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Background: Previous research has indicated that the triglyceride glucose index

(TyG-i) may serve as a potential risk factor for type 2 diabetes (T2D). However,

there is a paucity of studies addressing the relationship between TyG-i and T2D,

specifically in patients with metabolic dysfunction-associated steatotic liver

disease (MASLD). Consequently, this longitudinal study aims to investigate the

association between TyG-i and the onset of T2D in a cohort of Japanese adults

with MASLD.

Methods: This retrospective cohort study included a total of 2,507 subjects

diagnosed with MASLD. To evaluate the association between the TyG-i and the

risk of developing T2D, Cox proportional hazards regression models were

employed to estimate hazard ratios (HR) along with 95% confidence intervals

(CI). Additionally, nonlinear associations between them were investigated

utilizing restricted cubic spline models.

Results: During a mean follow-up period of 6.00 years, a total of 204 adults with

MASLD developed T2D. After adjusting for potential confounding factors,

elevated TyG-i was found to be independently associated with an increased

risk of developing T2D (HR: 1.48, 95% CI: 1.05-2.09, P = 0.0256). Additionally, a

U-shaped relationship between the TyG-i and the incidence of T2D was

identified. A significant negative association was observed between TyG-i and

T2D risk when TyG-i levels were below 7.94 (HR: 0.21, 95%CI: 0.07-0.66, P =

0.0072). Conversely, TyG-i values exceeding the threshold were positively

correlated with T2D risk (HR: 1.76, 95% CI: 1.23-2.52, P = 0.0020).
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Conclusion: A U-shaped association was identified between baseline TyG-i and

the incidence of T2D in a Japanese population with MASLD. This inflection point

in TyG-i serves as a valuable clinical indicator to differentiate individuals at lower

versus higher risk of developing T2D. These findings indicate that maintaining

TyG-i near the inflection point may be beneficial in reducing the risk of

developing diabetes in patients with MASLD.
KEYWORDS

metabolic dysfunction-associated steatotic liver disease, type 2 diabetes, triglyceride,
triglyceride glucose index, insulin resistance
Introduction

Metabolic dysfunction-associated steatotic liver disease

(MASLD) represents the most prevalent chronic liver disorder

globally (1–3), impacting approximately 32% of the world’s

population (4). This condition is marked by excessive lipid

deposits in the liver, which can progress to inflammation and

liver injury. Without intervention, these changes can advance to

liver cirrhosis and potentially hepatocellular carcinoma (3, 5).

MASLD is linked not only to elevated liver-related health issues and

mortality rates but also to an increased likelihood of developing

cardiovascular diseases, type 2 diabetes (T2D), and overall mortality

(1, 6–8). Research indicates that MASLD may act as a precursor to or

exacerbate the onset of T2D (1, 9). Recent epidemiological investigations

reveal that individuals diagnosed with MASLD face a two-fold greater

risk of developing diabetes compared to those without the disease (10).

Consequently, it is crucial to comprehend the fundamental risk factors

that lead to glucose dysregulation in patients with MASLD, as this

knowledge could guide the formulation of effective preventive measures

against the onset of diabetes.

The triglyceride glucose index (TyG-i) has emerged as a

significant biomarker for evaluating insulin resistance and

predicting diabetes risk (11, 12). This index is derived from

fasting triglyceride and glucose levels, offering a straightforward

yet effective measure of metabolic health. Numerous studies have

established substantial correlations between TyG-i and various

health outcomes. Recent research has identified associations

between TyG-i and conditions such as MASLD, cardiovascular

disease, gestational diabetes, prediabetes, T2D, and all-cause

mortality (13–16). Despite the increasing evidence linking TyG-i

to T2D risk within general populations, its specific relationship with

T2D among individuals with MASLD remains inadequately

explored. Given the shared pathophysiological mechanisms of
, type 2 diabetes; BMI,

iastolic blood pressure;

nsferase; GGT, gamma-

cholesterol; TC, total

; FPG, fasting plasma

onfidence interval.
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insulin resistance and dyslipidemia that characterize both

MASLD and T2D, investigating TyG-i within the context of

MASLD presents a unique opportunity to clarify its role as an

early predictor of diabetes onset. Consequently, this retrospective

study aims to examine the longitudinal association between TyG-i

and the development of T2D among individuals with MASLD.
Methods

Data source and study participants

The data utilized in our research were obtained from the NAGALA

database (17), which is hosted on the Dryad Data Platform. According

to the service terms of the Dryad database, this dataset is available for

analysis to support the exploration of new research hypotheses. The

NAGALA database is a population-based longitudinal cohort study

conducted at Murakami Memorial Hospital in Gifu Prefecture, Japan,

spanning from 1994 to 2016 (17).

