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Background: Isolated Impaired Glucose Tolerance (I-IGT) represents a specific

prediabetic state that typically requires a standardized oral glucose tolerance test

(OGTT) for diagnosis. This study aims to predict glucose tolerance status in

Chinese Han men at fasting state using machine learning (ML) models with

demographic, anthropometric, and laboratory data.

Methods: The study population consisted of 1,117 Chinese Han men aged 50–87

years. Baseline variables including age, fasting plasma glucose (FPG), high blood

pressure (HBP), body mass index (BMI), waist to hip ratio (WHR), total cholesterol

(TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-

density lipoprotein cholesterol (LDL-C) were collected from electronic medical

records (EMRs) for machine learning model training and validation. Support

Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic

Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes (NB), Adaptive

Boosting (AdaBoost) and Gradient Boosting Machines (GBM) were tested for

machine learning model performance comparison. Model performance was

evaluated using metrics including accuracy, recall, F1 score, positive predictive

value (PPV), negative predictive value (NPV), and the area under the receiver

operating characteristic curve (AUC). Shapley Additive Explanations (SHAP) and

confusion matrix plots were used for model interpretation.

Results: The RF model demonstrated the best overall performance with a 96.7%

accuracy, recall of 91.4%, F1 score of 95.7%, PPV of 99.1%, and NPV of 95.6%. The

AUC values for the SVM, DT, RF, LR, KNN, NB, AdaBoost, and GBM models were

0.97, 0.92, 0.96, 0.97, 0.88, 0.88, 0.97, and 0.97, respectively. While the RFmodel

showed strong overall performance, the LR model had the highest AUC,

indicating superior discriminatory power. FPG was identified as the most

important predictor for I-IGT, followed by HDL, TC, HBP, BMI, and WHR.

Individuals with FPG levels higher than 5.1 mmol/L were more likely to have I-

IGT; the performance metrics for this cut-off value were: 89.35% accuracy,

89.79% recall, 85.22% F1 score, 81.09% PPV, 94.38% NPV, and 0.95 AUC.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1514397/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514397/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514397/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514397/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1514397/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1514397&domain=pdf&date_stamp=2025-04-24
mailto:Sunny_plahsz@hotmail.com
mailto:y.ruan@siat.ac.cn
https://doi.org/10.3389/fendo.2025.1514397
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1514397
https://www.frontiersin.org/journals/endocrinology


Wang et al. 10.3389/fendo.2025.1514397

Frontiers in Endocrinology
Conclusion: Machine learning models based on demographic and clinical

characteristics offer a cost-effective method for predicting I-IGT in Chinese

Han men aged over 50, without the need for an OGTT. These models could

complement existing early diagnostic strategies, thereby enhancing the early

detection and prevention of diabetes. Additionally, FPG alone could serve as an

efficient screening tool for the early identification of I-IGT in clinical settings.
KEYWORDS

pre-diabetes, isolated impaired glucose tolerance, machine learning models, oral
glucose tolerance test, fasting plasma glucose
1 Introduction

Diabetes mellitus is a common chronic disease that afflicts millions

worldwide. According to the International Diabetes Federation (IDF)

Diabetes Atlas reports, 537 million adults were living with diabetes in

2021 (1). The rising prevalence of diabetes imposes a significant burden

on healthcare systems and contributes to numerous complications that

adversely affect human health (2). Type 2 diabetes (T2DM) constitutes

over 90% of all diabetes cases globally (3). The disease spectrum of

T2DM encompasses various stages, from prediabetes to T2DM with

end stage complications. Prediabetes, defined by either impaired

glucose tolerance (IGT) or impaired fasting glucose (IFG),

significantly increase the risk of progressing to T2DM (4). IGT is

characterized by elevated blood glucose levels two hours after an Oral

Glucose Tolerance Test (OGTT), with or without the presence of IFG.

A review study on the incidence of prediabetes among different

ethnicities revealed that the prevalence of IFG was 48.1% in Asians,

while IGT was observed in 27.7% of the Asian population (5). Recent

epidemiological data indicate that the prevalence of prediabetes among

Chinese men and women are 37.0% and 33.4%, respectively. Men have

higher prevalence than women for both prediabetes and diabetes.

