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Background: Type 2 diabetes (T2DM) combined with fatty liver is a subtype of

metabolic fatty liver disease (MAFLD), and the relationship between T2DM and

MAFLD is close and mutually influential. However, the connection and

mechanisms between the two are still unclear. Therefore, we aimed to identify

potential biomarkers for diagnosing both conditions.

Methods: We performed differential expression analysis and weighted gene

correlation network analysis (WGCNA) on publicly available data on the two

diseases in the Gene Expression Omnibus database to find genes related to both

conditions. We utilised protein–protein interactions (PPIs), Gene Ontology, and

the Kyoto Encyclopedia of Genes and Genomes to identify T2DM-associated

MAFLD genes and potential mechanisms. Candidate biomarkers were screened

using machine learning algorithms combined with 12 cytoHubba algorithms, and

a diagnostic model for T2DM-related MAFLD was constructed and evaluated.The

CIBERSORT method was used to investigate immune cell infiltration in MAFLD

and the immunological significance of central genes. Finally, we collected whole

blood from patients with T2DM-related MAFLD, MAFLD patients and healthy

individuals, and used high-fat, high-glucose combined with high-fat cell models

to verify the expression of hub genes.

Results: Differential expression analysis and WGCNA identified 354 genes in the

MAFLD dataset. The differential expression analysis of the T2DM-peripheral

blood mononuclear cells/liver dataset screened 91 T2DM-associated secreted

proteins. PPI analysis revealed two important modules of T2DM-related

pathogenic genes in MAFLD, which contained 49 nodes, suggesting their

involvement in cell interaction, inflammation, and other processes. TNFSF10,

SERPINB2, and TNFRSF1A were the only coexisting genes shared between

MAFLD key genes and T2DM-related secreted proteins, enabling the
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construction of highly accurate diagnostic models for both disorders.

Additionally, high-fat, high-glucose combined with high-fat cell models were

successfully produced. The expression patterns of TNFRSF1A and SERPINB2

were verified in patient blood and our cellular model. Immune dysregulation

was observed in MAFLD, with TNFRSF1A and SERPINB2 strongly linked to

immune regulation.

Conclusion: The sensitivity and accuracy in diagnosing and predicting T2DM-

associated MAFLD can be greatly improved using SERPINB2 and TNFRSF1A.

These genes may significantly influence the development of T2DM-associated

MAFLD, offering new diagnostic options for patients with T2DM combined

with MAFLD.
KEYWORDS

secreted protein, metabolic associated fatty liver disease, type 2 diabetes mellitus,
TNFRSF1A, SERPINB2
1 Introduction
Metabolic dysfunction associated fatty liver disease (MAFLD) is a

chronic condition characterized by hepatic steatosis, along with at least

one of the following: overweight/obesity, type 2 diabetes (T2DM), or

metabolic dysfunction. It was proposed in 2020 as an alternative to the

traditional term non-alcoholic fatty liver disease (NAFLD) (1). Of all

adult diseases, metabolic associated fatty liver disease (MAFLD) affects

around one-third of individuals globally (2). In its more advanced

phases, MAFLD can lead to hepatic fibrosis and hepatocellular cancer,

in addition to steatohepatitis (3–5). As one of the fastest liver-related

disorders in incidence and mortality (6), effectively managingMAFLD

is a major global public health concern (7).

There is a close relationship between MAFLD and T2DM, with

both being mutually causal and forming a vicious cycle. According

to epidemiological studies, patients with MAFLD are nearly twice as

likely to acquire T2DM as the general population, regardless of

obesity or other prevalent metabolic risk factors (8). AND the

probability of MAFLD in T2DM patients is 50%~75% higher than

that of the normal population (9).As a metabolic syndrome

characterised by hyperglycaemia, insulin resistance, and impaired

insulin secretion, T2DM induces an increase in lipolysis, which in

turn causes the liver to absorb excessive amounts of free fatty acids

(10). Simultaneously, excessive intrahepatic lipid deposition inhibits

intrahepatic insulin signalling, resulting in a decrease in glycogen

synthesis and an increase in gluconeogenesis, causing fluctuations

in the body’s insulin and glucose levels (11). Ultimately, this creates

a vicious cycle. Once fatty liver appears in T2DM patients, it can be

diagnosed as MAFLD. The combination of MAFLD and T2DM not

only increases the cardiovascular complications risk for type 2

diabetes patients, but may also lead to severe liver disease (12).

Simultaneously, when the blood glucose level of MAFLD patients
02
progresses to diabetes, the worsening glycaemic condition

accelerates the progression of MAFLD, not only in terms of

increased fatty infiltration but also in raising the risk of

cardiovascular disease, the rate at which liver-related disorders

result in death, and the rate at which hepatic fibrosis progresses—

all of which impact patients’ quality of life (13, 14). Consequently, it

is important to reveal the comorbid genes and mechanisms of

MAFLD and T2DM.

Despite increasing evidence of their relationship, the primary

molecules and underlying mechanisms of the substantial

correlation between MAFLD and T2DM remain unknown.