Participants in this study underwent a minimum of two physical

examinations. In the initial study conducted by Okamura T et al. (17),

medical data were extracted from a total of 20,944 participants. The

exclusion criteria were as follows: (1) excessive alcohol consumption at

baseline, defined as ≥30 g/day for females and ≥20 g/day for males (n =

1,952); (2) pre-existing liver disease (n = 416); (3) use of medications (n

= 2,321); (4) missing data (n = 863); (5) a diagnosis of diabetes at

baseline or fasting plasma glucose (FPG) levels exceeding 6.1 mmol/L

(n = 1,131); and (6) participants not diagnosed with fatty liver disease

(n = 11,744). Ultimately, our study included 2,507 participants with

MASLD. The selection process for all participants is illustrated in

Figure 1. Ethical approval for this research was obtained from the

Clinical Research Ethics Committee of Shenzhen Second People’s

Hospital Dapeng New District Nan’ao Hospital. Additionally, the

study was conducted in accordance with the principles set forth in

the Declaration of Helsinki, ensuring adherence to all pertinent

guidelines and regulatory requirements. To ensure data

confidentiality, all personal identifiers were removed and the datasets

were anonymized before analysis. Data were stored in secure servers

with access restricted to authorized study personnel only. Throughout
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the study, data handling adhered to applicable data protection laws and

institutional policies, thereby safeguarding participant privacy

and confidentiality.
Covariates

We choose covariates using clinical expertise and previous

research results (14, 18–24). The covariates included (1)

continuous variables: age, systolic blood pressure (SBP), diastolic

blood pressure (DBP), body mass index (BMI), alcoholic intake,

high-density lipoprotein cholesterol (HDL-C), total cholesterol

(TC), alanine aminotransferase (ALT), gamma-glutamyl

transferase (GGT), aspartate aminotransferase (AST), glycosylated

hemoglobin (HbA1c), and FPG; (2) categorical variables: sex,

smoking status, and exercise habits. The initial investigation

employed a standardized self-administered questionnaire to

collect comprehensive information on participants’ medical

backgrounds and lifestyle habits. Past-smoker is defined as

individuals who have a history of smoking but has not engaged in

smoking behavior within the 12 months preceding their enrollment
Frontiers in Endocrinology 03
in the study. Trained professionals conducted precise

anthropometric measurements, including body mass and stature.

The original study team obtained Laboratory test results using

consistent procedures under controlled conditions.
TyG-i

The TyG-i was determined by applying the formula: Ln[FPG

(mg/dL))×(TG (mg/dL)/2) (14).
Diagnosis of incident T2D

T2D was defined as having a self-reported history, HbA1c ≥

6.5%, or FPG≥7.0 mmol/L (25).
Statistical analysis

Statistical analyses were conducted utilizing Empower-Stats.

Participant baseline characteristics were assessed across quartiles
FIGURE 1

Study population.
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of the TyG-i. Data with normal distribution are expressed as means

with standard deviations, whereas non-normally distributed data

are reported as medians accompanied by interquartile ranges.

Categorical variables underwent analysis via the chi-square test,

while continuous variables were evaluated using Student’s t-test for

normally distributed data and the Mann-Whitney U test for data

not following a normal distribution.