Among the five ethnic groups surveyed in China, the Han ethnic group

exhibits the highest prevalence rate of diabetes (6). Isolated Impaired

Glucose Tolerance (I-IGT) specifically refers to individuals who exhibit

IGT without concurrent IFG. Similar to IGT, individuals with I-IGT

are also at increased risk of developing T2DM, heart disease, and stroke

(7, 8). The transition from I-IGT to T2DM is particularly concerning

due to the significant rise in morbidity and mortality from diabetes-

related complications. Persistent hyperglycemia can also lead to

chronic damage and dysfunction of various organs, including the

eyes, kidneys, nerves, heart, and blood vessels (9). Additionally, I-

IGT is often accompanied by other cardiovascular risk factors such as

dyslipidemia, hypertension, and obesity, which collectively exacerbate

the risk of cardiovascular diseases (10). The identification of I-IGT

relies on OGTT, a method both time-consuming and less adaptable to

large-scale screening. Additionally, many individuals with I-IGT are

asymptomatic, making it less likely for them to undergo testing until

more severe symptoms or complications arise. The lack of specific

symptoms and the transient nature of glucose levels, which may return
02
to normal ranges, further complicate the identification of I-IGT in the

general population. HbA1c is also used to diagnose patients with

prediabetes, but this standard cannot solely be used to identify

individuals with IGT or I-IGT. A meta-analysis revealed that HbA1C

is not a reliable marker for prediabetes detection, demonstrating a

mean sensitivity of 49% and a specificity of 79% in identifying

prediabetes (11). Efforts to improve the prediction of individuals

with I-IGT are crucial for early intervention and prevention of

diabetes and its associated complications. Recent studies have

demonstrated the efficacy of machine learning (ML) models in

predicting T2DM by utilizing a range of clinical, biochemical, and

demographic data, such as support vector machine (SVM), decision

tree (DT), logistic regression (LR)and so on (12). Duygu and Esin

developed a system named LDA-MWSVM for predicting diabetes.

This system uses Linear Discriminant Analysis (LDA) for reducing

dimensions and extracting important features (13). To handle datasets

with many dimensions, Razavian and colleagues created prediction

models using logistic regression to forecast various stages of T2DM

development (14). However, few studies focus on using machine

learning models to identify individuals in the prediabetic stage,

especially those with I-IGT.

In this study, we investigate the capability of various machine

learning algorithms to predict individuals with I-IGT among those

with normal fasting plasma glucose (FPG). Our objective is to equip

healthcare professionals with a more targeted and cost-effective

approach to I-IGT detection and management, thereby enhancing

patient care quality and health outcomes.
2 Materials and methods

2.1 Study subjects

We conducted a retrospective study using data from male

individuals who underwent medical examinations at the Chinese

People’s Liberation Army General Hospital from May 1998 to

August 2005. Participants were included if they were Chinese

Han men with normal FPG. Exclusion criteria encompassed

individuals with abnormal FPG, diagnosed diabetes, conditions
frontiersin.org

https://doi.org/10.3389/fendo.2025.1514397
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1514397
affecting glucose tolerance, or those on medications influencing the

results of OGTT. Ultimately, 1,117 participants met the criteria.
2.2 Data collection

All participants underwent comprehensive blood tests and

physical examinations in an outpatient setting. Data on height,

weight, waist and hip circumferences, blood pressure, and other

pertinent parameters were documented.

2.2.1 Biochemical analyses
Serum lipid profiles, including triglyceride (TG), total

cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),

and low-density lipoprotein cholesterol (LDL-C) levels, were

determined using chemiluminescence on an automated analyzer.

All participants underwent an OGTT, with venous plasma glucose

measurements taken before (FPG) and 2 hours post-OGTT. The

enzymatic hexokinase method was utilized for FPG and 2-hour

post-glucose (2 h-PG) level determinations.

2.2.2 Glucose tolerance categorization
Glucose tolerance was classified according to the 2003 ADA

recommendations where

normal glucose tolerance (NGT) was defined as FPG < 6.1

mmol/L and 2 h-PG < 7.8 mmol/L; impaired fasting glucose (IFG)

was defined as 6.1 mmol/L ≤ FPG < 7.0 mmol/L and 2 h-PG < 7.8

mmol/L; isolated impaired glucose tolerance (I-IGT): FPG < 6.1

mmol/L and 7.8 ≤ 2 h-PG < 11.1 mmol/L; diabetes defined as FPG ≥

7.0 mmol/L and/or 2 h-PG ≥ 11.1 mmol/L.

