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Correlation between liver fibrosis
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disease and insulin resistance
indicators: a cross-sectional
study from NHANES 2017–2020
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Hai Meng2 and Yuhan Wang2*

1Department of Gastroenterology and Hepatology, Guizhou Aerospace Hospital, Zunyi, China,
2Department of Gastroenterology and Hepatology, Binhai County People’s Hospital, Yancheng, China
Introduction: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of

chronic liver disease worldwide, with liver fibrosis (LF) being a crucial pathological

feature in the progression of NAFLD. Insulin resistance (IR) is believed to play an

important role in the pathogenesis of NAFLD and the development of LF. This

study aims to explore the relationship between various IR indicators and LF in

patients with NAFLD.

Methods: This study utilized data from the National Health and Nutrition

Examination Survey 2017-2020 cycles. Liver steatosis and fibrosis were

assessed using liver ultrasound transient elastography. To assess the

association between multiple IR indicators and LF, the study methodology

included univariate and multivariate logistic regression, as well as restricted

cubic spline (RCS) analysis. Subsequently, we used multivariate logistic

regression to develop and validate a predictive model for LF, and evaluated

the model’s performance using the area under the curve (AUC) and

calibration curve.

Results: A total of 904 patients were included in the final analysis. Among these

NAFLD patients, 153 (16.92%) had LF. Compared to non-LF patients, LF patients

had significantly higher bodymass index (BMI), waist circumference (WC), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl

transferase (GGT), HbA1c, and fasting blood glucose (FBG) levels (all p < 0.05).

Analysis of IR indicators showed that LF patients had significantly higher levels of

TyG, TyG-WHtR, TyG-BMI, TyG-WC, TyG-GGT, METS-IR, and HOMA-IR (all p <

0.05). After adjusting for covariates, TyG-WHtR remained an independent risk

factor (OR=2.69; 95% CI: 2.08-3.47), indicating a strong correlation with LF. The

developed nomogram, incorporating AST, TyG, TyG-BMI, and diabetes, showed

an AUC of 0.809 (95% CI: 0.771-0.847), indicating good predictive performance

for LF in NAFLD patients.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1514093/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514093/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514093/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514093/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514093/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1514093&domain=pdf&date_stamp=2025-01-31
mailto:19051905555@163.com
https://doi.org/10.3389/fendo.2025.1514093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1514093
https://www.frontiersin.org/journals/endocrinology


Yang et al. 10.3389/fendo.2025.1514093

Frontiers in Endocrinology
Conclusions: This study confirms that a significant association between various

IR and LF in NAFLD patients, and the developed nomogram provides a practical

tool for early risk assessment. These findings underscore the clinical value of

incorporating IR indices into routine practice to identify high-risk patients,

enabling timely interventions to prevent fibrosis progression and

improve outcomes.
KEYWORDS

non-alcoholic fatty liver disease, liver fibrosis, insulin resistance, logistic regression,
TyG-WHtR
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as the

excessive accumulation of fat in the liver in the absence of

significant alcohol consumption. It is often regarded as the

hepatic manifestation of metabolic syndrome and is commonly

associated with metabolic disorders such as obesity, type 2 diabetes,

and hyperlipidemia (1). In recent years, the incidence of NAFLD

has increased, surpassing that of viral hepatitis to become the

predominant chronic liver disease globally (2). The pathogenesis

of NAFLD is complex and ranges from simple fatty liver,

characterized by excess fat in the liver without significant

inflammation or fibrosis, to non-alcoholic steatohepatitis

(NASH), which not only involves fat accumulation but also

accompanies liver cell inflammation and damage, ultimately

leading to liver fibrosis (LF) (3). LF is a key pathological feature

in the progression of NAFLD and a major risk factor for the

development of cirrhosis and hepatocellular carcinoma. In recent

years, an increasing number of studies have focused on the

epidemiology of LF caused by NAFLD, with results indicating

that the prevalence of LF significantly increases with the severity

of NAFLD (4, 5). Therefore, it is crucial to promptly identify the risk

factors for LF in patients with NAFLD.

