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REVIEWED BY

Anna-Mariia Shulhai,
University of Parma, Italy
Erkan Kozanoglu,
Cukurova University, Türkiye

*CORRESPONDENCE

Wenlong Xiu

wlxiu@fjmu.edu.cn

RECEIVED 17 October 2024
ACCEPTED 14 May 2025

PUBLISHED 11 June 2025

CITATION

Zhang B, Shi H, Cai W, Yang B and Xiu W
(2025) Metabolic syndrome in
children and adolescents: definitions,
epidemiology, pathophysiology,
interventions, and challenges.
Front. Endocrinol. 16:1512642.
doi: 10.3389/fendo.2025.1512642

COPYRIGHT

© 2025 Zhang, Shi, Cai, Yang and Xiu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 11 June 2025

DOI 10.3389/fendo.2025.1512642
Metabolic syndrome in children
and adolescents: definitions,
epidemiology, pathophysiology,
interventions, and challenges
Baoquan Zhang, Huiying Shi, Wenhong Cai, Bin Yang
and Wenlong Xiu*

Neonatology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for
Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
Metabolic syndrome (MetS) is a group of cardiometabolic risk factors with high

prevalence in the adult population. To date, there is no consensus on the

definition for MetS in children and adolescents despite the presence of well-

established diagnostic criteria in adults. The etiology of MetS is associated with a

complex interaction between genetic susceptibility and environmental factors, in

which the modifiable environmental risk factors are considered to play an

important role in this process. MetS is significantly associated with an

increased risk of diabetes mellitus and cardiovascular diseases (CVDs). Thus, it

is necessary to pay attention to the prevention of MetS in childhood and

adulthood. Given the current epidemic of obesity in children and adolescents,

there is an urgent need to provide adequate guidelines for the definition,

screening, and treatment strategies of MetS in younger patients. In this

narrative review, we provide some diagnostic criteria and epidemiological

studies and highlight the pathogenesis and management of MetS.
KEYWORDS

metabolic syndrome, children, adolescents, diabetes mellitus, obesity, cardiovascular
diseases, epidemiology
Introduction

Metabolic syndrome (MetS) is a complex cluster of metabolic disorders characterized

by disruptions in the metabolism of proteins, fats, and carbohydrates (1). It primarily

includes central obesity, dyslipidemia, hypertension, and insulin resistance (IR) (2). In the

past decades, MetS has been extensively studied in adult populations (3), however, our

understanding of MetS in children and adolescents is still limited. Several large

epidemiological cohort studies have demonstrated an association between MetS and

cardiovascular outcomes in adults (4). These findings from adult studies, coupled with

the rising prevalence of overweight among children and adolescents, have reignited interest

in studying MetS in younger populations (5). As obesity-related MetS in childhood may
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persist into adulthood and is associated with cardiometabolic and

psychosocial comorbidities, as well as premature death (6).

Patients with obesity usually present accumulation of free fatty

acids (FFAs) in liver, adipocytes, skeletal muscle, and pancreas (7),

which causes lipotoxicity in pancreatic b-cells and inhibition of

insulin signaling in the liver and muscles, along with the eventual

occurrence of IR (8). These patients show an increased risk of MetS

and cardiovascular complications due to production of very low-

density lipoprotein (VLDL) (9). Therefore, measurements with an

aim to reduce the concentrations of cardiometabolic risk factors in

children and adolescents can reduce the global burden of

cardiovascular disease (CVD). This emphasizes the importance of

MetS prevention in childhood. In this narrative review, we

summarized the diagnostic criteria, epidemiology, pathophysiology,

and treatment strategies of MetS in children and adolescents.
Definition of MetS

MetS is defined by a series of physiological, biochemical, clinical,

and metabolic factors. In 1988, Gerald Reaven first used the term

“Syndrome X” to describe a specific cluster of cardiometabolic risk

factors (10), and then gave rise to the concept ofMetS. Since then, this

cluster of risk factors was represented by various names, including

“Deadly Quartet” (11), “IR Syndrome” (12) and “Metabolic

Abnormality Syndrome” or “Diabetes.” In 2001, the National

Cholesterol Education Program (NCEP) Adult Treatment Panel III

(ATPIII) coined the term “MetS” and provided its definition (13).

Subsequently, numerous organizations, including the World Health

Organization (WHO) (14), the International Diabetes Federation

(IDF), and the National Heart, Lung, and Blood Institute (NHLBI),

issued their definitions. These definitions generally include aspects

such as central obesity, hyperglycemia, hypercholesterolemia, low

high-density lipoprotein cholesterol (HDL-C), and elevated blood

pressure (BP) (Table 1). Although there are some similarities, these

definitions differ in their threshold values for biochemical parameters

and the targeted populations.

To the best of our knowledge, the definition of adult MetS

cannot be simply used in children and adolescents, as the body size
Frontiers in Endocrinology 02
and proportions show a significant change with age. There are also

remarkable changes in the fat distribution, insulin sensitivity of

muscle and liver, and insulin release between adolescents and adults

(15). Even in children and adolescents, there is no consensus on the

definition of MetS. Its diagnosis requires assessment of waist

circumference (WC), BP, lipids, and glucose (Table 2).