Therefore, this study utilised bioinformatics and machine learning

techniques to explore the pathogenic genes and diagnostic

biomarkers of T2DM-associated MAFLD, intending to offer a

foundation for the clinical diagnosis of patients with T2DM and

MAFLD, as well as research into the pathogenic mechanisms.
2 Materials and methods

2.1 Data collection and
preliminary processing

The Gene Expression Omnibus (GEO) database is a publicly

available functional genomics resource that provides valuable high-

throughput microarray and next-generation sequencing data on

functional genomes (15) Using the GEOquery package, we

downloaded two MAFLD datasets (GSE89632 and GSE66676)

and two type 2 diabetes datasets (GSE95849 and GSE23343) (16),

which are displayed in Table 1. The limma software was utilised to

normalise and standardise the data, with the exception of the

GSE66676 dataset, which served as the test set in this

investigation (17).
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2.2 Weight gene correlation network
analysis to construct gene co-expression
networks and identify functional modules

WGCNA was performed using the GSE89632 dataset to find

coexisting gene modules, investigate the connections between gene

networks and phenotypes, and examine the network’s core genes

(18). After screening the soft threshold power levels, a value of 4 was

determined to be the ideal threshold. Subsequently, scale-free

networks and topology matrices were built using the soft

thresholds, and hierarchical clustering was conducted. A

minimum of fifty genes was required for a module to be

considered, and each module was assigned a distinct colour label.

As a result, 24 modules were obtained using Pearson’s correlation

analysis to determine the relationships between the modules and

clinical features. Lastly, blue and brown modules—the ones with the

strongest positive and negative module-trait relationships—

were filtered.
2.3 Screening for differential genes
between disease and health groups

Background correction, normalization, and gene symbol

conversion were applied to the MAFLD dataset and the T2DM

dataset (GSE95849 and GSE23343). The R package DESeq2 and

limma was employed for differential gene analysis of GEO

microarray data in the normal and disease groups (19). The

thresholds for identifying differential genes were |logFC| >1 and P

< 0.05 for the control versus MAFLD disease dataset, and |logFC|

>0.5 and P < 0.05 for the normal versus diabetes disease groups.

Subsequently, the ‘ggplot2’ and ‘pheatmap’ tools in R software were

used to visualize the expression patterns of differentially expressed

genes (DEGs) as volcano plots and heat maps, respectively.
2.4 Secreted protein acquisition

Th e Human P r o t e i n A t l a s d a t a b a s e ( h t t p s : / /

www.proteinatlas.org/) provided the secreted protein data (20).

SPOCTOPUS predicted a total of 3947 genes encoding

secreted proteins.
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2.5 Acquisition of shared genes

The overlapping genes from the DEGs and WGCNA modules

in GSE89632 were defined as MAFLD-associated shared genes,

while the intersections of DEGs with secreted protein genes within

the GSE95849 and GSE23343 datasets, respectively, were identified

as T2DM-associated secreted proteins that are shared with DEGs,

both visualized through Venn diagrams. To explore the interactions

between T2DM-associated secretory proteins and key MAFLD

genes, a protein–protein interaction (PPI) network connecting

T2DM and MAFLD was established based on the STRING

database (https://www.stringdb.org), with a median confidence

score of > 0.4 (21). Subsequently, the PPI network was visualised

using Cytoscape software (version 3.9.1) (22). To identify important

modules, we also conducted molecular complex detection

(MCODE) using Cytoscape. The top two scoring modules

associated with T2DM and MAFLD genes were chosen for

enrichment analysis.
2.6 Functional enrichment analysis

We performed Kyoto Encyclopedia of Genes and Genomes

(KEGG) annotation and Gene Ontology (GO) annotation on the

genes utilising the R package ‘clusterProfiler’ to investigate the

distinct processes and biological functions of T2DM-associated

MAFLD-causing genes. Pathway enrichment analyses for

Hs.eg.db with adj.p < 0.05 were deemed significantly enriched

(23). Ring and bubble plots were also used to display the

functional enrichment analysis results.
2.7 Screening pivotal genes according to
machine learning and PPI networks

We used the overlapping genes between secreted proteins and

DEGs from the GSE95849 and GSE23343 datasets as the T2DM-

associated MAFLD shared genes in order to identify candidate

biomarkers and construct a diagnostic model for T2DM-associated

MAFLD. Initially, we employed the least absolute shrinkage and

selection operator (LASSO) algorithm, a data-mining technique

that applies an L1 penalty (lambda) to set the coefficients of less
TABLE 1 Descriptive statistics of the GEO datasets.

GEO accession Platform Origin Sample Species

Control MAFLD

GSE89632 GPL14951 Liver 24 39 Homo sapiens

GSE66676 GPL6244 Liver 24 20 Homo sapiens

GEO accession Platform Origin Sample Species

Control T2DM

GSE95849 GPL22448 PBMC 6 12 Homo sapiens

GSE23343 GPL570 Liver 7 10 Homo sapiens
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important variables to zero, filtering out important variables to

construct the best classification model (24). Thereafter, we used

support vector machine recursive feature elimination (SVM-RFE)

analysis to identify the optimal core genes by discarding the feature

vectors generated by the SVM (25) and applied the Random Forest

(RF) algorithm, which integrates multiple trees through integrative

learning for improved accuracy and employs the ‘Random Forest’

software package to narrow down candidate biomarkers (26). This

approach helps establish the intersection of the three machine

learning algorithms. Additionally, the cytoHubba plug-in is

frequently used, much like machine learning algorithms, for the

identification of key genes (27). For this reason, in this study, a PPI

network was constructed once more from the STRING database

and visualised using Cytoscape. Next, 12 cytoHubba plug-in

algorithms were used to assess differential genes, and lastly, the

top 10 genes from each algorithm as intersections were visualised

using the ImageGP platform (28). Ultimately, all of the genes that

were discovered using both techniques were recognised as

hub genes.
2.8 Expression of T2DM-related MAFLD
hub genes in the MAFLD dataset

The expression levels of core genes were determined using two

datasets: the validation dataset GSE66676 and the training

set GSE89632.
2.9 Construction of nomograms and
evaluation of predictive models for
diagnostic markers