Insulin resistance (IR) is a well-recognized factor in the

pathogenesis of NAFLD and plays a critical role in its

progression. IR leads to an imbalance in lipid metabolism,

promoting hepatic fat accumulation and contributing to liver

inflammation and fibrosis (6). Given the close relationship

between IR and NAFLD, indicators of IR, such as fasting blood

glucose (FBG), fasting insulin, and the homeostasis model

assessment of insulin resistance (HOMA-IR), have been widely

used as biomarkers to assess metabolic dysfunction in patients with

NAFLD (7, 8). In addition to traditional markers of IR, the

triglyceride-glucose index (TyG) has drawn increasing attention

in recent years. The TyG index is a calculated measure based on

fasting triglycerides and FBG. Due to its simplicity, ease of

availability, and strong correlation with IR, it has been widely

utilized for assessing IR and cardiovascular disease risk (9, 10).

Moreover, the indicators combining TyG with body mass index
02
(BMI), waist circumference (WC), and waist-to-height ratio

(WHtR) further enhance the assessment of an individual’s

metabolic status and have been shown to be closely associated

with the presence and severity of NAFLD (11). Although the

association between NAFLD and IR is well-established, the exact

relationship between various IR indicators (including the TyG

index) and the degree of LF in NAFLD remains unclear. Most

previous studies have primarily focused on the presence of NAFLD

and its progression to NASH, with comparatively less attention

given to the specific correlation between these IR indicators and the

degree of hepatic fibrosis in NAFLD patients (12, 13). A deeper

exploration of the association between the TyG index and HOMA-

IR with LF in NAFLD patients will enhance our understanding of

the metabolic mechanisms underlying the disease and provide new

insights for early risk assessment.

Histopathological examination of liver biopsy specimens has

long been considered the gold standard for diagnosing NAFLD and

LF. Nonetheless, this method presents several limitations, including

its invasive nature, low acceptability, and high cost (14). In recent

years, liver ultrasound transient elastography (LUTE) has emerged

as an accurate and non-invasive technique for assessing the degree

of steatosis and fibrosis in patients with NAFLD (15). A meta-

analysis found that LUTE exhibits good sensitivity and specificity

for LF, with sensitivity and specificity values of 0.79 and 0.78,

respectively (16). Previous research has focused on developing non-

invasive diagnostic methods for LF. Several studies have developed

serological models based on biochemical markers and clinical

information to predict LF, including the fibrosis-4 index,

aspartate aminotransferase (AST) to platelet ratio, AST to alanine

aminotransferase (ALT) ratio, Forns index, and BARD score (17–

19). However, when these scoring systems are used to predict LF in

NAFLD patients, they do not include metabolic indicators such as

the TyG index. The lack of these key metabolic markers may reduce

the accuracy of the models, failing to fully reflect the fibrosis risk

caused by NAFLD.

In our study, we aim to utilize data from the National Health

and Nutrition Examination Survey (NHANES) database to assess

NAFLD and LF using LUTE. We will then explore the correlation

between LF and various IR indicators in NAFLD patients.
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Additionally, we will attempt to develop a predictive model for

NAFLD-related LF based on these metabolic indicators. This study

will provide valuable insights into the potential role of IR in the

progression of LF and help identify key markers for early risk

stratification and management, thereby enabling a more accurate

prediction of fibrosis risk in NAFLD patients.
2 Materials and methods

2.1 Study design and participants

The NHANES is a complex, multistage, cross-sectional survey

conducted every two years to assess the health and nutritional status

of adults in the United States. This study utilized NHANES data

from the 2017 to March 2020 cycles, with a total sample size of

15,560 individuals. The following participants were excluded:

individuals under 18 years of age (n=5,867), those with excessive

alcohol consumption (more than 3 drinks per day for men or more

than 2 drinks per day for women, n=2,877), individuals with viral

hepatitis (including those positive for hepatitis B surface antigen or

hepatitis virus RNA, n=560), individuals with a history of

autoimmune hepatitis or other liver diseases (n=24), individuals
Frontiers in Endocrinology 03
lacking LUTE data (n=1,206), and individuals missing covariate

data (including BMI, FBG, WC, high-density lipoprotein (HDL),

triglycerides (TG), total cholesterol (TC), low-density lipoprotein

(LDL), ALT, AST, diabetes, and hypertension, n=2,967).

Additionally, patients with non-NAFLD (n=1,155) were excluded.