2.2.3 I-IGT diagnosis and subject selection
In this study, subjects were classified based on the 2003 ADA

criteria for glucose tolerance categories. I-IGT was defined as FPG <

6.1 mmol/L and 2h-PG between 7.8 and 11.1 mmol/L, while

subjects with FPG ≥ 6.1 mmol/L were excluded to ensure that

only individuals with normal fasting glucose levels were included.

All subjects underwent OGTT to confirm glucose tolerance status.

Those with FPG ≥ 7.0 mmol/L or 2h-PG ≥ 11.1 mmol/L were

excluded to remove individuals with diabetes. The final dataset

consisted of individuals with normal fasting glucose but elevated

post-load glucose levels (I-IGT group) and those with both normal

fasting and post-load glucose levels (NGT group).

2.2.4 Medical history documentation
Patients’ medical histories and medication regimens

were recorded.

2.2.5 Study ethics
This study received approval from the Ethics Committee of the

Chinese People’s Liberation Army General Hospital (S2015-038-01).

All patient identity data remained confidential.
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2.3 Data analysis

The dataset used in this study was retrospectively retrieved from

the EMR system of the People’s Liberation Army (PLA) General

Hospital. An overview of the different steps of data analysis is

provided in this section. Figure 1 presents the main workflow of

this study.

2.3.1 Data preprocessing
Clinical data from medical databases often contain incomplete

and noisy information, making preprocessing a vital step in

developing accurate predictive models. In this study, we employed

listwise deletion to handle missing data, removing any observations

with at least one missing value. This straightforward method

requires minimal computation and assumptions, ensuring that

only complete cases are used for analysis, thereby avoiding the

potential errors or biases introduced by imputation techniques.

2.3.2 Machine Learning models
2.3.2.1 Support vector machine

SVM is a robust and versatile machine learning algorithm,

particularly effective for classification tasks. It identifies the optimal

hyperplane that separates different classes in the feature space,

making it suitable for high-dimensional data. SVM’s capability to

handle situations where the number of dimensions exceeds the

number of samples makes it valuable in medical diagnosis, where it

can classify patients based on complex medical data (15).

2.3.2.2 Decision tree

DT recursively splits input data into subsets based on specific

conditions, resulting in a tree-like structure. It is widely used in

medical tasks due to its interpretability, as the model structure is

easy to visualize and understand. However, DTs can be prone to

overfitting, particularly with complex datasets (16).
2.3.2.3 Random forest

RF is an ensemble learning method that constructs multiple

decision trees and combines their outputs to enhance prediction

accuracy and mitigate overfitting. RF has been used in predicting

cardiovascular and Alzheimer’s diseases. Its main advantage is the

ability to handle large datasets and high-dimensional feature spaces

effectively, although it can be more complex and less interpretable

than simpler models like decision trees (17).
2.3.2.4 Logistic regression

LR is a statistical method for analyzing binary outcome

variables, often used in modeling the probability of disease

occurrence. LR is easy to interpret and understand, providing

insights into variable relationships. However, its reliance on the

assumption of linearity between predictors and the log odds of the

outcome may not always hold in real-world situations (18).
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2.3.2.5 The K-nearest neighbors

KNN is a simple and effective machine learning method used

for classification and regression tasks. In medical research, KNN has

shown promising results in diagnostic medicine, such as heart

disease prediction and diabetes diagnosis. It operates by

identifying the ‘nearest neighbors’ of a data point in feature space

to predict the class or value of that point (19–21).

2.3.2.6 Naive Bayes

NB is a powerful classification method based on Bayes’

Theorem, assuming independence among predictors. It efficiently

handles large datasets, making it valuable in medical research for

disease diagnosis and predictive analytics in patient care (22).

2.3.2.7 Adaptive boosting

AdaBoost enhances the performance of decision trees on binary

classification problems by combining multiple weak classifiers into a

strong one. It is useful in medical applications for improving diagnostic

accuracy in tasks like image recognition or patient data analysis (23).

2.3.2.8 Gradient boosting machine

GBM is an advanced technique for predictive modeling,

sequentially adding predictors to an ensemble to correct its

predecessors. GBM combines weak predictive models, typically

decision trees, into a strong overall model. It is instrumental in

analyzing complex datasets for disease prediction, patient outcome

forecasting, and personalized medicine due to its versatility in

handling diverse data types (24).
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2.3.3 Statistical analysis
In this study, stratified sampling was used to achieve an even

distribution of features in both the training and validation sets.