Using the ‘rms’ software program, alignment diagrams based on

the three pivotal genes were created (29). The area under the

subject’s receiver operating characteristic (ROC) curve was

plotted to evaluate the effectiveness of each pivotal gene and

alignment diagram in the diagnosis of MAFLD. Furthermore,

ROC curves were generated to ascertain whether the diagnosis of

MAFLD was aided by decision-making based on the nomograms.

To evaluate the predictive effectiveness of the alignment diagram for

T2DM-related MAFLD, calibration curves and decision curve

analysis (DCA) were conducted sequentially, with the

aforementioned validation performed in the validation set.
2.10 Analysis of immune infiltration

Using the ‘CIBERSORT’ software tool, the degree of immune cell

infiltration was evaluated in relation to MAFLD gene expression

profiles (30). The ‘ggplot2’ software tool was utilized to generate a

bar graph representing the percentage and quantity of immune

infiltration for each sample. The proportions of 22 immune cells in

MAFLD samples and control liver tissue samples were compared using

the Wilcoxon test. A statistically significant difference was defined as P

< 0.05, and the results were displayed using stacked histograms from
Frontiers in Endocrinology 04
the ‘ggplot2’ package. Subsequently, the ‘corrplot’ software was used to

investigate the associations among the 22 infiltrating immune cells

(31). Lastly, Spearman’s rank correlation coefficient was employed to

assess the relationship between the expression of diagnostic biomarkers

and the amount of infiltrating immune cells. The results showed that

the association was statistically significant at P < 0.05.
2.11 Specimen collection

The study was approved by the Ethics Committee of the First

Affiliated Hospital of Guangxi Medical University. All blood

samples were collected from the Department of Endocrinology.

Furthermore, the inclusion criteria for non-T2DM-related MAFLD

group (hereinafter referred to as the MAFLD group) in this study

were those diagnosed with hepatic steatosis by ultrasound

examination, while also meeting the criteria of being overweight

or obese or having metabolic abnormalities (1), excluding patients

with T2DM. Conversely, patients diagnosed with hepatic steatosis

through ultrasound examination and meeting T2DM criteria are

classified as the T2DM-related MAFLD group. The diagnosis of

T2DM is based on the diabetes diagnostic criteria recommended by

the World Health Organization (WHO) in 1999.
2.12 Experimental materials

DMEM medium was purchased from WISENT (Canada), and

fetal bovine serum was procured from ViaCell (Shanghai, China).

Penicillin-streptomycin-amphotericin B antibodies were obtained

from Solepol (Beijing, China), while sodium palmitate was sourced

from Xi’an Kunchuang Science and Technology Development Co Ltd

(Xi’an, China). The CCK-8 reagent was acquired from Xin Saimai

(Suzhou, China), and SERPINB2, TNFSF10, and TNFRSF1A

antibodies were obtained from Proteintech (Wuhan, China). The

goat anti-rabbit antibody from SAB Signalway Antibody (China) was

used for Western blotting. The Western Lightning™ Plus-ECL

Enhanced Chemiluminescent Substrate Detection Kit was

purchased from HYCEZMBIO (Wuhan, China), and the goat anti-

rabbit secondary antibody for immunofluorescence was obtained

from Servicebio (Wuhan, China). The modified Oil Red O staining

kit was acquired from Biyuntian (China), and the triglyceride (TG)

assay kit was sourced from Nanjing Jianjian Bioengineering Institute

(Nanjing, China). TRIzol (Takara, Tokyo, Japan), RT SuperMix for

qPCR, and SYBR qPCR Master Mix (Ruizhen Bio, Guangzhou,

China) experimental reagents were utilised, while the QuantStudio

3/5 Real-Time PCR Software System (Thermo Fisher Scientific, USA)

and eBlot® Electronic Compression Imager (Shanghai, China) were

employed for RT-PCR and Western blotting.
2.13 Cell model construction and
cell culture

The HepG2 cells were obtained from the cell bank of the Chinese

Academy of Sciences’ Typical Culture Preservation Committee.
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The cells were cultivated in a cell culture incubator at 37°C with 5%

CO2 using a complete medium (DMEM containing 1% penicillin-

streptomycin-amphotericin B triple antibody, 10% fetal bovine

serum, and 5.5 mmol/L glucose). In this experiment, 5.5 mmol/L of

glucose was designated as the low glucose concentration, while 25

mmol/L was considered the high glucose concentration (32). HepG2

cells were injected into 96-well plates at a density of 1.5 × 104 cells/

well once their growth density had reached 70–80%. They were then

incubated until the cells reached 50% confluence, at which point they

were treated with different concentrations of sodium palmitate (PA)

medium, with a glucose concentration of 25 mmol/L, for 48 hours.