In 2003, Cook et al. assessed adolescents aged 12–19 years based

on the NCEP/ATP-III definition, using modified criteria that

included a WC above the 90th percentile (P90), BP above the limits

set by the National Blood Pressure Education Program, lipid levels

exceeding the pediatric thresholds set by the NCEP, and glucose levels

above adult values (16). In 2004, body mass index (BMI) was adopted

as a basis by Weiss et al. even though abdominal obesity may vary by

race (17). Two years later, de Ferranti et al. proposed a definition

similar to Cook’s but with lower thresholds for WC and lipid levels,

which may result in a higher prevalence of MetS (18). Shortly

thereafter, the IDF introduced a new definition based on its adult

criteria. They categorized children into different age groups. For

children aged 6–10 years, metabolic and BP variables were not well-

defined, and only WC was evaluated. For children aged 10 years or

more, MetS could be diagnosed with abdominal obesity and the

presence of two ormore clinical features (e.g. elevated TGs, lowHDL-

C, hypertension, or elevated glucose). For children aged 16 years or

more, the IDF adult criteria were used (19). In this new definition,

WC percentiles were used instead of absolute values to account for

differences in child development and racial background. In 2014,

European researchers proposed a definition of MetS for prepubertal

children (ages 2-11) in the identification and prevention of dietary-

and lifestyle-induced health effects in children and infants (IDEFICS)

study. This definition addressed the limitations of previous pediatric

definitions and the need for early diagnosis (20). The criteria included

obesity (WC ≥ P90), TGs ≥ P90, HDL-C ≤ 10th percentile [P10], BP

(systolic blood pressure [SBP] or diastolic blood pressure [DBP] ≥

P90), and glucose (insulin ≥ P90 or fasting plasma glucose [FPG] ≥

P90). Percentiles were used as references, better compensating for

differences in child development and racial background.

In 2012, China adopted a definition of MetS for children and

adolescents based on the IDF and ATP III criteria, established

through consensus by experts from the Chinese Pediatric Society
TABLE 1 Adult definitions.

WHO (1999) NCEP ATP III (2001) IDF (2005)

Number of items for
diagnostic inclusion

Dysglycemia, plus 2 or more of the other 4 criteria Any three of the five criteria below Obesity, plus two of the four
criteria below

Dysglycemia IR, impaired glucose regulation or diabetes FPG ≥ 6.1 mmol l-1/100 mg dl-1 or
known T2DM

FPG ≥ 6.1 mmol l-1/100 mg dl-1 or
known T2DM

Central obesity Waist to hip ratio > 0.90 (M), > 0.85 (F); and/or
BMI > 30 kg m-2

WC ≥102 cm (M), ≥ 88 cm (F) WC ≥ 94 cm (M), ≥80 cm (F)

Dyslipidemia TG ≥1.7 mmol l-1; and/or low HDL-C < 0.9 mmol l-
1 (M), < 1.0 mmol l-1 (F)

TG ≥1.7 mmol l-1; HDL-C < 1.04 mmol
l-1 (M), < 1.3 mmol l-1 (F)

TG ≥1.7 mmol l-1; HDL-C < 1.04 mmol
l-1 (M), < 1.3 mmol l-1 (F)

Hypertension BP ≥ 140/90 mmHg BP ≥ 130/85 mmHg BP ≥ 130/85 mmHg

Microalbuminuria urinary albumin excretion rate ≥ 20 μg min-1 or
albumin:creatinine ratio ≥ 30 mg g-1

Not used for diagnosis Not used for diagnosis
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(CPS) of the Chinese Medical Association (CMA) (21). For children

aged ≥10 years, central obesity is a prerequisite for MetS, defined as

a WC ≥ P90 for age and sex, along with at least two of the following

factors: hyperglycemia, hypertension, low HDL-C or high non-

HDL-C, and hypertriglyceridemia. For children aged 6–10 years,

whose physiological characteristics change rapidly, the diagnosis of

MetS is still a challenge, and multiple CVD risk factors (e.g. obesity,

hypertension, lipid metabolism disorders, and hyperglycemia)

should be noted. Early intervention is recommended for children

in this age group who exhibit multiple metabolic abnormalities. The

definition proposed by CPS/CMA is similar to the IDF adolescent

version but differs in certain thresholds and assessment items. The

method for determining central obesity is different from the IDF’s

obesity rate assessed by WC ≥ P90. Instead, it uses the waist-to-

height ratio (WHtR), with a threshold of 0.48 for boys and 0.46 for

girls (22).

Overall, the definition proposed by the IDF is the most effective

and widely used in clinical practice. Due to significant variations in

metabolic and physiological characteristics based on age and sex

during the growth and development of children and adolescents, as

well as notable differences in dietary habits and lifestyles across

countries and regions, there is no consistent definition of MetS in

children. We then identify common mechanisms to facilitate the

establishment of a comprehensive and accurate definition and

diagnostic criteria for MetS in children and adolescents.
Epidemiology

It is estimated that approximately 39% of the global population is

facing challenges of overweight, and the prevalence of overweight

conditions is gradually increasing among children and adolescents

(23). MetS is a complex disease that has been extensively studied in

the adult population, but information on the prevalence in pediatric

population is still limited (3). The epidemiology of MetS varies greatly

between nations, and the prevalence is mainly associated with the

diagnostic criteria, obesity rates, and race (Table 3) (24–31).