Subjects were divided into high and low FPG subgroups based on

the median FPG value. Individuals from each subgroup were then

allocated to the training and validation sets at a 7:3 ratio. A

predefined random seed (random state=42) ensured consistency

and reproducibility. This approach ensured balanced representation

and prevented selection bias. To assess comparability, we compared

the clinical characteristics of patients in the training and test sets.

Before conducting statistical tests, we assessed the normality of

continuous variables using the Shapiro-Wilk test. Variables that

followed a normal distribution were analyzed using independent

sample t-tests, while non-normally distributed variables were

assessed using the Mann-Whitney U test. Categorical variables,

such as hypertension status or blood pressure, were analyzed using

the chi-square test or Fisher’s exact test, depending on sample size.

The variables assessed included age, BMI, FPG, WHR, TC, TG,

HDL-C, LDL-C, and hypertension status. The statistical results

showed that all p-values were greater than 0.05, confirming that

there were no significant differences between the training and test

sets, ensuring a balanced dataset for model training and evaluation.

The details of these findings are presented in Table 1. The statistical

analysis for this study was performed using R software, version

4.2.2. Several R packages were employed to facilitate the

development and evaluation of the diagnostic classification

models, such as randomForest, rpart, stats, class, adabag,

and pROC.
FIGURE 1

Proposed model workflow.
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2.3.4 Model performance assessment
In medical classification models, several evaluation metrics are

commonly used to assess performance and effectiveness. These

metrics help determine the model’s ability to accurately predict

and classify health conditions or patient groups. In this study, we

adopted accuracy, recall, F1-Score, PPV, NPV, and AUC as

evaluation metrics, described as follows:

Accuracy: Measures the proportion of correct predictions,

including both true positives (TP) and true negatives (TN).

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Recall (also known as Sensitivity or True Positive Rate, TPR):

Measures the proportion of true positives identified among all

actual positive instances.

Recall = TP/(TP + FN)

F1 Score: The harmonic mean of precision and recall, balancing

both values

F1 Score = 2 * (Precision * Recall)/(Precision + Recall)

Positive Predictive Value (PPV): Measures the proportion of

positive test results that are truly positive.

PPV =TP/TP + FP

Negative Predictive Value (NPV): Measures the proportion of

negative test results that are truly negative.

NPV = TN/TN + FN

In addition to these metrics, we employed Receiver Operating

Characteristic (ROC) curve analysis to evaluate model performance

across different decision thresholds. The ROC curve plots the true

positive rate (recall) against the false positive rate (1-specificity).

The Area Under the ROC Curve (AUC-ROC) quantifies the

model’s overall performance, with a score of 1 indicating perfect

classification and 0.5 indicating random performance. Comparing

AUC-ROC scores helps identify the most suitable model for

the task.

By employing these evaluation metrics, we assessed the

performance of our classification models and selected the most

appropriate model for predicting and classifying health conditions.
Frontiers in Endocrinology 05
The use of multiple metrics provided a comprehensive evaluation of

each model’s strengths and weaknesses, ultimately guiding clinical

decision-making and enhancing patient care.
3 Results

As described in Table 1, a total of 1,117 Chinese Han males with

normal FPG levels was analyzed. The median age of the population

was 70 (50-87) years, with fasting plasma glucose levels averaging

4.81 ± 0.61 mmol/L. Among the participants, 382 (34.2%) exhibited

I-IGT, 654 (58.55%) had hypertension. The average body mass index

(BMI) was recorded as 25.04 ± 2.94 kg/m2, and the mean waist-to-hip

ratio (WHR) was 0.89 (range: 0.86 - 0.92). The overall lipid profile of

the population indicated TC levels at 5.18 (4.63 - 5.77) mmol/L, TG at

1.53 (1.17 - 2.00) mmol/L, HDL-C at 1.21 (1.03 - 1.42) mmol/L, and

LDL-C at 3.59 (3.11 - 4.15) mmol/L. The heatmap visualizes the

correlation between features in this study (Figure 2). Each cell in the

heatmap represents the correlation coefficient between two features.

In this specific heatmap, we observe various degrees of correlation

between features. A positive correlation was observed between BMI

and WHR, indicating a link between overall and central obesity.

Additionally, FPG was positively correlated with LDL-C, suggesting

an interplay between glucose metabolism and lipid profiles. Notably,

HDL-C showed a negative correlation with TG, which may reflect

their inverse relationship in cardiovascular risk. Furthermore, a

strong positive correlation was found between TC and LDL-C,

emphasizing LDL-C’s significant role in cholesterol levels. Also,

BMI showed a positive correlation with HBP, indicating a potential

risk factor for high blood pressure.