Following this, the CCK8 assay was conducted to determine

appropriate sodium palmitate concentrations. In a 6-well plate,

approximately 1 × 105 cells were cultured for a full day after

infection. To treat the cells for 48 hours, the appropriate

concentration of sodium palmitate was added to the complete

medium containing either 5 mmol/L or 25 mmol/L glucose. Both

the T2DM combined MAFLD model (HGHF group) and the

MAFLD model (LGHF group) were established. Fat accumulation

levels were assessed using a triglyceride kit and Oil Red O staining,

with a control group (LGLF group) consisting of the complete culture

medium mixed with an equal volume of control solvent.The GPO-

PAP method was employed to determine the TG content using a TG

assay kit. The triglyceride test reagents and cell homogenate were

added to a 96-well plate according to the instructions, mixed, and

incubated at 37°C for 10 minutes. Subsequently, the optical density

(OD) of each well was measured using a microplate reader (546 nm).

The following formula was used to calculate the TG content: TG

content = (sample OD value - blank OD value)/(calibration sample

OD value - blank OD value) * (calibration sample concentration/

sample protein concentration).
2.14 Validation of hub gene expression
between the control, MAFLD, and T2DM-
associated MAFLD groups

Using TRIzol reagent, total RNA was isolated from cultivated

cells, and RT SuperMix was used to reverse transcribe the resulting

cDNA for qPCR. cDNA that had been separated was kept at -80°C.

Using the QuantStudio 3/5 Real-Time PCR Software System and

SYBR qPCR Master Mix, the target genes were amplified and

identified. The 2-DDCt technique was used to repeat each

experiment and calculate the relative mRNA expression. Primers

as follows: TNFRSF1A: Forward: 5’-GTA TCG CTA CCA ACG

GTG GAA GTC-3 and Reverse: 5’-TGA AGC CTG GAG TGG

GGA CTG AAG-3’; TNFSF10: Forward: 5’-TTA CCA ACG AGC

TGA AGC AGA TGC-3’ and Reverse: 5’-GCT GAC GGG AGT

TGC CAC TTG AC-3’; SERPINB2: Forward: 5’-GCT TCC AGA

TGA AAT TGC CGA TGT G-3’ and Reverse: 5’-TGT CTT TGC

TGG TCC ACT TGT TGA G-3’;b-ACTIN: Forward: 5’-GGC CAA

CCG CGA GAA GAT GAC-3’ and Reverse: 5’-GGA TAG CAC

AGC CTG GAT AGC AAC-3’. Using conventional techniques,

total proteins from HepG2 cells were extracted, and a BCA protein

assay kit was utilised to measure protein concentrations. An SDS-

PAGE gel containing 40 mg of protein was prepared and
Frontiers in Endocrinology 05
electrophoresed for 1.5 hours at 120 V. After separation, the

proteins were transferred onto a PVDF membrane and quickly

rotated for 45 minutes at 350 mA. The membrane was then blocked

for one hour at room temperature in a buffer containing five percent

skimmed dry milk. Next, it was incubated for one hour at room

temperature with a primary antibody (1:1000), washed with Tris

Buffered Saline with Tween-20, and left overnight at 4°C in a

corresponding primary antibody solution. The membranes were

treated with a secondary antibody (1:15,000) for one hour after

being cleaned with TBST the following day. Tubulin served as a

control for supersampling. An eBlot® Electronic Compression

Imager (Shanghai, China) was used for signal identification. The

software ImageJ 1.41 was utilised to compute optical density.
2.15 Statistical analysis

The R programming language, version 4.0.2, was used for all

statistical analyses and data computations. Statistical analysis was

performed using GraphPad Prism 9.5.0. The Mann–Whitney U-

test, also known as the Wilcoxon rank sum test, was employed to

examine differences between non-normally distributed variables,

while the independent Student t-test was used to determine the

statistical significance of normally distributed variables. In the

HepG2 cell model, multiple comparisons were performed using

one-way ANOVA followed by Tukey’s multiple comparison test. In

human blood, multiple comparisons were performed using the

Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

All statistical P-values were two-sided, with a P-value of less than

0.05 regarded as statistically significant.
3 Result

3.1 Identification of MAFLD-related genes

When |logFC| > 1 and P < 0.05 was used as the threshold,

analysis of the differences between MAFLD and control liver tissue

samples revealed a total of 438 DEGs, comprising 168 up-regulated

genes and 270 down-regulated genes (Figures 1A, B). Based on

average connectivity and scale independence, WGCNA analysis was

utilized to determine which gene modules in MAFLD samples were

the most relevant. A soft threshold power was then chosen, allowing

the construction of scale-free networks and topological matrices

(Figure 1C). A total of twenty-four modules were produced.

Figure 1D displays the modules’ clustering dendrogram, while

Figure 1E illustrates the association between GCMs and MAFLD

samples. According to the findings, the blue and brown modules

were selected as key modules for further analysis, as the results

indicated that the blue module had the strongest positive

association (r = 0.66, P = 7e-09) and the largest negative

correlation (r = 0.89, P = 1e-21) with MAFLD (Figure 1F).