In the final analysis, 904 participants with NAFLD were included. A

detailed flowchart is shown in Figure 1. The specific original data

can be found in the Supplementary Materials. The NHANES study

protocol received approval from the National Center for Health

Statistics Research Ethics Review Board, and all participants were

fully informed and provided written consent in compliance with the

ethical guidelines.
2.2 Definition of NAFLD and LF

The definition of NAFLD and LF was primarily determined

using LUTE, which provided liver stiffness measurements (LSM),

and simultaneously measured the ultrasound attenuation associated

with liver steatosis, recorded as the controlled attenuation

parameter (CAP). Specifically, CAP≥274 dB/m was used to define

NAFLD, and participants with LSM ≥ 8.2 kPa were defined as

having LF (20).
FIGURE 1

Flowchart of inclusion and exclusion criteria for NAFLD patients in the NHANES database. NAFLD, non-alcoholic fatty liver disease.
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2.3 Definitions of IR index

The different IR indices were calculated by the following

equations (21–25):

WHtR  =  WC (cm) = height (cm)

TyG  =  ln ½(TG (mg=dL) �  FPG (mg=dL))=2�

TyG −WC  =  TyG �  WC

TyG − BMI  =  TyG �  BMI

TyG −WHtR  =  TyG �WHtR

TyG − GGT  =  TyG �  GGT

METS − IR =  ln ½(2 �  FPG (mg=dL)) +  TG (mg=dL)� 
�  BMI = ln (HDL (mg=dL))

HOMA − IR  =  (FPG (mg=dL) 

�  fasting insulin (mU=mL)) = 22:5
2.4 Covariates

In our study, we identified several potential factors associated

with LF in NAFLD patients, known as covariates, including

variables such as ALT, AST, BMI, and WC, which have been

previously reported to be related to the occurrence of LF (26, 27).

To control for the influence of these confounding factors on our

study results, we implemented covariate adjustments in our

statistical models to minimize potential bias. Specifically, our

analytical approach included adjustments for the following

covariates: demographic characteristics (age, gender, BMI, WC),

laboratory indicators (ALT, AST, TC, TG, HDL, LDL, and FBG),

and underlying diseases (self-reported physician-diagnosed

hypertension or diabetes, and current use of antihypertensive or

antidiabetic medications as indicators of hypertension or diabetes).

These standardized interviews and questionnaires were

administered by trained healthcare professionals.
2.5 Statistical analysis

The baseline characteristics of all included patients were

stratified based on the occurrence of LF. Non-normally

distributed variables were presented as interquartile ranges and

compared using the Wilcoxon rank-sum test. Categorical variables

were expressed as percentages and compared using the chi-square

test. To investigate the relationship between various factors and LF

in patients with NAFLD, we initially conducted a univariate logistic

regression analysis and visualized the results using a forest plot,

which presented the odds ratio (OR) along with their corresponding
Frontiers in Endocrinology 04
95% confidence interval (CI) for each factor. Subsequently, we

constructed four multivariate logistic regression models to further

assess the independent associations between each IR indicator and

LF. The OR and their 95% CI for all models were calculated by

exponentiating the regression coefficients, with adjustments for

potential confounding factors incorporated in the multivariate

models (28). Additionally, the study group used restricted cubic

spline (RCS) plots to visualize the linear relationship between IR

indicators and LF in NAFLD patients more intuitively (29, 30). The

value of IR indicators for diagnosing disease prognosis was assessed

using receiver operating characteristic (ROC) curves (31). Based on

the multivariate logistic regression models, a nomogram was

constructed using statistically significant indicators to diagnose

the disease (32). To evaluate the validity of the nomogram, the

area under the ROC curve (AUC) and calibration curves were

calculated. All statistical analyses were performed using R software

(version 4.3.0) and STATA 17.0 (64-bit), with a two-sided P-value

<0.05 considered statistically significant.
3 Results

3.1 Demographic and clinical
characteristics of participants

The study cohort included a total of 904 NAFLD patients based

on inclusion and exclusion criteria, comprising 751 non-LF patients

(83.08%) and 153 LF patients (16.92%). Table 1 compares the

baseline clinical characteristics between patients with LF and

those without. Analysis revealed that compared to non-LF

patients, LF patients had significantly higher BMI (median: 31.10

[27.90, 35.45] vs. 37.30 [32.50, 43.80], p < 0.001) and WC (median:

106.70 [98.00, 116.50] vs. 122.20 [112.50, 131.70], p < 0.001).