Values for continuous variables are expressed as mean ±

standard deviation or median [interquartile range] according to

data normality; values for categorical data are given as number

(percent). The P value represents comparison between training set

and validation set.
TABLE 1 Baseline demographic and clinical characteristics of the included patients.

Characteristics Total (n=1117) Training set (n=781) Validation set (n=336) P value

Age (years) 70 (50-87) 70 (50-85) 70.5 (50-87) 0.47

FPG (mmol/L) 4.81 ± 0.61 4.81 ± 0.62 4.83 ± 0.60 0.61

I-IGT, n (%) 382 (34.2%) 266 (34.1%) 116 (34.5%) 0.44

HBP, n (%) 654 (58.6%) 454 (58.1%) 200 (59.5%) 0.30

BMI (kg/m2) 25.04 ± 2.94 25.10 ± 2.91 24.88 ± 3.01 0.24

WHR 0.89 (0.86-0.92) 0.89 (0.86-0.92) 0.89 (0.86-0.92) 0.41

TC (mmol/L) 5.18 (4.63-5.77) 5.15 (4.62-5.72) 5.22 (4.64-5.89) 0.39

TG (mmol/L) 1.53 (1.17-2.00) 1.53 (1.17-1.98) 1.53 (1.14-2.05) 0.85

HDL-C (mmol/L) 1.21 (1.03-1.42) 1.21 (1.03-1.41) 1.21 (1.04-1.43) 0.80

LDL-C (mmol/L) 3.59 (3.11-4.15) 3.57 (3.12-4.12) 3.65 (3.11-4.24) 0.30
FPG, fasting plasma glucose; I-IGT, isolated impaired glucose tolerance; HBP, high blood pressure; BMI, body mass index; WHR, waist to hip ratio; TC, total cholesterol; TG, triglyceride; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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3.1 Model performance comparisons

In this study, multiple machine learning algorithms were

employed to build predictive models. To rigorously evaluate the

performance of each model, various metrics such as accuracy, recall,

F1 score, PPV, NPV and AUC were employed. The results are

summarized in Table 2. Figure 3 clearly presents the ROC curves

and AUC values of eight machine learning models. Among the eight

models, the LR model (AUC=0.9731) performs the best, followed by
Frontiers in Endocrinology 06
the GBM model (AUC=0.9706), AdaBoost model (AUC=0.9658),

SVM model (AUC=0.9652), RF model (AUC=0.9558), DT model

(AUC=0.9248), KNN model (AUC=0.8846), and NB model

(AUC=0.8767). Using the RF model as a reference, the LR, GBM,

AdaBoost, and SVM models show superior performance, while the

DT, KNN, and NB models exhibit inferior performance. Among the

eight evaluated models, The LR model exhibited the highest AUC,

while the RF model demonstrated the best accuracy (96.73%), recall

(91.38%), F1 score of 95.7%, PPV of 99.07%, and NPV of 95.63%.
FIGURE 2

Correlation between the characteristics.
TABLE 2 Model performance metrics.

Models Accuracy Recall F1 Score PPV NPV AUC

Support Vector Machine 90.8% 80.2% 85.7% 92.1% 90.2% 0.97

Decision Tree 92.6% 92.2% 89.5% 87.0% 95.8% 0.92

Random Forest 96.7% 91.4% 95.1% 99.1% 95.6% 0.96

Logistic Regression 93.5% 90.5% 90.5% 90.5% 95.0% 0.97

K-Nearest Neighbors 82.1% 63.8% 71.2% 80.4% 82.8% 0.88

Naive Bayes 67.9% 92.2% 66.5% 51.9% 93.1% 0.88

Adaptive Boosting 96.4% 91.4% 94.6% 98.2% 95.6% 0.97

Gradient Boosting 96.4% 91.4% 94.6% 98.2% 95.6% 0.97
PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve.
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These findings suggest that while the LRmodel may be more effective

in distinguishing patients at risk, the RF models may offer a more

balanced performance across various evaluation metrics.