Following the identification of 4997 key genes significantly

associated with MAFLD in the blue and brown modules, the

DEGs in MAFLD patient specimens were intersected with the key

genes from the WGCNA to identify the key genes in MAFLD.
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This resulted in the identification of 354 causative genes

(Figure 1G), which will be the focus of our upcoming analyses.
3.2 Identification of differentially expressed
secreted proteins in type 2
diabetes mellitus

It is well established that there is a causal relationship between

T2DM and MAFLD, with MAFLD potentially accelerating the onset

and progression of T2DM (13, 14). We first examined the expression

profiles of T2DM-associated peripheral blood mononuclear cells

(PBMCs) and T2DM liver tissues using the GEO database to

identify the genes that contribute to T2DM. Using the thresholds

of |logFC| > 0.5 and P < 0.05, we screened 1,614 causative genes from

T2DM liver tissues and 7,996 causative genes from T2DM-PBMCs.

Given the potential significance of secreted proteins in the

pathogenesis of T2DM and MAFLD (33, 34), T2DM liver DEGs

and T2DM-PBMC DEGs were intersected with the Human Protein

Atlas to identify 241 and 1,292 secretory proteins, respectively

(Figures 2A–F). Among the secreted T2DM-associated proteins, 91

were shared by the two sets of proteins (Figure 2G). The remaining

1,442 genes were identified as T2DM-related secreted proteins for

further analysis.
3.3 PPI and functional enrichment analysis
of T2DM-related MAFLD causative genes

Using the STRING database as a basis, we examined 91 T2DM-

associated secreted proteins that interacted with MAFLD genes,

selecting those with median confidence scores greater than 0.4 to

identify causal genes and underlying processes in T2DM-associated

MAFLD. Cytoscape software visualized these causal genes, and

MCODE was then employed to identify the top two most

significant modules, from which 49 genes were found to be

T2DM-associated pathogenic genes (Figure 3A). Next, we

conducted GO enrichment and KEGG enrichment analyses of the

relevant pathogenic genes to gain a deeper understanding of their

roles and unique mechanisms. These genes were found to be

abundant in cytokine-mediated signaling pathways, cell-cell

adhesion regulation, and positive modulation of leukocyte

activation, according to GO enrichment analysis. The KEGG

pathway analyses indicated that the pathogenic genes in T2DM-

associated MAFLD interacted with cytokine–cytokine receptor

interactions and were closely associated with the IL-17, JAK-

STAT, and TNF signaling pathways, among others (Figures 3B–E).
3.4 Screening of pivotal genes with
diagnostic value through machine learning
and cytoHubba

The analysis of T2DM-associated secretory proteins and

important genes in metabolic associated fatty liver disease
Frontiers in Endocrinology 06
revealed 33 overlapping genes (Figure 4A). Using the SVM-RF

machine learning algorithm, five genes were selected for further

consideration in MAFLD (Figure 4B). Out of the 33 common genes,

eight prospective candidate genes were identified as being able to

accurately detect patients with T2DM-associated MAFLD

(Figures 4C, D). The 33 common genes were sorted using an RF

machine learning algorithm according to the variable importance of

each gene. The genes with a mean-decreasing Gini score greater

than 1 were extracted (Figures 4E, F). The only overlapping hub

gene is TNFSF10 (Figure 4G), which was discovered by intersecting

genes discovered using three machine learning methods. In a

similar manner, we employed Cytoscape software and PPI

network analysis on the 33 common genes to identify the

causative genes in T2DM-associated MAFLD. Twelve algorithms

in the CytoHubba plug-in identified two causative genes—

SERPINB2 and TNFRSF1A (Figure 4H). In summary, TNFSF10,

SERPINB2, and TNFRSF1A were identified as pathogenic genes

related to MAFLD and T2DM. These three hub genes exhibit

consistent patterns of expression in the internal (GSE89632) and

external (GSE66676) datasets (Figures 4I, J).
3.5 Diagnostic utility of hub genes in
MAFLD AND T2DM

We created an alignment diagram using logistic regression

analysis to build a diagnostic model for MAFLD and investigate the

diagnostic utility of the three hub genes (Figure 5A). The area under

the curve (AUC) values for each hub gene and the alignment diagram

were evaluated using an ROC curve to ascertain their sensitivity and

specificity for the diagnostic efficacy of T2DM-associated MAFLD.

The AUC values for all three hub genes exceeded 0.8, demonstrating

strong predictive value. In addition, the alignment diagram’s AUC

values were notably higher (Figure 5B). DCA suggested that the

alignment diagram model could enhance decision-making in

diagnosing T2DM-associated MAFLD (Figure 5C). Furthermore,

the calibration curves showed that the projected probabilities of the

ideal model closely matched those of the developed diagnostic model

(Figure 5D). We obtained similar results in the validation dataset

GSE66676 (Figures 5E–H). When considered collectively, these

findings highlight the substantial diagnostic utility of the alignment

diagram for MAFLD. Furthermore, in two datasets of T2DM,

GSE95849 and GSE23343, the AUC values of the three hub genes

(TNFSF10, SERPINB2, TNFRSF1A) were 0.847, 0.931, 1 and 0.686,

0.8, 0.6, respectively (Figures 5I, J). Therefore, these three MAFLD-

related genes may serve as effective markers for the diagnosis of type 2

diabetes, and they may play an important role in the development of

comorbid T2DM in patients with MAFLD.
3.6 Analysis of hub genes and immune cell
infiltration in MAFLD