The association between the TyG-i and T2D risk was evaluated

through three Cox regression models. DBP was omitted from the final

multivariate Cox proportional hazards regression model following the

collinearity assessment (Supplementary Table S1). Model 1 represents

the unadjusted analysis. Model 2 incorporates adjustments for

demographic and lifestyle variables, including sex, age, exercise habits,

smoking status, alcoholic intake, and SBP. Model 3 further extends the

adjustments to include biochemical parameters: ALT, GGT, AST, TC,

HDL-C, and HbA1c. Throughout the study, we documented hazard

ratios (HR) and 95% confidence intervals (CI). To explore the nonlinear

association between the TyG-i and T2D risk, restricted cubic spline

curves were generated based onModel 3 in the Cox proportional hazard

analysis. This approach allows flexible modeling of the dose-response

relationship without assuming linearity. When nonlinearity was

detected, the inflection point was identified using a recursive

algorithm designed to find the value of TyG-i at which the risk

pattern changes. Subsequently, a two-piecewise Cox proportional

hazards regression model was constructed on either side of the

inflection point, enabling estimation of separate hazard ratios for

TyG-i below and above this threshold to better characterize

the relationship.

Hypertension and advanced age are well-documented risk factors

for diabetes, as established by numerous scholarly studies. To assess the

robustness of the relationship between TyG-i and T2D risk, sensitivity

analyses were performed, excluding subjects with hypertension

(SBP≥140 mmHg or DBP≥ 90 mmHg) or elderly (age≥60 years). In

addition, to address potential residual confounding inherent in

observational studies, the E-value was calculated as a sensitivity

analysis metric. The E-value quantifies the minimum strength of

association that any unmeasured confounder would need to possess

with both the TyG-i and the incidence of diabetes, beyond the measured

covariates, in order to completely explain away the observed association.

This provides a quantitative measure of the robustness of our findings

against unmeasured confounding.

A stratified analysis including age (≤60 years old or >60 years),

gender, hypertension (DBP ≥90 mmHg or SBP ≥140 mmHg), BMI

(<25, ≥25 kg/m2), alcoholic intake (0, >0 g/wk), smoking status, and

exercise habits was conducted to evaluate the potential effects of

covariates. Statistical significance was defined as a two-tailed P value

of < 0.05.
Results

Characteristics of the study population

The present study encompassed 2,507 participants diagnosed

with MASLD, with an average age of 44.78 ± 8.33 years, of which
Frontiers in Endocrinology 04
80.93% were male. Over an average follow-up duration of 6.00

years, 204 participants (8.14%) developed T2D. Participants were

categorized into quartiles based on their TyG-i values: Q1 (TyG-i ≤

8.21), Q2 (8.21 < TyG-i ≤ 8.58), Q3 (8.58 < TyG-i ≤ 8.94), and Q4

(TyG-i > 8.94) (Table 1). Individuals in the highest TyG-i quartile

demonstrated higher levels of SBP, DBP, BMI, GGT, AST, ALT,

TG, TC, age, alcoholic intake, HbA1c, and FPG, as well as a greater

proportion of male participants and smokers. Additionally, these

individuals exhibited lower levels of HDL-C.
The incidence rate of T2D

Table 2 further illustrates that during the follow-up period, 373

individuals developed T2D, corresponding to overall incidence rates

of 4.63% (95%CI: 2.98%-6.27%), 6.56% (95%CI: 4.61%-8.51%),

8.12% (95%CI: 5.98%-10.26%), and 13.24% (95%CI: 10.58%-

15.90%) across the first, second, third, and fourth TyG-i groups,

respectively. The cumulative incidence rates per 100,000 person-

years were 1,356.01 for the total study population and 792.88,

1,082.48, 1,326.71, and 2,210.45 for the first, second, third, and

fourth TyG-i groups, respectively. The data indicate that higher

TyG-i levels are associated with increased incidence and cumulative

prevalence of T2D. Participants positioned within the higher TyG-i

quartiles exhibited significantly elevated incidence rates of T2D.

These findings are corroborated by the Kaplan-Meier curve

illustrating cumulative hazard, as presented in Figure 2.
The results of the association between
TyG-i and T2D risk

Since the TyG-i satisfied the proportional hazards assumption,

the relationship between TyG-i and the risk of T2D was assessed

using the Cox proportional hazards regression model. The

outcomes from the adjusted multivariable Cox proportional

hazards regression models are detailed in Table 3. An elevated

TyG-i value was linked with the occurrence of T2D. In Models 1, 2,

and 3, employing continuous TyG-i, significant associations

between TyG-i and T2D risk were observed (Model 1: HR: 2.03,

95%CI: 1.57-2.63, P<0.0001; Model 2: HR: 2.13, 95%CI: 1.62-2.79,

P<0.0001; Model 3: HR: 1.48, 95%CI: 1.05-2.09, P=0.0256).