To date, there is still no consensus on the diagnosis of MetS in

children, and the cutoff values are in a huge difference that yields to

various prevalence (32). Take the IDF criteria as an example, the

Spanish study found that the prevalence of MetS varied from 2.5%

in adolescents with a mean age of 13 years to 19.6% in children and

adolescents aged 5–19 years (33). However, the results are not

consistent when using different diagnostic criteria to the same

population. Based on the NCEP/ATP III diagnostic criteria, Peña-

Espinoza et al. found that the prevalence of MetS in children aged

9–12 years was 21.1%, 15.5% using the IDF criteria, 13.8% using the

Cook criteria, and 45.9% using the De Ferranti criteria (34). Serrano

et al. reported a prevalence of 9.5% for MetS in children aged 6–10

years using the NCEP/ATP III criteria and 8% using the IDF

criteria (35).

The overall prevalence of MetS in children is relatively low,

while that in overweight adolescents shows a 4–8 fold increase (36).

The prevalence of MetS in European pediatric populations ranges

from 1.44% to 55.8% (37). In a previous study, the global prevalence
T
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of MetS in 2020 was estimated at 2.8% in children and 4.8% in

adolescents (38). A comprehensive review of 85 studies mostly

using IDF, ATP III, and WHO criteria concluded that the median

prevalence of MetS in the general population was 3.3% (ranging

from 0% to 19.2%), 11.9% in overweight children (ranging from

2.8% to 29.3%), and 29.2% in obese populations (ranging from 10%

to 66%) (39). In a systematic review, Sharma et al. reported that the

prevalence of MetS in children and adolescents was 3.4% in normal-

weight groups and 29% in obese groups (36). In 2012, China

adopted the NCEP-ATP III diagnostic criteria, adjusted for age-

and sex-specific WC and BP. In a study performed in Jiangsu

Province, the prevalence of MetS was 5.1% among children and

adolescents aged 7–17 years, 5.9% among those aged 13–17 years,

and the prevalence of MetS in obese populations showed 40.2-fold

increase compared to normal-weight peers (40). This highlights that

the obesity rate within a study population is directly related to the

prevalence of MetS.

Generally, ethnicity has been reported to be closely associated

with the prevalence of MetS. Globally, the prevalence of MetS was

higher in the following regions or ethnic groups. In the Middle East

especially the Iran showed a prevalence of 7.6% according to IDF

standards (41), 9.8% in the United Arab Emirates (38), and 20.6% in

the Saudi Arabia based on to de Ferranti’s standards (42). In

Europe, the prevalence of MetS in Spain was 9.9% (38). In North

America, the United States showed a prevalence of 5.4% according

to IDF standards (43), 10.1% according to Ford et al. and 12.3% in

Mexico (38, 44). In South America, Chile showed a prevalence of

9.5% according to IDF definition (38, 45). In the United States,

Miller et al. reported that the prevalence of MetS varied across

different ethnic groups, with Hispanic adolescents showed the

highest rate of 14.6%, followed by non-Hispanic whites (9.8%)

and non-Hispanic blacks (5.2%) (44). This was consistent with the

latest report from the US NHANES population (46). Some studies

have found that despite the high obesity rate among African

American adolescents (23.6%), their prevalence of MetS is

relatively low (47). These findings suggest that the impact of

obesity on MetS may vary by ethnicity. In summary, there are

differences in the prevalence of MetS among different ethnic groups,

but there is no consistent pattern.
Risk factors and pathophysiology

Genetic factors

MetS is the result of a complex interaction between genetic and

environmental factors (48). Figure 1 depicts the MetS

developmental process, involving genetic factors, oxidative stress,

and inflammation pathways. Currently, great attention has been

paid to the association between genes and individual components of

MetS in children and adolescents, such as the relationship between

certain genes and obesity, lipid levels, or IR.

The Fat Mass and Obesity-Associated (FTO) gene, located on

chromosome 16, plays a critical role in body weight regulation and

energy balance (49). The A/A phenotype of the risk allele rs9939609
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(T/A) is closely associated with the development of obesity, a

correlation observed in children as well (50). Among the

polymorphisms of FTO, rs9939609 is the most widely studied

locus, and increasing evidence suggest that it plays a central role

in the development of MetS (51, 52). Almén et al. studied the

genome-wide DNA methylation profiles of prepubescent girls with

different variants of the rs9939609 polymorphism and identified 20

differentially methylated obesity-related loci (53). These findings

suggest that increased FTO transcription in carriers of the A allele of

rs9939609 may contribute to the higher risk of MetS. The latest

study has updated the evidence, and some scholars have found that

rs8050136 on the FTO is most strongly associated with MetS in

children (52). However, the exact mechanisms by these single

nucleotide polymorphisms (SNPs) increase the risk of MetS in

children remain unclear. In a study, the author speculated that FTO

variants could interfere with the methylation status of FTO target

mRNAs and other non-coding RNAs, leading to an imbalance in

energy intake and expenditure (54). Besides, the A allele of

rs9939609 is associated with increased appetite and reduced

satiety (55), resulting in increased energy intake in children. The

leptin sensitivity showed reduction in the individuals with obesity,

resulting in ineffective satiety responses and excessive hunger (56).