Analysis of laboratory markers indicated that LF patients had

significantly higher levels of ALT, AST, GGT, HbA1c, and FBG,

while TC, HDL, and LDL were significantly lower compared to

non-LF patients (all p < 0.05). Analysis of various IR indicators

showed that LF patients had significantly higher TyG, TyG-WHtR,

TyG-BMI, TyG-WC, TyG-GGT, METS-IR, and HOMA-IR

compared to non-LF patients (all p < 0.05). Among patients with

comorbidities, those with diabetes or hypertension were

significantly more likely to develop LF than those without (all p <

0.05). For other variables, no significant differences were found in

sex or age between the two groups (all p > 0.05).
3.2 Analysis of factors contributing to LF in
NAFLD patients

To identify the factors associated with the progression of

NAFLD to LF, we performed a univariate logistic regression

analysis, as shown in the forest plot in Figure 2. The analysis

revealed that IR indicators, including TyG, TyG-WHtR, TyG-BMI,

TyG-WC, TyG-GGT, METS-IR, and HOMA-IR, were significantly

associated with the development of LF in NAFLD patients (all p <

0.05). Among these, TyG (OR=1.44; 95% CI: 1.10-1.88, p < 0.01)
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and TyG-WHtR (OR=2.75; 95% CI: 2.23-3.40, p < 0.01) showed the

most notable associations. Additionally, we found that a higher BMI

increased the likelihood of LF in NAFLD patients (OR=1.13; 95%

CI: 1.10-1.16, p < 0.01). Similarly, higher values of WC, ALT, AST,

GGT, TC, LDL, HbA1c, and FBG were associated with an increased

risk of LF, with LDL (OR=1.46; 95% CI: 1.19-1.72, p < 0.01) and

HbA1c (OR=1.36; 95% CI: 1.22-1.52, p < 0.01) being particularly

relevant. Analysis of comorbidities showed that patients with

hypertension (OR=3.40; 95% CI: 2.37-4.87, p < 0.01) and diabetes
Frontiers in Endocrinology 05
(OR=1.94; 95% CI: 1.36-2.77, p < 0.01) were more likely to

develop LF.

Based on the results of the logistic regression analysis, an RCS

plot was constructed to visualize the relationship between different

IR indicators and the risk of LF in NAFLD patients (Figure 3). It was

found that TyG, TyG-WHtR, TyG-BMI, TyG-WC, TyG-GGT,

METS-IR, and HOMA-IR were positively correlated with the

development of LF in NAFLD patients, further validating the

above findings.
TABLE 1 Baseline demographic and clinical characteristics of participating patients.

Characteristics
Total
No. (%)

Non-Fibrosis Fibrosis
p-value

No. (%) No. (%)

Total 904 751 (83.08) 153 (16.92)

Gender, n(%) 0.322

Male 493 (54.5%) 404 (53.8%) 89 (58.2%)

Female 411 (45.5%) 347 (46.2%) 64 (41.8%)

