 <0.001*** 

pre-BMI (kg/m2) 21.47 ± 2.30 23.14 ± 3.65 8.41 <0.001*** 

SBP (mmHg) 108.76 ± 9.36 111.59 ± 10.66 4.74 <0.001*** 

DBP (mmHg) 68.57 ± 8.29 70.51 ± 8.28 3.98 <0.001*** 

TG (mmol/L) 2.43 ± 1.00 2.65 ± 1.20 3.48 0.001*** 

TC (mmol/L) 5.30 ± 1.09 5.35 ± 1.15 0.75 0.452 

HDL-c (mmol/L) 1.65 ± 0.40 1.66 ± 0.42 0.50 0.616 

HbA1c (%) 5.00 ± 0.49 5.44 ± 0.69 12.38 <0.001*** 

FBG (mmol/L) 4.40 ± 0.33 5.26 ± 1.35 14.29 <0.001*** 

OGTT 1h glucose (mmol/L) 6.96 ± 1.41 9.80 ± 2.25 25.14 <0.001*** 

OGTT 2h glucose (mmol/L) 6.08 ± 1.09 8.34 ± 2.16 21.73 <0.001*** 
F
rontiers in Endocrinology 
05 
Significance: * P < 0.05; ** P < 0.01; ***P < 0.001. 
Bold values: statistically significant. 
TABLE 2 Effects of risk genotypes of HLA-DQA1/DQB1 variation GDM. 

Genotype Controls, 
n (%) Cases, n (%) Pa Crude OR 

(95%CI)b Pb Adjusted OR 
(95% CI)c Pc 

HLA-DQA1 

rs1391371 

AA 132 (22.5) 96 (19.6) 0.323 1 1 

AT 33 (5.6) 22 (4.5) 0.92 (0.50-1.67) 0.776 1.07 (0.57-2.01) 0.844 

TT 422 (71.9) 371 (75.9) 1.21 (0.90-1.62) 0.212 1.24 (0.90-1.70) 0.190 

AT/TT 455 (77.5) 393 (80.4) 0.254 1.19 (0.88-1.60) 0.254 1.23 (0.89-1.68) 0.207 

AA/AT 165 (28.1) 118 (24.1) 1 

TT 422 (71.9) 371 (75.9) 0.140 0.81 (0.62-1.07) 0.140 1.22 (0.91-1.64) 0.180 

rs9272425 

TT 362 (60.1) 308 (61.6) 0.677 1 1 

TC 114 (18.9) 98 (19.6) 1.01 (0.74-1.38) 0.948 0.96 (0.69-1.34) 0.830 

CC 126 (20.9) 94 (18.8) 0.88 (0.65-1.19) 0.402 0.83 (0.60-1.16) 0.272 

TC/CC 240 (39.9) 192 (38.4) 0.619 0.94 (0.74-1.20) 0.619 0.90 (0.69-1.16) 0.402 

TT/TC 476 (79.1) 406 (81.2) 1 

CC 126 (20.9) 94 (18.8) 0.378 0.88 (0.65-1.12) 0.379 0.84 (0.61-1.15) 0.281 

rs9272426 

AA 243 (39.3) 227 (44.0) 0.268 1 1 

AG 208 (33.7) 164 (31.8) 0.84 (0.64-1.11) 0.224 0.81 (0.61-1.08) 0.153 

GG 167 (27.0) 125 (24.2) 0.80 (0.60-1.08) 0.140 0.78 (0.57-1.07) 0.122 

AG/GG 375 (60.7) 289 (56.0) 0.112 0.83 (0.65-1.05) 0.112 0.80 (0.62-1.03) 0.077 

AA/AG 451 (73.0) 391 (75.8) 1 

GG 167 (27.0) 125 (24.2) 0.283 0.86 (0.66-1.13) 0.283 0.86 (0.65-1.14) 0.292 

(Continued) 
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TABLE 2 Continued 