Furthermore, energy expenditure may also involve in the

association between FTO polymorphisms and MetS components.

This helps to explain the fact that children carrying A allele are

significantly associated with reduced physical activity.

Cholesteryl ester transfer protein (CETP) promotes the

exchange of cholesteryl esters from HDL or LDL to TG-rich

lipoproteins, resulting in reduced HDL-C concentration and

generation of small-sized LDL particles (57). The CETP gene,

located on chromosome 16 encoding the CETP protein, is

reported to show a close link with the pathogenesis of MetS. (58).

For instance, rs708272 was closely associated with increased HDL

and reduced TG levels (52). In addition, a significant interaction
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was reported between the rs11774572 polymorphism and CETP-

TaqIB (59), but the mechanism is still not well defined. This SNP is

located between the GATA binding protein 4 (GATA4) and retinitis

pigmentosa 1 (RP1) genes, which play a key role in cholesterol

metabolism. GATA4 encodes a transcription factor that mediates

the transport of cholesterol and phytosterols and inhibits their

abnormal accumulation (60). Variants in the RP1 gene alter the

lipoprotein phenotype by changing plasma TG and HDL-C

concentrations, leading to hypertriglyceridemia (61). Therefore,

the potential linkage disequilibrium between rs11774572 and

functional mutations in these two genes may help to define the

roles of CETP in MetS.

Furthermore, the rs662799 on the Apolipoprotein A5 (APOA5)

gene is associated with high TG levels in both adults and children, as

it could inhibit the activation of lipoprotein lipase (59). Similarly, a

GWAS study in Korean population also revealed significant or

suggestive loci for MetS in APOA5 (62). In a study performed in

Mexican population, the most commonly associated signal for TG

was rs651821 in APOA5, followed by rs180326 in BUD13 (63).

Studies have focused on the link between Caucasian and Asian

adolescents and the TCF7L2 in the pathogenesis of MetS (64). There

is evidence that carriers of the TCF7L2 rs7903146 risk allele have

higher fasting insulin concentrations, impaired insulin sensitivity,

and greater IR compared to CC homozygotes (65). TCF7L2 gene

polymorphisms increase the risk of T2DM by altering its gene

expression, disrupting glucose homeostasis, impairing insulin

secretion, and weakening insulin sensitivity (66). In addition,

increased nut intake may reduce the risk of MetS in the T risk

allele of TCF7L2 rs7903146 and rs12255372 variants (67).

The prevalence of MetS in children and adolescents may be

controlled by later intervention of environmental factors when

genetic variation cannot be modified (68). There are indeed

studies designed to investigate the association of genes with a

single MetS disease, however, they did not take the fact that most
FIGURE 1

The MetS developmental process: a path diagram from etiology to disease outcome.
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genetic loci have pleiotropic effects on multiple MetS components

into consideration. Therefore, it is appropriate to evaluate the effect

of each SNP on MetS risk.

Early life exposures
Early life exposures, primarily maternal behaviors during

pregnancy, may contribute to the early development of MetS.

Susceptibility to MetS begins before birth, as obesity during

pregnancy and associated gestational conditions (e.g. gestational

diabetes, hypertension, and hyperlipidemia) increase the risk of

obesity and metabolic disorders in offspring (69). Therefore, the

pre-pregnancy and perinatal periods provide women and their

offspring with a unique opportunity to modify short-term and

long-term risks. A large number of observational studies have

found that maternal obesity, hypertension, and hyperglycemia

during pregnancy increase the risk of MetS in offspring (70).

Increased maternal glucose levels are associated with a higher

incidence of obesity in newborns (71). When examining the gene

expression profiles in placentas from women with gestational

diabetes and those with normal glucose tolerance, researchers

found an upregulation of genes related to lipid metabolism. This

indicated that lipids might serve as a nutritional source contributing

to increased neonatal obesity (72, 73). Consistently, Boney et al.

reported that the offsprings of obese women had a higher likelihood

of being obese at age 11, along with 2.0-fold increase in the risk of

MetS (74).

The progenitor cells and adipocyte populations in subcutaneous

adipose tissue have been formed in fetus, laying the foundation for

an individual’s future fat distribution and metabolic health (75).

This means that the “set point” for obesity has been determined in

utero, and the intrauterine environment plays a crucial role in the

development of MetS. Adverse intrauterine conditions such as

obesity or diabetes accelerate the fat accumulation of fetal white

adipose tissue (WAT) and disrupt its normal developmental

trajectory (76). Furthermore, a high-sugar and high-fat condition

promotes the stem cells to differentiate into adipocytes, and leads to

a premature terminal differentiation process (77), which increases

the susceptibility of offspring to obesity, limits the plasticity of

WAT, and reduces its ability to adapt and regulate energy

metabolism (78). In line with this, multiple rodent-based studies

supported the long-term effects of maternal diet-induced obesity on

the metabolic health of offspring. The offsprings have an increase in

visceral adipose tissue volume, accompanied by a significant

increase in the number and volume of fat cells, as well as

significant IR (78).