Age (years) 57.00(43.00, 67.00) 57.00(42.00, 67.00) 59.00(47.00, 68.00) 0.220

BMI 32.00(28.30, 37.20) 31.10(27.90, 35.45) 37.30(32.50, 43.80) <0.001

WC 108.85(99.70, 119.82) 106.70(98.00, 116.50) 122.20(112.50, 131.70) <0.001

ALT (U/L) 21.00(15.00, 30.00) 20.00(15.00, 28.00) 25.00(16.00, 40.00) <0.001

AST (U/L) 19.00(16.00, 24.00) 19.00(16.00, 24.00) 21.00(17.00, 29.00) <0.001

GGT (U/L) 24.00(18.00, 35.00) 24.00(17.00, 33.00) 29.00(21.00, 54.00) <0.001

TC (mmol/L) 4.63(4.01, 5.38) 4.65(4.09, 5.48) 4.42(3.83, 5.04) <0.001

TG (mmol/L) 1.29(0.90, 1.79) 1.28(0.89, 1.79) 1.32(0.95, 1.77) 0.592

HDL (mmol/L) 1.16(1.01, 1.40) 1.19(1.01, 1.42) 1.14(0.98, 1.32) 0.044

LDL (mmol/L) 2.74(2.20, 3.14) 2.82(2.25, 3.46) 2.46(1.99, 3.13) <0.001

HbA1c (%) 5.80(5.50, 6.50) 5.80(5.40, 6.25) 6.20(5.70, 7.60) <0.001

FBG (mmol/L) 6.11(5.61, 7.11) 6.05(5.55, 6.94) 6.72(5.94, 8.55) <0.001

TyG 8.77(8.39, 9.23) 8.72(8.37, 9.21) 8.93(8.51, 9.26) 0.005

TyG-WHtR 5.78(5.15, 6.46) 5.60(5.07, 6.23) 6.51(5.90, 7.20) <0.001

TyG-BMI 282.69(246.32, 333.08) 274.72(241.95, 316.41) 336.98(292.24, 385.13) <0.001

TyG-WC 961.78(857.68, 1074.51) 939.90(846.10, 1046.47) 1091.97(997.30, 1199.98) <0.001

TyG-GGT 215.80(154.08, 309.09) 208.09(147.84, 293.14) 266.58(183.50, 502.69) <0.001

METS-IR 49.57(42.89, 58.82) 48.00(41.88, 56.52) 59.07(51.54, 68.38) <0.001

HOMA-IR 4.41(2.75, 7.22) 4.05(2.59, 6.15) 7.48(4.29, 11.05) <0.001

Diabetes, n(%) <0.001

YES 254 (28.1%) 176 (23.4%) 78 (51.0%)

NO 650 (71.9%) 575 (76.6%) 75 (49.0%)

Hypertension, n(%) <0.001

YES 445 (49.2%) 349 (46.5%) 96 (62.7%)

NO 459 (50.8%) 402 (53.5%) 57 (37.3%)
BMI, Body Mass Index; WC, Waist Circumference; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; GGT, Gamma-Glutamyl Transferase; TC, Total Cholesterol; TG,
Triglycerides; HDL, High-Density Lipoprotein Cholesterol; LDL, Low-Density Lipoprotein Cholesterol; FBG, Fasting Blood Glucose; TyG, Triglyceride-Glucose Index; TyG-WHtR, Triglyceride-
Glucose Index to Waist-to-Height Ratio; TyG-BMI, Triglyceride-Glucose Index to Body Mass Index; TyG-WC, Triglyceride-Glucose Index to Waist Circumference; TyG-GGT, Triglyceride-
Glucose Index to Gamma-Glutamyl Transferase; METS-IR, Metabolic Score for Insulin Resistance; HOMA-IR, Homeostasis Model Assessment of Insulin Resistance.
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3.3 Analysis of independent risk factors for
LF in NAFLD patients

We constructed four multivariate logistic regression models to

further determine whether IR is an independent risk factor for LF in

NAFLD patients (Table 2). In Model 1, which was unadjusted for

any variables, the analysis showed that TyG (OR=1.44; 95% CI:

1.10-1.88, p < 0.01) and TyG-WHtR (OR=2.75; 95% CI: 2.23-3.40, p

< 0.01) were most significantly associated with LF, consistent with

the univariate logistic regression results, while the other IR

indicators were also statistically significant but had weaker

associations. After adjusting for age and sex in Model 2, the

analysis revealed that the association for TyG-WHtR became

more pronounced (OR=3.01; 95% CI: 2.40-3.76, p < 0.01), while

the other indicators showed no significant changes compared to

Model 1. In Model 3, we further adjusted for comorbidities such as

diabetes and hypertension based on Model 2. It was found that the

association of TyG-WHtR (OR=2.66; 95% CI: 2.10-3.37, p < 0.01)

weakened significantly, and TyG lost statistical significance after

adjustment, while the other indicators remained largely unchanged

and were all statistically significant (all p < 0.05). Subsequently, in

Model 4, additional adjustments for BMI, WC, ALT, AST, GGT,

TC, LDL, HbA1c, and FBG were made based on Model 3. It was

found that TyG-GGT and METS-IR were no longer statistically

significant, while the other indicators remained significantly

associated, with TyG (OR=1.23; 95% CI: 1.09-1.45, p = 0.04) and

TyG-WHtR (OR=2.69; 95% CI: 2.08-3.47, p < 0.01) being the most

notable. Through the construction of these different models, we

found that TyG, TyG-WHtR, TyG-BMI, TyG-WC, and HOMA-IR
Frontiers in Endocrinology 06
were independent risk factors for the development of LF in NAFLD

patients, with strong associations.
3.4 Predictive value of multiple IR
indicators for diagnosing LF in
NAFLD patients