The classification ability of various models is often

demonstrated using confusion matrices, which are essential for

evaluating model performance by displaying true positives, true

negatives, false positives, and false negatives. Confusion matrices

cross-tabulate actual outcomes with model predictions, providing

insight into the accuracy and errors of the model. Figure 4 presents

confusion matrices for different machine learning models used in

this study. The RF model shows a high number of true positives and

true negatives with relatively few false positives and false negatives,

indicating good performance. In contrast, the NB model has a

higher number of false positives and false negatives, suggesting

poorer performance compared to other models.
Frontiers in Endocrinology 07
3.2 Explanation of risk factors

SHAP (Shapley Additive explanations) is used to explain the

contribution of each variable in the model to the prediction

outcomes. The RF model shows the highest TP and TN, Figure 5

presents both the SHAP summary plot and the SHAP summary

layer ed violin plot of the RF model. The SHAP summary plot ranks

the predictive capabilities of variables such as FPG, age, BMI, WHR,

TC, TG, HDL-C, LDL-C, and HBP for predicting I-IGT. The SHAP

summary layered violin plot illustrates the distribution and impact

of each feature on the RF model’s output.

Positive SHAP values push the prediction higher, while negative

values push it lower. The width of the “violin” at each SHAP value

level indicates the frequency of that impact value for the feature,

with color indicating the actual feature. FPG emerges as the
FIGURE 3

AUC comparison of eight machine learning algorithms.
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dominant predictor, with predominantly positive SHAP values,

indicating that higher FPG levels significantly increase the

likelihood of predicting glucose intolerance. Multiple analyses

confirmed FPG as a potent predictor. These findings suggest that

an FPG cut-off value of 5.1 mmol/L may effectively serve as a

predictive indicator for I-IGT. The performance metrics for this

cut-off included an accuracy of 89.35%, recall of 89.79%, F1 score of

85.22%, PPV of 81.09%, NPV of 94.38%, and AUC of 94.63%.

BMI demonstrates a broad distribution of SHAP values,

implying varied effects on the prediction depending on the

specific BMI value. WHR tends to influence the prediction

towards normal glucose tolerance when lower, as indicated by its

SHAP values concentrated in the negative range. TG, similar to
Frontiers in Endocrinology 08
FPG, mostly contribute positively, hinting that higher levels of TG

are associated with an increased risk of glucose intolerance. HDL-C

and TC show mixed impacts, with SHAP values distributed across

both positive and negative, suggesting a nuanced influence on the

model’s outcome. LDL-C predominantly falls on the negative side

of SHAP values, suggesting that lower LDL-C levels might be linked

to predicting normal glucose tolerance. Age has a relatively even

distribution of SHAP values, indicating a less pronounced and more

variable impact across different ages.

Finally, HBP shows a significant concentration of SHAP values in

the negative range, suggesting that lower blood pressure readings

might be predictive of normal glucose tolerance, though its overall

impact is more subdued compared to factors like FPG and TG. The
FIGURE 5

(a) Importance matrix plot of the Random Forest model, depicting the importance of each variable for predicting IGT in individuals with normal
fasting plasma glucose levels. (b) SHAP summary plot of the 9 clinical characteristics of the Random Forest model. FPG, fasting plasma glucose; IGT,
impaired glucose tolerance; T2DM, type 2 diabetes mellitus; HBP, high blood pressure; BMI, body mass index; WHR, waist to hip ratio; TC, total
cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
FIGURE 4

Show the eight confusion matrix to present the performances of applied eight machine learning algorithms where x-axis states the predicted level
and y-axis states the true level.
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SHAP summary layered violin plot provides critical insights into the

RF model’s behavior for each feature, aiding in model interpretation.
3.3 Applying the prediction model

Figure 6 presents two SHAP force plots for the RF model,

labeled (a) and (b), providing insights into the model’s prediction

behavior for two individuals. Plot (a) illustrates an individual with a

higher probability of I-IGT. Each feature’s SHAP value is displayed

as a bar, where the length and direction indicate the strength and

direction of the feature’s impact. Features with positive SHAP

values (extending to the right) increase the likelihood of impaired

glucose tolerance. In this case, FPG, BMI, and TG have large

positive SHAP values, indicating their strong contribution to the

positive prediction. Plot (b) shows an individual with a prediction

leaning towards a lower probability of I-IGT (shown in blue).