Furthermore, in Model 3, the highest quartile of TyG-i exhibited

a 56% increased risk of T2D (HR: 1.56, 95%CI: 0.92-2.64) compared

to the lowest quartile.
Sensitive analysis

To validate our results, we used extensive sensitivity analyses.

Excluding participants with elevated blood pressure, we maintained a

positive association between TyG-i and T2D (HR=1.45, 95% CI: 1.02-

2.06, P=0.0380) (Table 4, Model 4). Similarly, excluding participants

aged ≥60 years showed consistent results, with TyG-i remaining

positively associated with T2D risk after adjusting for multiple
frontiersin.org
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covariates (HR=1.50, 95% CI: 1.03-2.17, P=0.0347) (Table 4, Model 5).

Moreover, the calculated E-value of 2.32 surpasses the relative risk

estimate of 1.78 attributed to both the TyG-i and plausible unmeasured

confounding factors. This suggests that the impact of unidentified or

unmeasured confounders on the detected association between TyG-i

and T2D is probably limited.
The analyses of the non-linear association

Table 5, Figure 3 demonstrate a U-shaped relationship between

the TyG-i and T2D. The two-piecewise Cox regression model

identified a turning point at a TyG-i value of 7.94 (P-value for the

log-likelihood ratio test = 0.004). Below this turning point, TyG-i

exhibited an inverse relationship with T2D risk (HR: 0.21, 95%CI:
Frontiers in Endocrinology 05
0.07-0.66, P=0.0072). Conversely, when the TyG-i exceeded this

turning point, a significant positive relationship with T2D risk was

observed (HR: 1.76, 95% CI: 1.23-2.52, P=0.0020).
The results of the subgroup analysis

Figure 4 outlines the findings from subgroup analyses designed

to identify potential modifiers in the association between the TyG-i

and T2D. The analyses revealed no significant interactions with

T2D across various subgroups, including age (P for interaction =

0.3933), smoking status (P for interaction = 0.4720), gender (P for

interaction = 0.7502), exercise habits (P for interaction = 0.8092),

BMI (P for interaction = 0.4120), hypertension (P for interaction =

0.9640), and alcohol intake (P for interaction = 0.8001).
TABLE 1 The characteristics of participants and incidence rate of diabetes.

TyG-i Q1 (≤8.21) Q2 (8.21 to ≤8.58) Q3 (8.58 to ≤8.94) Q4 (>8.94) P-value

Participants 627 625 628 627

Sex <0.001

Female 188 (29.98%) 143 (22.88%) 88 (14.01%) 59 (9.41%)

Male 439 (70.02%) 482 (77.12%) 540 (85.99%) 568 (90.59%)

Age(years) 44.74 ± 8.62 44.91 ± 8.45 45.03 ± 8.18 44.45 ± 8.07 0.641

Alcoholic intake (g/wk) 1 (0-18) 1 (0-36) 1 (0-44) 4.2 (1-60) <0.001

Smoking status <0.001

Never-smoker 350 (55.82%) 316 (50.56%) 269 (42.83%) 250 (39.87%)

Past-smoker 152 (24.24%) 169 (27.04%) 161 (25.64%) 157 (25.04%)

Current-smoker 125 (19.94%) 140 (22.40%) 198 (31.53%) 220 (35.09%)

Exercise habits 0.469

No 528 (84.21%) 528 (84.48%) 529 (84.24%) 545 (86.92%)

Yes 99 (15.79%) 97 (15.52%) 99 (15.76%) 82 (13.08%)