It is worth noting that evidence has shown that epigenetics and

prenatal programming might have influenced fetal/neonatal

development, leading to MetS. The epigenome is dynamic and

can change in response to factors such as nutrient availability and

weight loss (79, 80). Intrauterine nutrition and environmental

exposures may have permanently altered gene expression in

offspring through epigenetic mechanisms, thereby changing the

structure and function of cells and organs and resulting in metabolic

abnormalities. This was well demonstrated in monozygotic twins,

where offspring exhibited different DNA methylation and histone
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acetylation patterns (81). Epigenetic regulation of gene transcription is

partly mediated through DNA methylation (82–84), which is

particularly dynamic during embryogenesis. As embryonic

development progresses, DNA methylation gradually increases,

leading to differentiation and organ formation (85). This would

promote the adipogenesis, while histone lysine methylation (H3K4)

and acetylation (AcH3) can regulate adipocyte differentiation (86, 87).

Higher pro-opiomelanocortin (POMC) methylation level in umbilical

cord blood is associated with hyperinsulinemia in children, which may

serve as a marker for future MetS (88). Epigenetic modifications such

as DNA methylation and histone acetylation (89) are involved in the

development and differentiation of pancreatic b-cells (90, 91). In the

presence of poor intrauterine environment, pancreatic b-cells may

undergo fetal developmental programming, resulting in a decrease in

pancreatic b-cells number and/or dysfunction. All these may increase

the risk of long-term metabolic complications in offspring.
Environmental factors

SNPs are established at conception, while environmental factors

such as diet and lifestyle influence the baseline during growth. This

raises the question of which variable is the “cause” and which is the

“moderator,” a common issue in studies of gene-environment

interactions. Environmental factors that contribute to MetS in

children include sedentary behavior, high-fat diets, insufficient

sleep, and systemic or tissue inflammation. Figure 2 depicts

potential risk factors and mechanisms of MetS pathophysiology

in children and adolescents. Epidemiological data indicates that

sedentary lifestyles, lack of physical activity, and high-fat diets are

key contributors to energy imbalance, closely linked to the

prevalence of childhood obesity and metabolic disorders such as

IR (92). Thus, we hypothesize that MetS begins with obesity but

requires IR to progress to MetS in children, which was consistent

with the hypothesis proposed by Weiss (17).

Several studies have suggested that there might be a link

between high-fat diets, dietary fatty acids, and the risk of MetS

(93, 94). The main components of the Western diet mainly include

meat products, sugary drinks, junk food, refined grains, candy, and

ultra-processed foods. A large amount of saturated fatty acids (SFA)

and carbohydrates in these foods have been shown to be directly

associated with an increased risk of MetS in children and

adolescents (94–96). Dietary fatty acid is an important

environmental factor, and excessive exposure has played a critical

role in the development of MetS (97). Epidemiological and cohort

studies have shown that SFA has an adverse effect on insulin

sensitivity, promoting the development of diabetes (98). The

Nurses’ Health Study found that higher SFA intake and a lower

polyunsaturated to saturated fat (P:S) ratio were associated with an

increased risk of CVD in women with T2DM (99). A cohort study

indicated that the Western dietary pattern was linked to a high-risk

metabolic cluster (100). In contrast, a Mediterranean dietary

pattern or a higher Healthy Eating Index score, containing more

grains, vegetables, fruits, milk, and meat/meat alternatives, was

associated with the reduced prevalence of MetS (95). A recent
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study showed that dietary polyunsaturated fats (PUFA) modulated

the genetic effect of TCF7L2 rs7903146 polymorphism on

postprandial dyslipidemia (101). Therefore, adopting such a

dietary pattern early in life could reduce the risk of MetS in

children and adolescents.

There may be a possible threshold for the accumulation of fat in

abdominal compartments and insulin-responsive tissues. Upon

exceeding such threshold, the accumulation of lipids in these

areas would be detrimental (102). Increased consumption of

fructose and branched-chain amino acids, along with increased

intracardiac lipid metabolites, lead to the serine phosphorylation of

insulin receptor substrate-1 (IRS-1) (103). This results in defective

skeletal muscle glucose uptake, along with decreased hepatic

glycogen synthesis, and suppression of gluconeogenesis, which

ultimately decrease hepatic insulin sensitivity (104). These

changes further exacerbate IR and set the stage for obesity-related

metabolic disorders.

Insulin sensitivity in adipose tissues decreases in children with

obesity (105). Lipid deposition in muscle and liver also increases in

those with obesity (106). Macrophage infiltration of subcutaneous

and intraperitoneal fat depots induces local and systemic subclinical

inflammation, which is closely related to poor lipid partitioning in

obese adolescents (107). In addition, skeletal muscle precedes liver,

followed by enterogenic circulating glucose to the liver. The liver

responds to increased glucose flux by increasing de novo fat
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processes, which leads to increased intrahepatic fat, circulating

fatty acids and TGs (108). Meanwhile, macrophage infiltration

causes IR in adipose tissue, resulting in increase of lipolysis

and decrease of lipogenesis (109). As a result, hepatic FFA flux

increases, leading to enhanced TG synthesis and systemic

hyperlipidemia (110).