Features such as FPG, HDL, and WHR have negative SHAP

values, pushing the prediction lower. The most substantial

negative impact is from FPG, as indicated by the length of its bar

extending to the left. SHAP force plots are valuable for

understanding the individualized predictions made by the RF

model, demonstrating how each feature value contributes to the

final prediction. This is crucial for interpreting the model’s
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decisions, ensuring transparency, and providing actionable

insights in a clinical setting.
4 Discussion

In this study, we established eight predictive machine learning

models to predictive male individuals with I-IGT, based on clinical

variables from EMRs. The LR model exhibited the highest AUC,

while the RF model demonstrated the best accuracy, recall, F1 score,

PPV, and NPV. To our knowledge, this is the first published study

to apply machine learning algorithms to predict I-IGT. Further

analysis revealed a close relationship between FPG levels and I-IGT,

with an FPG threshold of 5.13 mmol/L effectively distinguishing

between NGT and I-IGT. This finding has significant implications

for screening individuals with I-IGT.

Pre-diabetes is defined as an intermediate metabolic state

between NGT and T2DM, which includes IGT and IFG, and

poses a higher future risk for diabetes and/or cardiovascular

diseases. Research indicates that prediabetes is more prevalent

than diabetes (10). There is evidence to suggest that patients with

prediabetes have a higher risk of cardiovascular diseases (25). The

DECODE study group conducted an 11-year prospective study of

nearly 30,000 non-diabetic participants from 22 European cohorts,
FIGURE 6

SHAP force plot for individuals in the dataset at high (a) or low (b) risk of IGT.
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revealing that when 2-hour glucose levels are between 7.8 mmol/L

and 11.1 mmol/L, the risk of cardiovascular mortality begins to

increase (26). Compared to IFG, diagnosing the IGT population

requires a more time-consuming and complex OGTT, making early

detection more challenging. The presence of prediabetic diabetes

complications supports the necessity of timely screening and early

intervention. However, there are currently no specific screening

recommendations or guidelines targeting the IGT or I-IGT

population. With the rising incidence of T2DM, numerous data

mining techniques have been used to establish early disease

diagnostic or predictive models, such as RF, LR, and Cox

proportional hazards regression models. Models perform well in

the specific population they were developed in but poorly in other

datasets or populations, suggesting that developing specific

predictive models for different populations or ethnicities might

have better adaptability. Moreover, some predictive models

incorporate too many feature parameters, making the models

limited in practical application and difficult to widely disseminate

(27). Our study employed eight models, with varying performances

across models. KNN and Naive Bayes models showed poor

performance, while RF, LR, and other models generally

performed better, indicating that using machine learning to

identify individuals with I-IGT is feasible and effective. To make

the decision-making process of the models more understandable,

tools like SHAP summary plots, SHAP layered violin plots, and

SHAP force plots were used to provide a multi-faceted display of the

models, which to some extent, increased physicians’ acceptance of

the models.

Through the complex learning of multiple machine models,

FPG was considered the most important indicator by all models,

signifying a close connection between FPG and IGT has been

identified through machine learning. Typically, FPG gives an

indication of the baseline glucose level, while the OGTT provides

insight into how well the body can regulate glucose after sugar

intake, making them related but distinct measures of glucose

metabolism. Our research revealed that using an FPG cut-off

value of 5.1mmol/L effectively distinguishes individuals with I-

IGT from those with NGT, suggesting that fasting glucose levels

in the I-IGT population are higher compared to those with NGT.

Rohit Babbar et al. conducted a study focusing on the use of

machine learning to identify individuals with IGT without the

reliance on an OGTT. The research demonstrated that machine

learning methods have moderate accuracy in predicting glucose

tolerance from a wide set of clinical and laboratory variables.

Notably, fasting plasma glucose (FPG) was found to be the most

important variable in all models, emphasizing its utility as a key

predictive factor (28). This finding suggests that FPG, in

combination with machine learning techniques, could facilitate a

more efficient and less burdensome approach to early detection of

IGT in at-risk populations. Kristina et al. found that a decline in

pancreatic beta-cell function could be detected even among

individuals with NGT as FPG levels increase, supporting the

central role of beta-cell function in glucose regulation, especially

when FPG levels are elevated (29). An analysis of data from over

12,500 participants revealed a graded relationship between FPG
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levels and glycated hemoglobin (A1C) levels, further emphasizing