Genotype Controls, 
n (%) Cases, n (%) Pa Crude OR 

(95%CI)b Pb Adjusted OR 
(95% CI)c Pc 

rs9272460 

AA 380 (63.8) 323 (68.3) 0.266 1 1 

AG 138 (23.2) 92 (19.5) 0.78 (0.58-1.06) 0.116 0.80 (0.58-1.11) 0.178 

GG 78 (13.1) 58 (12.3) 0.88 (0.60-1.27) 0.480 0.83 (0.56-1.23) 0.356 

AG/GG 216 (36.2) 150 (31.7) 0.121 0.82 (0.63-1.06) 0.121 0.81 (0.62-1.07) 0.134 

AA/AG 518 (86.9) 415 (87.7) 1 

GG 78 (13.1) 58 (12.3) 0.688 0.93 (0.65-1.34) 0.688 0.88 (0.60-1.29) 0.503 

HLA-DQB1 

rs9273368 

AA 55 (8.9) 47 (9.4) 0.329 1 1 

AG 243 (39.4) 176 (35.1) 0.85 (0.55-1.31) 0.456 0.93 (0.58-1.49) 0.765 

GG 319 (51.7) 279 (55.6) 1.02 (0.67-1.56) 0.914 1.12 (0.71-1.77) 0.619 

AG/GG 562 (91.1) 455 (90.6) 0.795 0.95 (0.63-1.43) 0.795 1.04 (0.67-1.61) 0.865 

AA/AG 298 (48.3) 223 (44.4) 1 

GG 319 (51.7) 279 (55.6) 0.196 1.17 (0.92-1.48) 0.196 1.19 (0.92-1.53) 0.180 

rs9273505 

CC 348 (58.8) 287 (59.1) 0.060 1 1 

CT 64 (10.8) 73 (15.0) 1.38 (0.96-2.00) 0.086 1.28 (0.87-1.91) 0.215 

TT 180 (30.4) 126 (25.9) 0.85 (0.64-1.12) 0.245 0.79 (0.59-1.06) 0.123 

CT/TT 244 (41.2) 199 (40.9) 0.929 0.99 (0.78-1.26) 0.929 0.92 (0.71-1.20) 0.537 

CC/CT 412 (69.6) 360 (74.1) 1 

TT 180 (30.4) 126 (25.9) 0.105 0.80 (0.61-1.05) 0.105 0.76 (0.57-1.01) 0.058 

rs9274666 

AA 209 (36.9) 169 (34.9) 0.168 1 1 

AG 133 (23.5) 97 (20.0) 0.90 (0.65-1.26) 0.541 0.97 (0.68-1.38) 0.857 

GG 224 (39.6) 218 (45.0) 1.20 (0.91-1.59) 0.187 1.25 (0.93-1.68) 0.134 

AG/GG 357 (63.1) 315 (65.1) 0.499 1.09 (0.85-1.40) 0.499 1.15 (0.88-1.50) 0.319 

AA/AG 342 (60.4) 266 (55.0) 1 

GG 224 (39.6) 218 (45.0) 0.074 1.25 (0.98-1.60) 0.074 1.27 (0.98-1.65) 0.077 

Number of risk genotypes 

0-1 88 (20.6) 54 (14.8) 0.243 1 1 

2 13 (3.0) 10 (2.7) 1.25 (0.51-3.06) 0.619 1.45 (0.56-3.71) 0.442 

3 33 (7.7) 29 (8.0) 1.43 (0.78-2.62) 0.243 1.62 (0.85-3.07) 0.142 

4 81 (18.9) 64 (17.6) 1.29 (0.80-2.06) 0.293 1.25 (0.76-2.07) 0.381 

5 76 (17.8) 71 (19.5) 1.52 (0.95-2.43) 0.079 1.61 (0.98-2.66) 0.061 

6 109 (25.5) 98 (26.9) 1.47 (0.95-2.26) 0.085 1.49 (0.94-2.37) 0.091 

7 28 (6.5) 38 (10.4) 2.21 (1.22-4.01) 0.009** 2.34 (1.24-4.41) 0.008** 

Trend 0.020* 0.024* 

(Continued) 
F
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TABLE 2 Continued 

Genotype Controls, 
n (%) Cases, n (%) Pa Crude OR 

(95%CI)b Pb Adjusted OR 
(95% CI)c Pc 

Dichotomized groups 

0-1 88 (20.6) 54 (14.8) 0.036* 1 

2-7 340 (79.4) 310 (85.2) 1.49 (1.02-2.16) 0.037* 1.54 (1.04-2.28) 0.033* 
F
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aTwo-sided c2 test for genotypes distributions between cases and controls.
 
bUnconditional logistic regression analysis.
 
cAdjusted for age, pre-BMI in logistic regression models.
 
Significance: * P < 0.05; ** P < 0.01; ***P < 0.001.
 