To further explore the clinical diagnostic predictive value of

various IR indicators for LF in NAFLD patients, an ROC curve

diagnostic analysis model was established (Figure 4). The analysis

revealed that TyG and TyG-GGT did not show good predictive

value for disease diagnosis, with AUCs of 0.572 and 0.647,

respectively, both below 0.7. The remaining indicators—TyG-

WHtR, TyG-BMI, TyG-WC, METS-IR, and HOMA-IR—all had

AUCs greater than 0.7, with TyG-WC having the highest AUC of

0.764, indicating relatively high predictive value for diagnosis.
3.5 Construction of predictive model for LF
in NAFLD patients and evaluation of
its effectiveness

We performed a multivariate logistic regression analysis on all

indicators to construct the diagnostic model. From 24 variables, we

identified four variables as risk factors for predicting LF: AST, TyG,

TyG-BMI, and diabetes. The risk scores for each factor included in

the nomogram are shown in Figure 5, with higher scores indicating

a higher risk of LF. To evaluate the performance of the constructed

nomogram, we plotted the ROC curve and the calibration curve in

Figure 6. The ROC curve shows an AUC of 0.809 (95% CI:0.771

−0.847), and the calibration curve closely approximates the

diagonal, indicating considerable consistency and high calibration

quality. These results suggest that the nomogram has good

predictive performance.
4 Discussion

This study systematically investigated the relationship between

various IR indices and LF among patients with NAFLD. Our results

demonstrated that indices such as TyG-WHtR, TyG-BMI, and

HOMA-IR were significantly associated with the occurrence of LF

in NAFLD patients, with TyG-WHtR emerging as the most

prominent predictor. Even after adjusting for a range of

covariates, TyG-WHtR maintained a strong correlation,

suggesting its potential utility as an independent predictor of LF

in this patient population. Additionally, we developed a predictive

model for LF in NAFLD patients, which highlights the potential of

these indices to be incorporated into routine clinical practice for

risk assessment and early intervention.

The findings of this study have significant implications for

clinical practice, particularly in the early identification and

management of LF in patients with NAFLD. The strong

association between TyG-WHtR and LF underscores its potential

as a simple, non-invasive tool for risk stratification in routine
FIGURE 2

Forest plot of univariate logistic regression for risk factors of LF in
NAFLD Patients. LF, liver fibrosis; NAFLD, non-alcoholic fatty
liver disease.
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clinical settings. The TyG-WHtR is a non-invasive, simple, low-cost

index that only tests TG, FPG, WC, and height to produce results.

Compared to liver puncture biopsy, CT, and MRI, TyG-WHtR

offers a superior cost-benefit ratio. By incorporating TyG-WHtR

and other IR indices into standard metabolic assessments, clinicians

can more effectively identify high-risk patients who may benefit

from closer monitoring or early intervention. The predictive

nomogram developed in this study, which integrates AST, TyG,

TyG-BMI, and diabetes, provides a practical and accessible tool for

individualized risk assessment. This approach is particularly

valuable in resource-limited settings where advanced diagnostic

tools may not be readily available. Clinicians can use this

nomogram to estimate fibrosis risk using readily available clinical

data, enabling targeted therapies such as lifestyle modifications,

weight management, and insulin-sensitizing treatments to slow or

prevent fibrosis progression (33, 34). These findings advocate for

the integration of IR indices into routine clinical practice to enhance

early detection, risk assessment, and personalized management of

NAFLD-related fibrosis.
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Our findings emphasize that obesity, as reflected by higher BMI and

WC, and other metabolic factors, such as increased ALT, AST, GGT,

and HbA1c levels, were more prevalent in NAFLD patients with LF

compared to those without. The liver, an essential organ for metabolic

processes, regulates the metabolism of both lipids and glucose. Chiang

et al. reported that increased obesity and IR significantly contribute to

the progression from NASH to fibrosis through the development of a

profibrotic environment in the liver (35). Additionally, Koppe et al.