Using the CIBERSORT algorithm, we determined the immune

cell features that were significantly different across 13 immune cell
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FIGURE 1

Analysis of differentially expressed genes in the MAFLD dataset.(A) Volcano plot of differentially expressed genes. The red node indicates up-
regulated genes with a P-value < 0.05 and logFC > 1.0; the green node indicates down-regulated genes with the P-value < 0.05 and logFC < -1.0.
(B) Heatmap of 25 up-regulated genes and 25 down-regulated genes. (C) Euclidean distance clustering tree of samples. The red line of the dataset
of MAFLD was the tangent line of outlier detection. Samples cut by this line are considered outliers. (D) The scale-free fitting index (b) of each soft
threshold power and the average connectivity of each soft threshold power were analysed, with a power value of 4 identified as the most suitable.
(E) Cluster dendrogram of module characteristic genes: each colour represents a module, while grey represents genes not included in any of the
modules. (F) Heatmap illustrating the correlation between module characteristic genes and MAFLD disease states. The blue module displayed the
largest positive correlation with MAFLD, while the brown module showed the largest negative correlation. (G) WGCNA was integrated with DEG
analysis to obtain MAFLD-related shared genes.
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subpopulations between liver samples from the fatty liver group and

the control group, providing insights into immunological

infiltration in MAFLD (Figures 6A, B). We found that all three

hub genes were significantly correlated with the presence of

immune cells in MAFLD (Figure 6C). In addition, a correlation

analysis of the 22 immune cells revealed a significant positive

correlation between monocytes and mast cell activation, as well as

a negative correlation between mast cell activation and M2

macrophages (Figure 6D).
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3.7 Hub gene prediction transcription
factors and miRNAs in MAFLD

To uncover the possible molecular mechanisms of SERPINB2,

TNFSF10, and TNFRSF1A in T2DM combined with MAFLD disease,

we analyzed the interactions between these three genes and

transcription factors. We used the NetworkAnalyst website to access

the JASPAR database in order to predict transcription factors (TFs)

(Figure 7A), of which eight had degrees greater than two: SERPINB2,
FIGURE 2

Screening of T2DM-related secreted protein genes. (A) Volcano plot of DEGs in GSE95849. (B) Heatmap of the 50 most significantly differentially
expressed genes in GSE95849. (C) DEGs identified in GSE95849 were compared with secreted protein genes from the Human Protein Atlas to
identify 1,292 T2DM-PMBC-secretory proteins. (D) Volcano plot of DEGs in GSE22243. (E) Heatmap of the 50 most significantly differentially
expressed genes in GSE22243. (F) DEGs identified in GSE22243 were compared with secreted protein genes from the Human Protein Atlas to
identify 241 T2DM-associated liver secretory proteins. (G) Venn diagram showing the co-secreted protein genes in both PBMC and liver datasets
from T2DM patients. DEGs, differentially expressed genes; PBMCS, peripheral blood mononuclear cells (PBMCs).
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TNFSF10, TNFRSF1A, FOXC1, JUN, CEBPB, GATA2 and SREBF2.

We also use the miRTarBase database to predict potential upstream

miRNAs for TNFRSF1A, TNFSF10, and SERPINB2. Finally, we used

Cytoscape software to visualize the results, showing that six miRNA

degrees were greater than two (Figure 7B).
3.8 Expression of TNFSF10, SERPINB2, and
TNFRSF1A at blood and the cellular level

Subsequently, Quantitative real-time reverse transcription

polymerase chain reaction (qRT-PCR) was used to analyze the

expression of TNFSF10, SERPINB2, and TNFRSF1A in blood

samples from patients with normal, MAFLD, and T2DM-
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combined MAFLD. The results of the study showed that while

TNFSF10 expression was significantly higher in patients with

T2DM and MAFLD, the expression levels of TNFRSF1A and

SERPINB2 in the blood of patients with MAFLD and T2DM

combined with MAFLD were significantly lower compared to

healthy individuals (P<0.05) (Figure 8A).

At the same time, we mixed PA with different glucose

concentrations to mimic the high glucose and high fatty acid

environment to better study the expression of 3 genes in MAFLD

and T2DM combined with MAFLD. We first determined that sugar

concentrations of 5.5 and 25mmol/L simulated the normal and diabetic

environments of the body, respectively. On this basis, we combined PA

to simulate the high fatty acid environment and established the cell

models of the LGHF group and HGHF group in order to further
FIGURE 3

PPI analysis of T2DM-related secreted proteins and MAFLD key genes, followed by enrichment analysis. (A) PPI network of the top-scoring module 1
and module 2 genes analysed using the Cytoscape plug-in MCODE. Pink nodes represent key MAFLD genes, green nodes represent T2DM-related
secreted proteins, and purple nodes represent genes common to both groups. (B-E) Analysis of the PPI network of module 2 genes with the highest
scores based on GO and KEGG. The GO results of the genes included in modules A are displayed in bubble plots and circular plots, with similar plots
constructed to illustrate the results of the KEGG analysis. PPI, protein-protein interactions; MCODE, molecular complex detection; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular component; MF, molecular function.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1512503
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2025.1512503
investigate the expression of TNFSF10, SERPINB2, and TNFRSF1A in

MAFLD and T2DM-related MAFLD. We used the CCK-8 assay to

measure the PA concentration, which was determined to be 200 µmol/L.