Bold values: statistically significant.
 
– –

TABLE 3 Stratification analysis for associations between risk genotypes of HLA-DQA1/DQB1 and GDM risk. 

Variables 0 1 Risk Genotype 
(Cases/Controls) 

2 7 Risk Genotypes 
(Cases/Controls) 

Crude OR 
(95%CI)a Pa Adjusted OR 

(95%CI)b Pb Pc 

Age (years) 

≤30.04 21/61 140/232 1.75 (1.02-3.00) 0.041* 1.85 (1.05-3.27) 0.033* 0.910 

>30.04 33/27 170/108 1.29 (0.73-2.26) 0.378 1.29 (0.73-2.29) 0.382 

pre-BMI (kg/m2) 

≤22.22 22/62 128/231 1.56 (0.92-2.66) 0.101 1.68 (0.96-2.94) 0.068 0.393 

>22.22 32/26 182/109 1.36 (0.77-2.40) 0.294 1.39 (0.78-2.48) 0.267 

SBP 
(mmHg) 

≤110.03 29/51 147/186 1.39 (0.84-2.30) 0.201 1.35 (0.80-2.29) 0.262 0.270 

>110.03 25/37 163/154 1.57 (0.90-2.72) 0.112 1.83 (1.00-3.33) 0.050* 

DBP (mmHg) 

≤69.44 33/51 147/177 1.57 (0.90-2.72) 0.112 1.28 (0.77-2.12) 0.349 0.044 

>69.44 21/37 163/163 1.76 (0.99-3.14) 0.055 2.11 (1.12-3.96) 0.021* 

TG (mmol/L) 

≤2.53 31/50 154/207 1.20 (0.73-1.97) 0.470 1.35 (0.80-2.31) 0.264 0.744 

>2.53 23/38 156/133 1.94 (1.10-3.42) 0.022* 1.78 (0.99-3.22) 0.055 

TC 
(mmol/L) 

≤5.33 30/52 148/172 1.49 (0.90-2.46) 0.117 1.59 (0.93-2.71) 0.088 0.066 

>5.33 24/36 162/168 1.45 (0.83-2.53) 0.196 1.43 (0.79-2.58) 0.243 

HDL-c (mmol/L) 

≤1.65 27/53 150/177 1.66 (1.00-2.78) 0.051 1.86 (1.07-3.22) 0.028* 0.193 

>1.65 27/35 160/163 1.27 (0.74-2.20) 0.388 1.23 (0.69-2.18) 0.484 

HbA1c (%) 

≤5.20 23/68 114/258 1.31 (0.78-2.20) 0.315 1.33 (0.78-2.26) 0.301 0.133 

>5.20 31/20 196/82 1.54 (0.83-2.86) 0.170 1.65 (0.85-3.17) 0.137 
frontier
aUnconditional logistic regression analysis.
 
bAdjusted for age, pre-BMI in logistic regression models.
 
cHomogeneity test using the c2.
 
Significance: * P < 0.05; ** P < 0.01; ***P < 0.001.
 
Bold values: statistically significant.
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P= 0.050), DBP > 69.44 (adjusted OR=2.11, 95% CI=1.12-3.96, 
P=0.021) and HDL-c ≤ 1.65 (adjusted OR=1.86, 95%CI=1.07­

3.22, P=0.028). 
3.3 FPRP analysis 

The FPRP test was used to assess whether there was a significant 
correlation between the accumulation of multiple unfavorable genes 
in SNPs and the risk of GDM in this study. See Table 4, the FPRP 
value for the association between seven unfavorable genotypes and 
GDM risk is 0.191 (less than the threshold value of 0.20), indicating 
that association is authentic. 
3.4 Gene-gene interaction effects on GDM 
risk according 

In the MDR analysis, we identified the best single-locus model 
as rs9274666 in Table 5, which is significantly associated with GDM 
risk (c2 = 5.27, P=0.0217) and achieved the highest CVC of 100/100 
and a balanced testing accuracy of 0.5195. More interestingly, the 
model with all seven studied SNPs with a whole balanced accuracy 
of 0.6636 and a maximum CVC of 100/100 was the best model for 
evaluate the GDM risk, with a c2 test of 134.28 and the 
corresponding P<0.0001. 
3.5 LD analysis 