the importance of FPG as a predictive factor for glucose intolerance

(30). Among individuals with NGT and IGT, there was a significant

correlation between beta-cell secretory capacity and FPG levels,

highlighting the importance of maintaining glucose homeostasis

against rising FPG levels and pointing to the potential role of beta-

cell function in the prevention and treatment of prediabetes and

diabetes (31). Elevated FPG levels are often considered an early

indicator of beta-cell dysfunction, reflecting decreased insulin

sensitivity, which is closely associated with the development of

T2DM (32). This finding underscores the complex physiological

mechanisms behind glucose intolerance, involving multiple factors,

indicating that changes in FPG levels may reflect alterations within

this complex interaction network. The utilization of FPG as a

solitary indicator for prediction offers the advantages of

simplicity, ease of operation, rapidity, low technical requirements,

and widespread acceptability. However, machine learning models

consider multiple factors simultaneously, capturing complex

relationships; provide higher predictive accuracy and personalized

predictions; and demonstrate more stable performance, adapting

better to data changes. Therefore, while FPG is sufficient for initial

screening or in resource-limited settings, machine learning models

are preferable for higher accuracy and comprehensive

individualized assessments. In summary, the significant

correlation between FPG levels and glucose intolerance

underscores the role of various physiological mechanisms in the

development of prediabetes and diabetes, offering potential for

machine models to identify individuals with normal FPG but

impaired glucose tolerance.

In addition to FPG, characteristics associated with metabolic

syndrome such as TG, HDL, BMI, and WHR also played a role in

model predictions. The SHAP summary layered violin plot

demonstrated an association between higher TG levels and an

increased risk of glucose intolerance. This finding aligns with

previous research, which has indicated that elevated TG levels

may contribute to the risk of glucose intolerance by inducing

insulin resistance (33). The relationship between HDL cholesterol

and the risk of T2DM is complex. Studies show that low levels of

HDL cholesterol are associated with an increased risk of T2DM and

prediabetes (34, 35). Another study conducted in China, the Beijing

Longitudinal Study of Aging, found that individuals with higher

HDL levels have a lower risk of T2DM (36). Our study found that

the influence of HDL is complex, having both positive and negative

impacts. We observed a wide distribution of SHAP values for BMI,

suggesting that the impact of different BMI values on glucose

intolerance varies among individuals. This finding aligns with

previous research indicating that a high BMI is associated with an

increased risk of T2DM, potentially influencing glucose metabolism

through effects on insulin sensitivity and inflammatory states (37).

However, our results also highlight that the risk of glucose

intolerance at the same BMI level may differ among individuals,

likely influenced by factors such as genetics, lifestyle, and physical

activity levels (38). Furthermore, our analysis revealed that lower

WHR were associated with predictions of normal glucose tolerance,

with SHAP values primarily concentrated in the negative region.
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This suggests that a smaller WHR ratio may serve as a protective

factor against glucose intolerance, consistent with literature

identifying abdominal obesity as a risk factor for glucose

intolerance and T2DM (39).

This study has several strengths. First, we utilized data from

EMRs, which, compared to the stringent inclusion criteria of clinical

trials, offers a more representative sample of the Chinese Han male

population. Second, the study employed a variety of machine

learning models, with both the LR and RF models showing

excellent results. Comparatively, the RF model may provide a

more balanced outcome across various model evaluation metrics.

Third, our findings highlight the close relationship between FPG

and glucose intolerance, while the relationships between body

weight, WHR, lipid levels, age, and blood pressure with glucose

tolerance are more complex, underscoring the complexity of

assessing individual health status. Lastly, previous research on

diabetes prediction models has mainly focused on identifying

individuals with diabetes. In contrast, this study aims at

identifying individuals with I-IGT, offering a novel approach that

is particularly meaningful for early clinical screening of prediabetes.

Despite these strengths, our study has limitations. The male-

only cohort and data sourced from a single hospital may affect the

generalizability of our findings across different populations or

ethnic backgrounds. Moreover, the focus on elderly males raises

concerns about the model’s applicability to younger I-IGT

populations. Additionally, while our sample size of 1,117 subjects

is comparable to previous studies in diabetes risk prediction, a

larger dataset could further improve model robustness and

generalizability. Future studies should incorporate more diverse

populations, multiple data sources, and a larger sample size to

enhance the model’s generalizability. An external validation dataset

is also required to assess the stability of our predictive models.
5 Conclusions

In conclusion, predicting isolated impaired glucose tolerance (I-

IGT) in Chinese Han men over 50 years old based on baseline

demographic and clinical characteristics using machine learning is a

feasible technique. The constructed models demonstrate good

predictive accuracy, with FPG identified as the most important

predictor by all models. This approach may assist physicians in

screening individuals who require further OGTT testing or in

retrospectively identifying patients’ past I-IGT status, thereby

facilitating early diagnosis and intervention for I-IGT.
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