Oil Red O staining results revealed that lipid accumulation in HepG2

cells in the LGHF and HGHF groups increased gradually over time

compared to the control group. These results showed that the combined

fatty liver and diabetes models were successfully developed, and the
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results of the quantitative analysis of triglycerides were consistent with

the preceding findings (Figures 8B–D).

The protein expression levels of TNFSF10, SERPINB2, and

TNFRSF1A were measured in relation to various glycolipid

concentrations using qRT-PCR and Western Blotting (WB). The

findings demonstrated that, after lipid overload, the expression of

TNFRSF1A and SERPINB2 decreased in the low- glucose and
FIGURE 4

Machine learning combined with 12 algorithms in the cytoHubba plug-in to screen central genes. (A) The Venn diagram shows the MAFLD genes
associated with T2DM secreted proteins; (B) SVM-RFE algorithm; (C, D) LASSO regression algorithm; (E, F) RF algorithms; (G) Venn diagram of three
machine learning algorithms; (H) Venn diagram of 12 algorithms in the cytoHubba plug-in; (I, J) Expression of pivot genes in the internal GSE89632
datasets and external GSE66676 datasets. LASSO, minimum absolute shrinkage and selection operator; SVM-RFE, support vector machine-recursive
feature elimination; RF, Random Forest. ***P < 0.001; ****P < 0.0001.
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FIGURE 5

Establishment of the nomogram model and effect evaluation. (A) The nomogram suggested that the joint prediction of three hub genes was greater
than that of a single hub gene. (B) The ROC curve showed that the nomogram had high diagnostic performance. (C) DCA decision curve indicates
that intervention targeting all three hub genes is beneficial for MAFLD patients, with potential for enhanced benefit when all three genes are
simultaneously addressed. (D) The calibration curves predicted by the nomogram model of T2DM-associated MAFLD suggest that the model is
accurate. (E-H) Nomogram, ROC curve, DCA decision curve, calibration curves based on the constructed GSE66676. (I, J) The ROC curve of 3
T2DM-related hub genes in date set GSE95849, GSE22243.
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high-glucose groups relative to the low-glucose and low-fat (LGLF)

group (P < 0.05). Additionally, there was a tendency for the expression

of both to be lower in the high-glucose and high-fat environment than

in the high-fat group alone. Nevertheless, TNFSF10 expression levels

in HepG2 cell lines did not significantly alter before and after the fat-

only treatment or the high glucose plus high-fat treatment, as assessed

using both transcriptional and protein levels (Figures 8E, F).
4 Discussion

In order to investigate new genes, potential diagnostic or

prognostic biomarkers, underlying mechanisms, and possible

therapeutic targets based on big data, microarray and sequencing

methods, integrated bioinformatics analysis, and machine learning
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tools have increasingly been applied in recent years (35–37). This

has facilitated the investigation of causative factors and potential

mechanisms of complex diseases. Therefore, in order to treat

T2DM-associated MAFLD, we employ a range of integrated

bioinformatics analytic approaches along with machine learning

to identify the causal genes of T2DM-associated MAFLD in order to

identify novel therapeutic targets by investigating the critical genes

and their mechanisms. This will enable us to intervene early in the

disease’s progression and halt its advancement. To uncover three

T2DM-associated MAFLD-centred genes, we combined machine

learning, WGCNA, and PPI networks with transcriptome datasets

obtained from the GEO database. Following modelling for

prognosis and diagnosis, validation of predictive capacity, and

biological studies, we determined that SERPINB2 and TNFRSF1A

are frequent diagnostic markers of MAFLD, exhibiting consistent
FIGURE 6

MAFLD immune cell infiltration assay. (A) Histogram showing the proportion of immune cells between the MAFLD group and the control group.
(B) Box plot comparing 22 immune cells between the MAFLD and control groups. (C) Correlation map showing the relationship between the
differentially infiltrating immune cells and the three hub genes. (D) Heat map depicting the correlation of infiltration levels among the 22 immune
cells. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant.
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expression patterns in MAFLD and T2DM-associated MAFLD, and

are strongly linked to the onset of T2DM.

As a component of the TNFSF/TNFRSF system, TNFRSF1A

primarily encodes the TNFR1 protein, which is one of the

main TNFa receptors. In addition to its pro-inflammatory

characteristics, the activation of this gene can lead to apoptosis

and other types of cell death (38). Furthermore, there is mounting

evidence linking TNFRSF1A to hepatic glucolipid metabolic

abnormalities. Reports indicate that in mutant mice with

sustained cell surface expression of the TNFRSF1A receptor, this

constitutive TNFR1 signaling exacerbates the pro-inflammatory

and pro-fibrotic features of non-alcoholic steatohepatopathy but

is not linked to the appearance of hepatic steatosis (39). Similarly,

after the targeted reduction of TNFR1 in hepatocytes from mice fed

a Western fast-food diet, insulin resistance and glucose tolerance

were markedly reduced (40). In particular, Lambertucci et al.

established a MAFLD model using TNFR1 systemic knockout

mice and found that the disruption of TNFR1 signaling increased

plasma IL-1b levels and intensified the hepatic inflammatory

response, insulin resistance, and liver injury. This suggests that

the disruption of TNFR1 signaling accelerates the progression of

hepatic conditions from simple steatosis to a more severe phenotype

exhibiting many features of non-alcoholic steatohepatitis (41).