For seven SNPs in HLA-DQA1/DQB1, we observed strong LD 
between rs9272425 and rs1391371 (D′=0.982, r2 = 0.671) in 
Figure 2. Moderate LD was found between rs9272426 and both 
rs1391371 (D′=0.954, r2 = 0.458) and rs9272425 (D′=0.929, r2 = 
0.521), and between rs9274666 and both rs1391371 (D′=0.932, r2 = 
0.322) and rs9272425 (D′=0.954, r2 = 0.491). LD among the other 
SNPs was relatively weak. 
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3.6 Haplotype analysis 

As shown in Table 6, when constructing haplotypes for 7 SNP 
loci within HLA-DQA1 and HLA -DQB1 for the GDM group and 
the control group, we found that the haplotype TTAAGCG was the 
most common, with frequencies of 35.5% in the GDM group and 
33.2% in the control group. An increased risk of GDM may be 
associated with the haplotypes ACGAGTA (OR=3.31, 95% 
CI=1.70-6.44, P<0.001) and ACGGATA (OR=9.42,95% CI=3.49­
25.44, P<0.001); whereas the haplotypes ACGAATA (OR=0.13, 
95% CI=0.07-0.28, P<0.001) and ACGGGTA (OR=0.06, 95% 
CI=0.02-0.22, P<0.001) present a decreased risk effect of GDM. 
4 Discussion 

The result of the present study suggests that genetic factors, 
such as SNPs (29), are strongly linked to the onset of GDM. In this 
study, among the seven selected loci of HLA-DQA1/DQB1 genes 
(rs1391371, rs9272425, rs9272426, rs9272460, rs9273368, 
rs9273505, and rs9274666), we also observed that the risk of 
GDM increased correspondingly with the accumulation of 
unfavorable genotypes when combined. This cumulative effect 
was further validated by the results from the multifactor MDR 
analysis. Identification of these SNPs may enable prediction of 
GDM risk and allow for early intervention strategies to minimize 
complications for both the pregnant woman and the newborn (30). 
These findings are important for the prevention and control of 
GDM in clinical and public health settings. 

Previous studies have shown that HLA class II genes (HLA­
DQA1, HLA-DRB1, HLA-DPA1, and  HLA-DQB1) and their antigens 
may play roles in immune regulation during GDM development (31). 
HLA-DQA1/DQB1, as key molecules within the HLA class II 
complex, are associated with the pathogenesis of GDM through 
interactions with regulatory T cells (Tregs) and effector T cells (32). 
Consistent with this, we established an association between the 
combined effects of HLA-DQA1/DQB1 genetic variant genotypes 
TABLE 4 FPRP analysis for the positive associations of HLA-DQA1/DQB1 variants and GDM risk. 

Combined 
risk genotypes 

Adjusted OR 
(95% CI) P Statistical 

Power 

Prior probability 

0.25 0.1 0.01 0.001 0.0001 0.00001 

7 vs.0-1 2.34 (1.24-4.41) 0.008 0.081 0.073 0.191 0.722 0.963 0.996 1.000 

2–7 vs.0-1 1.54 (1.04-2.28) 0.033 0.457 0.178 0.394 0.877 0.986 0.999 1.000 

Subgroup 

Age ≤ 30.04 1.85 (1.05-3.27) 0.033 0.600 0.142 0.331 0.845 0.982 0.998 1.000 

SBP>110.03 1.83 (1.00-3.33) 0.050 0.621 0.194 0.420 0.888 0.988 0.999 1.000 

DBP>69.44 2.11 (1.12-3.96) 0.021 0.440 0.1225 0.300 0.825 0.979 0.998 1.000 

HDL-c ≤ 1.65 1.86 (1.07-3.22) 0.028 0.567 0.100 0.250 0.786 0.974 0.997 1.000 
 
fr
Bold values indicate that the difference is statistically significant at the test level of FPRP=0.2. 
ontiersin.org 

https://doi.org/10.3389/fendo.2025.1511561
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http:CI=0.02-0.22
http:CI=0.07-0.28
http:CI=1.70-6.44
http:95%CI=1.07
http:CI=1.12-3.96


Nie et al. 10.3389/fendo.2025.1511561 
and an increased risk of GDM. Using logistic regression, MDR, FPRP 
and haplotype analysis, we confirmed the joint effects between the 
studied loci. These results suggest that HLA-DQA1/DQB1 gene 
variants have significant genetic regulatory effects on the 
pathogenesis of GDM, potentially altering individuals’ susceptibility 
to GDM through single-locus effects, multifactor combinations, and 
gene-environment interactions. 