MetS children are also accompanied by systemic and tissue

inflammation, as evidenced by elevated levels of inflammatory

cytokines, including interleukin-6 (IL-6), IL-18, and C-reactive

protein (CRP) (111). Obesity and IR induce systemic oxidative

stress (OS) that activates downstream inflammatory cascades,

which accelerates the development of MetS (112). Excess OS was

associated with increased adipogenesis and body fat mass,

potentially linked to the overexpression of NADPH oxidase 4

(NOX4) and downregulation of AMP-activated protein kinase

(AMPK) in adipocytes (113). Several key inflammatory markers

have been reported to involve in obesity-induced inflammatory

responses, including CRP, IL-6, and tumor necrosis factor-a (TNF-

a) (114, 115). IL-6 plays a regulatory role in fat and glucose

metabolism and can promote IR. In obesity, IL-6 is released from

visceral adipocytes into the portal vein and directly acts on the liver

to induce the production of CRP (116). In addition, IL-6 can

increase the risk of thrombosis, and lead to atherosclerosis,

inflammation and dysfunction of the vascular wall by activating

the local renin-angiotensin system (RAS) pathway and promoting
FIGURE 2

MetS pathogenesis in children and adolescents. This figure describes the potential risk factors and mechanisms underlying the pathophysiology of
MetS in pediatric populations. Genetic susceptibility and unhealthy lifestyles contribute to central obesity, leading to an imbalance between
“aggressive” adipokines produced by adipose tissue and macrophages and the dysfunction of “defensive” adipokines. This imbalance increases
immune-inflammatory responses and promotes obesity-related metabolic disorders. The activation of adipose tissue leads to the production of
angiotensin II (Ang II) peptides through angiotensin-converting enzyme (ACE), increasing OS and upregulating the expression of lectin-like oxidized
low-density lipoprotein receptor-1 (LOX-1), inducing endothelial dysfunction. Additionally, the increased secretion of FFAs from adipose tissue leads
to reduced sensitivity in insulin-responsive organs. This cascade ultimately results in IR, dyslipidemia, and hypertension, significantly increasing the
risk of MetS, T2DM, and CVD.
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the expression of vascular cell adhesion molecules (117). TNF-a is

mainly produced by macrophages in local adipose tissue, and its

levels is proportional to the mass of adipose tissue and is closely

related to IR (118). It weakens insulin metabolism through serine

phosphorylation and inactivation of the insulin signaling pathway,

and further exacerbates IR by increasing circulating FFA levels (119,

120). Obese children exhibit higher TNF-a levels than lean controls,

which is associated with reduced LDL-C and increased TGs (121).

In the future, more studies are required to investigate the feasibility

of these inflammatory markers in the management of MetS and

its complications.

Insufficient sleep profoundly impacts energy balance and

overall metabolic health, thereby increasing the risk of obesity in

adolescents. In an observational study involving 240 American

adolescents, subjects slept for less than 8 hours on weekdays

consumed a significantly higher percentage of calories from fat

compared to those who slept for 8 hours or more (122). This

indicated that insufficient sleep may lead to unhealthy eating habits

and imbalance of metabolic health. Sleep disorders, including

insufficient sleep, poor sleep quality, insomnia, and obstructive

sleep apnea, lead to increased cortisol secretion by the adrenal

cortex (123), which trigger increased calorie intake and excessive fat

storage (124). Additionally, the severity of obstructive sleep apnea

was correlated with higher cortisol levels, which can disrupt the

normal response of glucagon-like peptide-1 (GLP-1) (110). Sleep

disturbances can disrupt circadian rhythm, affecting GLP-1

production and glucose metabolism (125). In children, sleep

reduction was closely associated with elevated fasting insulin

concentrations, increased risk of IR, and decreased insulin

sensitivity (126). These findings highlight the importance of

adequate sleep in maintaining healthy metabolic function and

preventing the occurrence of MetS in adolescents.
Prevention and treatment

Prevention

The previous section highlighted a range of risk factors for

MetS. Beyond genetic factors, many of these risks are modifiable

targets for preventive measures. From the perspective of childhood

development, it appears essential to promote healthy nutrition and

maintain normal body weight among adults of childbearing age,

particularly considering the potential early exposure to these risks

during pregnancy.

Breastfeeding has been confirmed as a protective factor against

MetS. A systematic review involving 11 studies, 7 studies revealed a

protective role of breastfeeding and MetS, particularly breastfeeding

lasted for 6 months or longer (127). Besides, breastfeeding for more

than 90 days significantly reduced the risk of MetS (128).

Breastfeeding plays a protective role in preventing obesity in a

dose-dependent manner (129). Additionally, breastfeeding for at

least 3 months is associated with reduced risk of obesity, smaller

WC, and fewer MetS-related complications in childhood and

adolescence (130). Moreover, breastfeeding is linked to reduced
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risks of high cholesterol, hypertension, DM, glucose intolerance,

and IR in adulthood (130, 131). Furthermore, breastfeeding can

prevent prediabetes and MetS in offspring, regardless of GDM

status, underscoring the importance of breastfeeding (132).

Breastfeeding helps to prevent obesity through the modulation

of liver-hypothalamic communication and metabolism (133).