Therefore, when considered collectively, the significance of

TNFRSF1A expression in MAFLD is debatable. According to our

research, the liver tissues of individuals with MAFLD in the

database exhibited lower levels of TNFRSF1A expression, which

correlated with higher diagnostic accuracy values (AUC > 0.80).

The same results were confirmed in the patient’s blood and a

cellular model where a high-fat environment caused a decline in

TNFRSF1A expression, with the downregulation being more

pronounced in a high-glucose and high-fat environment. Overall,

according to our findings, TNFRSF1A could serve as a diagnostic

marker for both MAFLD and MAFLD linked to T2DM.
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In this study, SERPINB2 was identified as a significant marker

for the diagnosis of MAFLD patients with T2DM. SERPINB2

belongs to the human serine protease inhibitor (SERPIN)

superfamily, which is mainly expressed in activated monocytes,

macrophages, fibroblasts, and endothelial cells. It is primarily found

as an intracellular non-glycosylated protein as well as a secreted

glycosylated protein (42, 43). SERPINB2 is significantly expressed

in activated monocytes, macrophages, fibroblasts, and endothelial

cells and is primarily implicated in the connections between cellular

inflammation, senescence and maladaptive repair (44–46).

SERPINB2 has been implicated in many exogenous inflammatory

and autoimmune diseases; however, to date, there is relatively little

research on its role in liver disease (47, 48). In one study, Carson

et al. utilized RNA sequencing to quantitatively analyze

transcriptome changes in LX-2 cells, an activated human hepatic

stellate cell line, before and after TGF-b1 induction and found that

SERPINB2 was one of the most significantly dysregulated genes.

Notably, although it currently has no characteristic role in hepatic

stellate cell activation or fibrosis, this suggests that SERPINB2 may

be a new marker for the identification of liver fibrosis (49).

Furthermore, Silvia et al. discovered a significant increase in the

expression of SERPINB2 in MAFLD compared to simple steatosis,

based on gene expression experiments in liver tissues from patients

with non-alcoholic steatohepatitis. This finding indicates that

SERPINB2 may be associated with the inflammatory progression

of MAFLD (50). In addition, through multiple bioinformatics

analyses, we found that this gene may be a common pathogenic

factor in the pathogenesis of T2DM and MAFLD. In line with the

bioassay findings, our experimental results also demonstrated a

significant drop in SERPINB2 expression levels in blood and high-

fat and high-glucose cell modles.

Furthermore, we investigated immune cells exhibiting similar

trends of immune microenvironment alterations in MAFLD. Our

findings revealed that the core genes TNFRSF1A and SERPINB2
FIGURE 7

Regulatory network. (A) TF-gene interaction network of hub genes. (B) The network of miRNAs interacting with hub genes. TF, transcription factor;
miRNA, microRNA.
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were strongly correlated with immune cell infiltration, suggesting

that these potential biomarkers may not only distinguish MAFLD

but also contribute to MAFLD by interacting with the inflammatory

immune pathway. Based on the important roles of FOXC family

(51), JUN (52, 53), and C/EBPb (54) in glycolipid metabolism, we

predicted that TNFRSF1A and SERPINB2 may play an important

role in the pathogenesis of MAFLD and T2DM combined with

MAFLD by regulating FOXC1, JUN, and C/EBPb transcription

factors. Similarly, mir-129-2-3p, mir-146a-5p, mir-124-3p, mir-

29c-3p, mir-1343-3p, and mir-147a may be upstream miRNAs
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for TNFRSF1A and SERPINB2. This provides relevant insights

into the function and mechanisms of disease-causing genes.

Our study has limitations despite the validation of results using

various techniques. For instance, the exact mechanisms by which

TNFRSF1A and SERPINB2 regulate the development of T2DM-

associated MAFLD remain unclear and require further research.

We have successfully identified two pathogenic genes associated

with T2DM-related MAFLD, a discovery that offers a fresh

perspective for delving into the pathological roles of these two

genes in T2DM-related MAFLD.
FIGURE 8

Validation of three hub gene expression patterns. (A) Expression of TNFSF10, SERPINB2, and TNFRSF1A in the blood of healthy people, MAFLD
patients, people with type 2 diabetes and MAFLD; (B) Viability of HepG2 cells treated with different concentrations of PA for 48 h; (C) Oil Red O
staining of HepG2 cells treated with LGLF, LGHF, and HGHF for 48 h (magnification × 200, scale 100 µm); (D) TG content of HepG2 cells after 48 h
of HG and PA treatment; (E, F) RT-qPCR/WB was used to detect the expressions of TNFSF10, SERPINB2, and TNFRSF1A. PA, sodium palmitate; HG,
represents the high-glucose group; HF, represents the high-fat group; (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant).
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5 Conclusion

Our research revealed that TNFRSF1A and SERPINB2 have

the potential to be causative factors and diagnostic markers in

T2DM-associated MAFLD. This finding is crucial for further

studying the pathogenesis of T2DM-MAFLD and understanding

the pathophysiology of both conditions. In conclusion, our

research may open new opportunities for personalized,

precision diagnostics and prevention for patients with T2DM-

related MAFLD.
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