FPRP analysis, plays an important role in molecular epidemiology 
research, by evaluating the authenticity of research results, helping 
researchers better understand and control potential false positives in 
research, and thereby improving the scientific and reliability of research 
(27). To verify the noteworthiness of the significant associations 
between the studied variants and GDM risk, a much more stringent 
FPRP threshold of 0.2 was set, and the 7 risk factors, compared with the  
0–1 risk genotype carrying effect, are likely to be authentic. However, 
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the FPRP values detected for other statistically significant associations 
are much greater than 0.2, indicating that these findings might be 
possible observations. Thus, the conclusions drawn from here must be 
considered preliminary and need to be verified in the future. 

In exploring gene-environment interactions, we observed that 
combinations of unfavorable genotypes can significantly increase the 
risk of GDM in pregnant women under the age of 30.04 years, with 
SBP exceeding 110.03 mmHg, DBP exceeding 69.44 mmHg, TG 
greater than 2.53 mmol/L, and HDL-c levels below 1.65 mmol/L. 
Research has indicated that elevated triglycerides can lead to 
dyslipidemia, wherein excessive free fatty acids are secreted by 
abundant adipocytes. This process promotes the overproduction of 
inflammatory cytokines and oxidative reactions, which can damage 
pancreatic beta cells or induce insulin resistance, ultimately resulting in 
abnormal glucose levels. HDL-c, as a crucial lipoprotein, not only 
TABLE 5 MDR analysis for the GDM risk prediction. 

Best 
model 

Training 
balanced accuracy 

Testing 
balanced accuracy 

Whole 
balanced accuracy CVC c2 P 

1 0.5329 0.5195 0.5329 
100/ 
100 

5.27 0.0217* 

1,2 0.5487 0.5256 0.5487 92/100 11.14 <0.001*** 

1,2,3 0.5741 0.4677 0.5736 79/100 25.10 <0.001*** 

1,2,3,4 0.6056 0.4602 0.6050 
100/ 
100 

50.79 <0.001*** 

1,2,3,4,5, 0.6321 0.4552 0.6316 95/100 83.22 <0.001*** 

1,2,3,4,5,6 0.6572 0.4906 0.6568 
100/ 
100 

121.16 <0.001*** 

1,2,3,4,5,6,7 0.6640 0.4963 0.6636 
100/ 
100 

134.28 <0.001*** 
 
fron
Labels: 1:rs9274666, 2: rs9272426, 3:rs9272460, 4:rs9273505, 5:rs9272425, 6:rs9273368, 7:rs1391371. 
Significance: * P < 0.05; ** P < 0.01; ***P < 0.001. 
Bold values: statistically significant. 
FIGURE 2 

SNPs loci linkage disequilibrium analysis. The strength of LD between SNP pairs, with D’ and r2 values representing the degree of genetic correlation. 
(A) The D’ value in the box reflects the overall linkage situation of multi-locus chromosome blocks; (B) The r2 value in the box reflects the estimated 
situation of linkage disequilibrium between two loci. 
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influences glucose levels through the aforementioned pathways but also 
exerts effects through its direct anti-inflammatory properties. Low 
levels of HDL-c can alter insulin sensitivity and pancreatic insulin 
secretion (33, 34). Although the complex physiological and 
pathological mechanisms linking elevated blood pressure to glucose 
imbalance are not yet clear, studies have shown a close relationship 
between elevated diastolic blood pressure and insulin resistance and 
GDM. Researchers thought that the two could interact via the renin­
angiotensin-aldosterone and sympathetic nervous systems (35, 36). 
Lack of gestational weight gain records may affect metabolic 
assessment. Future studies should incorporate longitudinal 
anthropometric measurements. These findings provide new insights 
for further exploration of the relationship between genetic factors and 
the prediction of GDM and cardiovascular disease. In contrast, while 
most studies suggest that older age is associated with a greater risk of 
GDM (37, 38), this research revealed that the combined effect of 
unfavorable genotypes on GDM risk was more pronounced in 
individuals under the age of 30.04 years. This could be due to the 
interaction between genetic susceptibility and early metabolic 
imbalance, which might lead to the earlier onset of GDM in younger 
individuals (39). Beyond genetic risk stratification, innovative cardiac 
imaging modalities such as speckle tracking echocardiography (STE) 
could provide critical insights for identifying among pregnant women 
those with increased risk of developing GDM or cardiovascular 
complications (40, 41). It is likely that several genetic variants may 
serve as predictors of impaired myocardial deformation indices or 
subclinical myocardial dysfunction in pregnant women at higher risk 
of GDM. 