Bioactive factors in breast milk, such as insulin, insulin-like

growth factor-1 (IGF-1), and leptin, promote lean body weight

and enhance appetite signaling (134, 135). This “positive

programming” of nutrition and hormones may have profound

implications for preventing MetS and related diseases. Other

healthy lifestyle choices, including a balanced diet and regular

exercise, are vital for avoiding MetS. Healthy dietary habits

include consuming plenty of fruits, vegetables, and dietary fiber

while reducing the intake of carbonated drinks and foods high in

sugar, fat, and sodium (136). Taken together, the combination of

breastfeeding and a healthy lifestyle will lay a solid foundation for

improving the health of children and adolescents.
Treatment

The progression from a healthy state to obesity, IR, and

eventually to the development of MetS is consistently associated

with an imbalance between energy intake and expenditure. By the

time MetS manifests, this energy imbalance has often been present

for an extended period. Therefore, the primary goal of intervention

is to reduce energy intake while increasing energy expenditure.

Unfortunately, it is challenging to motivate pediatric patients to

change unhealthy lifestyles, as many children and adolescents have

become accustomed to a comfortable yet suboptimal way of living.

Effective methods include motivational psychological interviews to

explore the motivations of adolescents, assessing their willingness to

change (137). To the best of our knowledge, multidisciplinary and

family-based lifestyle education program supplemented with

psychological support is recommended for the treatment and

prevention of MetS. Thus, psychological adjustment is the first

step in treating MetS. Subsequently, developing individualized

treatment plans based on patient characteristics can enhance

adherence to therapeutic regimens among adolescents (137). For

younger children, the emphasis was on combining breastfeeding

with a balanced diet, along with adequate sleep.
Lifestyle modifications

Basically, all successful treatment plans include interventions to

reduce calorie intake and increase physical activity. According to

recommendations from the American Academy of Pediatrics (AAP),

the American Heart Association (AHA), and the WHO, the core of

dietary intervention for children and adolescents is to increase the

intake of vegetables and fruits while reducing the intake of sugar and

saturated fat (138). The Chinese Society of Pediatrics recommends

that children and adolescents should maintain food diversity in their

diet, pay attention to the combination of meat and vegetables, and the
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combination of coarse and fine, and ensure the intake of fish, meat,

milk, beans, and vegetables. The energy supply ratios of protein, fat,

and carbohydrates are 12%-14%, 25%-30%, and 55%-65%,

respectively (21). In terms of managing MetS, studies have shown

that children and adolescents who adopt a Mediterranean diet, which

mainly includes vegetables, fruits, fish, whole grains, beans, and olive

oil, have significantly improved BMI, blood sugar, and blood lipid

levels, especially in individuals with obesity or high risk ofMetS (139).

In addition, randomized controlled trial (RCT) have shown that

reducing the intake of sugary drinks has a positive effect on weight

management, thereby indirectly reducing the risk of MetS (140). For

the blood lipid management, dietary adjustments, such as reducing

the intake of simple carbohydrates (e.g. sugar and refined flour), can

help control the phenotype of high TGs and low HDL-C. In contrast,

increasing the intake of monounsaturated and PUFA can reduce TG

levels and increase HDL-C levels (141). Additionally, whole grain

intake is closely related to enhanced insulin sensitivity and reduced

BMI in adolescents. In particular, dietary fiber intake can effectively

reduce postprandial blood sugar fluctuations and has significant

benefits for insulin sensitivity, obesity, and pancreatic function

(142, 143). In terms of BP management, a meta-analysis of 10

RCTs showed that moderate reduction of salt intake can

significantly reduce both SBP and DBP in children and adolescents

(144). All these confirm that reasonable dietary adjustments are

crucial to the long-termmetabolic health of children and adolescents.

A lack of physical activity is associated with a higher risk of MetS,

as indicated by a higher MetS z-score (145). Regular physical activity

helps improve lipid profiles by reducing LDL and TG concentrations

along with increasing of HDL (146). Exercise also enhances the

clearance of plasma TGs and promotes the formation of HDL

particles, leading to positive effects on lipid metabolism (147).

Physical activity significantly improves insulin sensitivity, reduces IR

and significantly lowers fasting insulin levels (148). Also, exercise offers

benefits to vascular health, including improvement of endothelial

function, reduction of SBP and DBP, decrease of abdominal fat, and

triggering the anti-inflammatory responses (149). The most effective

exercise interventions should last at least 12 weeks, with sessions

conducted three or more times per week, with each lasting 60

minutes or longer (150, 151). Consequently, regular and appropriate

physical activity is one of the key factors in preventing MetS.

As individually oriented obesity prevention strategies are not

adequate in addressing the obesity epidemic, more attention has

been paid on the shift towards environment- or community-based

prevention measurement, which promotes healthier lifestyles by

altering the social environment. In a perspective of public health,

more attempts should be made on community health programs,

along with school-based physical activity initiatives and promote

healthy eating styles.
Pharmacotherapy

Lifestyle modifications remain the primary approach for the

prevention and treatment of childhood obesity and MetS, however,

pharmacological and surgical interventions become necessary
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adjuncts in some extreme cases (152). Currently, there are no

specific guidelines for pharmacological treatment of dyslipidemia

related to MetS in children. For children and adolescents with

severe lipid abnormalities, the use of statins to lower LDL-C has

been shown to delay arterial damage. This treatment is typically

recommended only for children aged 10 years and older (141).