reported that IR leads to widespreadmetabolic disturbances, resulting in

a net effect of TG accumulation in the liver. Some patients may develop

hepatocellular injury and LF, which can progress to cirrhosis (36). In

comparison to previous research, Khamseh et al. identified TyG-WC,

TyG-BMI, and TyG-WHtR as the best predictors of metabolic-

associated fatty liver disease (37). Although their study did not

establish a clear relationship between these indicators and LF, our

research further confirms this link. We found that several IR markers,

particularly TyG-WHtR, TyG-BMI, and HOMA-IR, were significantly

elevated in LF patients, indicating that metabolic dysfunction plays a

central role in the pathogenesis of the disease.
FIGURE 3

Dose-response between IR indices and the risk of LF. (A) Dose-response between TyG and the risk of LF. (B) Dose-response between TyG-BMI and the risk
of LF. (C) Dose-response between TyG-WC and the risk of LF. (D) Dose-response between TyG-GGT and the risk of LF. (E) Dose-response between TyG-
WHtR and the risk of LF. (F) Dose-response between METS-IR and the risk of LF. (G) Dose-response between HOMA-IR and the risk of LF. IR, insulin
resistance; LF, liver fibrosis.
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IR indices are not only widely applied in metabolic diseases such

as type 2 diabetes and obesity but are also used in other conditions,

including cardiovascular diseases, chronic kidney disease, and

polycystic ovary syndrome, where they have also been shown to

predict adverse outcomes (38–41). Several studies have demonstrated

that IR triggers lipotoxic pathways in the liver, leading to an

accumulation of toxic lipid species such as ceramides and

diacylglycerol, which further exacerbate liver injury and

fibrogenesis (42–44). TyG-WHtR showed a significant correlation

with LF in this study. High levels of TyG-WHtR indicate severe

visceral fat accumulation, which is a key factor in the progression of
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LF (45). This relationship is particularly significant in the context of

NAFLD, where visceral fat plays a crucial role in metabolic

dysfunction. The accumulation of visceral fat is linked to various

metabolic complications, including increased liver fat content, which

can exacerbate liver inflammation and fibrosis (46). Therefore, TyG-

WHtR can serve as an independent predictor of LF risk in NAFLD

patients, with potential clinical utility.

In recent years, the TyG index has been increasingly applied in

liver diseases, especially in predicting the progression of NAFLD,

showing a significant association with NAFLD and LF (37, 47). To

better evaluate the combined effects of IR and obesity, TyG-BMI
TABLE 2 Multivariate logistic regression models assessing IR as an independent risk factor for LF in NAFLD patients.

Model 1 Model 2 Model 3 Model 4

OR (95% CI), p-value OR (95% CI), p-value OR (95% CI), p-value OR (95% CI), p-value

TyG 1.44(1.10,1.88)< 0.01 1.44(1.09–1.91)< 0.01
1.02(0.75–1.37)

0.91
1.23(1.09–1.45)

0.04

TyG-WHtR 2.75(2.23,3.40)< 0.01 3.01(2.40–3.76)< 0.01 2.66(2.10–3.37)< 0.01 2.69(2.08–3.47)< 0.01

TyG-BMI 1.01(1.01,1.02)< 0.01 1.02(1.01–1.02)< 0.01 1.01(1.01,1.01)< 0.01
1.01(1.01,1.01)

0.02

TyG-WC 1.01(1.01,1.01)< 0.01 1.01(1.01,1.01)< 0.01 1.01(1.01,1.00)< 0.01
1.01(1.01,1.01)

0.02

TyG-GGT 1.01(1.01,1.01)< 0.01 1.01(1.01,1.02)< 0.01 1.01(1.01,1.02)< 0.01
0.99(0.98,1.01)

0.82

METS-IR 1.08(1.06,1.09)< 0.01 1.08(1.06,1.10)< 0.01 1.07(1.06,1.09)< 0.01
0.95(0.90,1.01)

0.06

HOMA-IR 1.03(1.02,1.05)< 0.01 1.03(1.01,1.05)< 0.01 1.02(1.01,1.04)< 0.01 1.01(1.01,1.02)< 0.01
Model 1 was a non-adjusted model.
Model 2 was adjusted for age (years), gender and race.
Model 3 was adjusted for the same parameters as Model 2 with additional adjustments for hypertension (No or Yes) and diabetes (No or Yes).
Model 4 was adjusted for the same parameters as Model 3 with additional adjustments for BMI、WC、ALT、AST、GGT、TC、LDL、HbA1c、FBG.
OR, odds ratio; 95% CI, 95% confidence interval.
IR, insulin resistance; LF, liver fibrosis; NAFLD, non-alcoholic fatty liver disease.
FIGURE 4