Haplotypes can influence disease development by affecting 
pathways of cell survival, the immune response, and the regulation 
of cell death (42). Located on chromosome 6, the HLA region comprise 
an abundant array of immune-related genes and is, to some extent, also 
influenced by haplotypes (43). We performed LD analysis on seven 
SNPs within the HLA-DQA1/HLA-DQB1 genes, revealing significant 
LD among these loci. Haplotype analysis indicated that the ACGAATA 
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and ACGGGTA haplotypes may be associated with a reduced risk of 
GDM, and the ACGAGTA and ACGGATA haplotypes could increase 
susceptibility to GDM. Compare the database with previous studies, no 
correlation was found between these haplotypes and other immune or 
metabolic diseases. Only cyclin-dependent kinase 5 regulatory subunit 
related protein 1-like 1 and vascular endothelial growth factor gene 
haplotypes were found to be associated with the risk of GDM (44, 45). 
These findings may serve as potential biological markers for predicting 
GDM risk and enhance our understanding of the genetic basis of 
this disease. 

This study explored the association between HLA-DQA1/DQB1 
gene polymorphisms and the risk of GDM, utilizing a relatively large 
sample size and multiple analytical methods to assess potential 
interactions. However, there are several limitations in this study. 
First, as a hospital-based case-control study, there is inherent bias in 
participant selection and research data recall. Second, although 
relatively large-size samples were included, however, the lower minor 
allele frequency of some tested SNPs might limit the statistical power to 
detect significant associations in some subgroups. Third, the SNPs 
chosen for this study do not comprehensively cover all variants, which 
may lead to the omission of some significant variants. Fourth, due to 
challenges in postpartum follow-up, we were unable to collect reliable 
postpartum glucose tolerance data. We could not to determine the 
remission or persistence of GDM, which limits the interpretation of 
long-term implications of the observed genetic associations. Therefore, 
more related potential genetic and environmental variables need to 
be included. 
5 Conclusion 

In summary, the present study revealed that SNPs in the HLA­
DQA1/HLA-DQB1 genes are significantly associated with the risk of 
GDM via a single locus or joint effects of gene-gene and gene-
environment factors. However, larger sample size studies with 
TABLE 6 Distribution of haplotypes in GDM group and control group. 

Haplotypes GDM, n (%) Control, n (%) c2 P OR (95%CI) 

A C G A A T  A  8.51 (1.2) 66.90 (7.8) 39.87 <0.001*** 0.13 (0.07~0.28) 

A C G A G T  A  33.49 (4.6) 12.14 (1.4) 13.80 <0.001*** 3.31 (1.70~6.44) 

A C G G A C A 26.00 (3.6) 33.19 (3.9) 0.16 0.689 0.90 (0.53~1.52) 

A C G G A T  A  34.49 (4.7) 4.45 (0.5) 28.63 <0.001*** 9.42(3.49~25.44) 

A C G  G G T A  2.51 (0.3) 44.50 (5.2) 33.18 <0.001*** 0.06 (0.02~0.22) 

T C G A A C A 58.97 (8.1) 58.65 (6.9) 0.70 0.402 1.18 (0.81~1.72) 

T T A A G C A 60.77 (8.3) 63.20 (7.4) 0.36 0.548 1.12 (0.77~1.62) 

T T A A G C G 258.78 (35.5) 284.53 (33.2) 0.52 0.471 1.09 (0.87~1.36) 

T T A A G T G 61.89 (8.5) 54.35 (6.3) 2.37 0.124 1.35 (0.92~1.98) 

T T A G G C A 28.85 (4.0) 30.54 (3.6) 0.11 0.737 1.09 (0.65~1.84) 

T T A G G C G 19.61 (2.7) 31.90 (3.7) 1.52 0.217 0.70 (0.39~1.24) 
Significance: * P < 0.05; ** P < 0.01; ***P < 0.001. 
Bold values: statistically significant. 
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different populations and related functional experiments are 
warranted to confirm these positive findings. 
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