These children had fasting LDL-C levels persistently >190 mg/dL,

or LDL-C levels >160 mg/dL along with a significant family history

of early-onset CVD or two or more additional risk factors (153). In

addition, GLP-1 analogs, such as liraglutide, have demonstrated

long-term efficacy in treating obesity in adults. A small-scale trial of

another GLP-1 medication, exenatide, has also shown potential

efficacy and safety in treating severe obesity in adolescents (154).

For children at high risk of IR, pharmacological treatment may be

unavoidable. In a recent double-blind randomized trial, obese

adolescents aged 12 to 19 years who were treated with metformin

for 6 months showed significant improvements in glucose tolerance

and fasting insulin levels (155, 156). In the setting of severe obesity,

bariatric surgery is considered the most effective treatment, which

can significantly reduce the weight of children and adolescents and

improve related health risks, such as sleep apnea and T2DM.

However, potential complications after surgery, such as

malabsorption of vitamin D, calcium, and phosphorus, also need

to be carefully considered (157). At present, drug treatment of

metabolic syndrome in children in China is still in its infancy. and

doctors should consider multiple factors before prescribing anti-

obesity drugs, such as gender, age, drug contraindications, personal

and family willingness, and cost. For children and adolescents with

severe obesity or metabolic disorders, a comprehensive treatment

strategy that combining drug and surgical intervention may be the

key point to achieve the best health outcomes.
Challenges to MetS in children and
adolescents

A lack of awareness of MetS remains the biggest challenge for

the management of MetS in children and adolescents. In a meta-

analysis, 50.7% of parents underestimated the weight of their

overweight/obese children (158). In fact, a chubby infant or child

is often seen as a sign of good health and care in developing

countries experience long periods of economic underdevelopment

andmaterial scarcity. The belief that “chubby kids are healthy” leads

to delayed diagnosis and treatment of obesity in children.

Fortunately, more and more attention has been paid to childhood

obesity that has been shown to be linked to the development of

MetS and CVD in adulthood (159). Autopsy studies have revealed

that multiple cardiovascular risk factors are associated with early

stages of coronary atherosclerosis (160). We assume that a high

incidence of MetS among overweight adolescents, coupled with the

rising prevalence of childhood obesity, could lead to a

disproportionate increase in CVD in adulthood.

Diagnostic thresholds, whether based on percentiles or absolute

numbers, need to be established based on objective disease

endpoints to be meaningful. Moreover, these thresholds may need
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to be adjusted according to age or pubertal stage as children grow.

Given the differing risk profiles across various ethnic groups, it is

unclear whether the same standards should apply to different racial

groups. Thus, any pediatric definition of MetS must be rigorously

evaluated, which is a complex and challenging medical issue (161).
Summary

The diagnosis and treatment of MetS is still a challenge in

children and adolescents. Standardized diagnostic criteria and

treatment protocols are urgently required to guide clinical

practice. The prevalence, diagnosis, and treatment of MetS show a

huge variance due to differences in economy among different

countries and populations. The ideal treatment approach involves

a collaborative effort between families, schools, and society. We

should focus on improving dietary habits, increasing physical

activity, reducing sedentary behavior, and enhancing energy

expenditure in children. Given the complexity of MetS in children

and adolescents, a multidisciplinary and multi-sectoral approach

is necessary.
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43. Rodrıǵuez LA, Madsen KA, Cotterman C, Lustig RH. Added sugar intake and
metabolic syndrome in US adolescents: cross-sectional analysis of the National Health
and Nutrition Examination Survey 2005-2012. Public Health Nutr. (2016) 19:2424–34.
doi: 10.1017/s1368980016000057

44. Miller JM, Kaylor MB, Johannsson M, Bay C, Churilla JR. Prevalence of
metabolic syndrome and individual criterion in US adolescents: 2001–2010 National
Health and Nutrition Examination Survey. Metab Syndr Relat Disord. (2014) 12:527–
32. doi: 10.1089/met.2014.0055

45. Burrows R, Correa-Burrows P, Reyes M, Blanco E, Albala C, Gahagan S. High
cardiometabolic risk in healthy Chilean adolescents: associations with anthropometric,
biological and lifestyle factors. Public Health Nutr. (2016) 19:486–93. doi: 10.1017/
s1368980015001585

46. Dong B, Arnold LW, Peng Y, Wang Z. Ethnic differences in cardiometabolic risk
among adolescents across the waist-height ratio spectrum: National Health and
Nutrition Examination Surveys (NHANES). Int J Cardiol. (2016) 222:622–8.
doi: 10.1016/j.ijcard.2016.07.169

47. Chen W, Bao W, Begum S, Elkasabany A, Srinivasan SR, Berenson GS. Age-
related patterns of the clustering of cardiovascular risk variables of syndrome X from
childhood to young adulthood in a population made up of black and white subjects: the
Bogalusa Heart Study. Diabetes. (2000) 49:1042–8. doi: 10.2337/diabetes.49.6.1042

48. Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures
underlying inflammation: An interplay of nutrition, physical activity, metabolic
diseases, and environmental factors for personalized nutrition. Inflammation Res.
(2021) 70:29–49. doi: 10.1007/s00011-020-01425-y

49. Szkup M, Owczarek AJ, Schneider-Matyka D, Brodowski J, Łój B, Grochans E.
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129. González-Jiménez E, Montero-Alonso MA, Schmidt-RioValle J, Garcıá-Garcıá
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