Predictive value of multiple IR indicators for diagnosing LF. IR, insulin resistance; LF, liver fibrosis.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1514093
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2025.1514093
integrates BMI, which reflects overall body weight status, making it

more advantageous in assessing metabolic risk (22, 48). Our study

found that TyG-BMI levels were significantly elevated in LF patients,

highlighting the core role of the synergy between obesity and IR in LF

progression. Compared to single IR indicators, TyG-BMI provides a

more comprehensive assessment of metabolic risk, offering important

insights for early identification and intervention of LF. Additionally,

in our study, we found that TyG-GGT is not an independent risk

factor for LF in NAFLD patients. In contrast, Lei Jin et al. suggested

that TyG-GGT has strong predictive accuracy for advanced LF in

overweight or obese patients (25). However, their study was limited

by a small sample size, a retrospective design that did not fully control

for confounding factors, and a lack of strong statistical significance.

Additionally, both METS-IR and HOMA-IR are strongly associated

with LF, reflecting the relationship between IR and metabolic

syndrome. Consistent with previous studies, our findings show that

these indicators have strong predictive power for LF in NAFLD
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patients (49–51). Additionally, HOMA-IR is considered an

independent predictor of advanced LF in non-diabetic NAFLD

patients (50). It accelerates fibrosis progression by promoting liver

fat accumulation, inflammatory responses, and hepatic stellate cell

activation (52). Therefore, METS-IR and HOMA-IR can serve as

effective tools in clinical practice for assessing the risk of fibrosis in

NAFLD patients. In addition to our findings, several studies from

China have also reported a strong association between IR and the

progression of NAFLD, as well as its correlation with fibrosis staging

(47, 53). By integrating these findings, our study contributes to a

growing body of evidence that underscores the clinical utility of IR

indices in predicting LF risk in NAFLD patients.

This study has several notable strengths. First, it focuses on a

specific population of NAFLD patients with LF, making the results

more targeted and clinically relevant, thereby providing important

insights for the management of this high-risk group. Second, we

systematically employed various analytical methods, including
FIGURE 5

Nomogram for predicting the risk of LF. LF, liver fibrosis.
FIGURE 6

Nomogram model validation. (A) Receiver operating characteristic curve for evaluating the discriminative ability of the predictive model. (B)
Calibration plot for assessing the agreement between predicted probabilities and actual outcomes of LF. LF, liver fibrosis.
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logistic regression and RCS, to comprehensively evaluate the

relationship between multiple IR indices and LF, clarifying the

predictive value of these indices. Finally, we developed a LF

prediction model based on multivariable logistic regression and

constructed a nomogram, providing a scientific and effective tool

for early risk identification and individualized intervention in

clinical practice, with high practical value.

Despite providing further evidence of the close relationship

between IR and LF in NAFLD patients, our study has several

limitations that warrant discussion. First, as this study is based on

cross-sectional data, we cannot establish a causal relationship

between IR and LF. Longitudinal studies are therefore needed to

verify the causal role of IR in the progression of NAFLD. Second, the

relatively small sample size and the fact that our cohort was limited to

the U.S. population may limit the external validity of the findings,

particularly across different ethnicities and regions. Future research

should include larger cohorts from diverse populations to validate the

applicability and predictive value of these IR indices in a broader

context. Additionally, our study mainly focused on epidemiological

associations and lacked an in-depth exploration of the underlying

molecular mechanisms. Thus, future basic research should aim to

elucidate how IR promotes LF through specific cellular signaling

pathways, providing theoretical support for targeted interventions.
5 Conclusion

In summary, this study identifies TyG-WHtR, TyG-BMI, and

other IR indices as independent predictors of LF in NAFLD

patients, highlighting their clinical utility in early risk

stratification. These findings underscore the importance of

integrating metabolic indicators into routine clinical practice to

enhance early detection and intervention. The predictive

nomogram developed in this study offers a practical, non-invasive

tool for clinicians to identify high-risk patients. By focusing on

metabolic risk factors, clinicians can implement targeted therapies

—such as lifestyle modifications and insulin-sensitizing treatments

—to slow or prevent fibrosis progression, ultimately improving

long-term patient outcomes.
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