SBP (mmHg) 120.61 ± 14.05 122.92 ± 15.19 123.66 ± 14.36 126.43 ± 15.14 <0.001

DBP (mmHg) 75.57 ± 9.87 77.39 ± 10.36 78.17 ± 9.60 80.11 ± 10.41 <0.001

BMI (kg/m2) 24.81 ± 2.98 25.37 ± 3.44 25.80 ± 3.13 26.00 ± 2.81 <0.001

ALT (IU/L) 24 (18-32.50) 25 (19-35) 28 (21-40) 31 (23-45) <0.001

AST (IU/L) 19 (16-24) 20 (16-25) 21 (17-26) 22 (18-28) <0.001

GGT (IU/L) 18 (14-25) 22 (16-30) 24 (17-35) 29 (21-41) <0.001

HDL-C (mg/dL) 52.64 ± 12.08 47.28 ± 10.28 43.77 ± 9.04 39.69 ± 8.18 <0.001

TG (mg/dL) 60 (49-69) 93 (84-101) 131 (120-142) 203 (176-252) <0.001

TC (mg/dL) 196.03 ± 32.42 205.70 ± 29.39 215.83 ± 32.94 224.13 ± 32.64 <0.001

HbA1c (%) 5.28 ± 0.32 5.29 ± 0.34 5.30 ± 0.34 5.33 ± 0.33 0.033

FPG (mg/dL) 95.15 ± 6.75 96.97 ± 6.46 97.40 ± 6.32 99.17 ± 6.06 <0.001
Values are presented as n (%) or mean ± SD or median (quartile).
TyG-i, triglyceride glucose index; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,
gamma-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose.
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Discussion

In this retrospective cohort study involving 2,507 Japanese adults

with MASLD, we identified a positive association between elevated

TyG-i levels and the risk of T2D. Our findings further revealed a U-

shaped relationship between TyG-i and an increased risk of T2D.

Furthermore, sensitivity and subgroup analyses corroborated these

results, reinforcing the robustness of our conclusions.

The TyG-i has been widely used as a surrogate for insulin

resistance to predict the risk of metabolic diseases (26, 27). A meta-

analysis that included 12 studies, including 105,365 participants,

found that the TyG-i was positively associated with the risk of

MASLD (OR: 2.84, 95%CI: 2.01-4.01) (28). In a longitudinal cohort

study of 16,172 non-obese participants, individuals in the highest

quartile of the baseline TyG-i had a 3.58-fold increased risk of

developing MASLD relative to those in the lowest quartile (HR:
Frontiers in Endocrinology 06
4.58, 95% CI: 3.48-6.02) (29). A meta-analysis encompassing 13

cohort studies with a total of 70,380 participants identified a

significant and positive correlation between the TyG-i and T2D

risk (HR: 2.44, 95% CI: 2.17-2.76) (30). In addition, a longitudinal

cohort study that included 179541 Chinese adults found a positive

nonlinear association between TyG-i and the risk of prediabetes and

T2D after adjusting for confounders(HR: 1.67, 95%CI: 1.62-1.71, P<

0.001) (13). MASLD is a common chronic liver disease that is

closely associated with metabolic syndrome (31). Past evidence has

shown that the prevalence of diabetes is significantly increased in

subjects with MASLD (8). However, there have been few studies

discussing the relationship between TyG-i and T2D in the MASLD

population. In our study, TyG-i was positively related to the risk of

developing diabetes in people with MASLD when TyG-i > 7.94.

Therefore, early intervention using the TyG-i may be effective in

reducing the risk of diabetes in patients with MASLD.
TABLE 2 Incidence rate of incident diabetes.

TyG-i Participants (n) Diabetes events (n) Cumulative incidence (95% CI) (%) Per 100,000 person-year

Total 2507 204 8.14 (7.07-9.21) 1,356.01

Q1 627 29 4.63 (2.98-6.27) 792.88

Q2 625 41 6.56 (4.61-8.51) 1,082.48

Q3 628 51 8.12 (5.98-10.26) 1,326.71

Q4 627 83 13.24 (10.58-15.90) 2,210.45

P for trend <0.001 <0.001
TyG-i, triglyceride glucose index; CI, confidence interval; T2D, type 2 diabetes.
FIGURE 2

Kaplan–Meier event-free survival curve in females. Kaplan–Meier analysis of incident diabetes based on TyG-i quartiles (log-rank, P < 0.0001).
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Our research uncovered a U-shaped relationship between the

TyG-i and T2D risk after controlling for confounders. Specifically, the

analysis revealed that when TyG-i levels were below 7.94, there was a

79% decrease in the risk of T2D development for each one-unit

increase in TyG-i. Conversely, a positive association was found

between TyG-i and T2D risk when TyG-i levels exceeded 7.94.

Understanding this U-shaped relationship is essential for

identifying individuals exhibiting altered metabolic profiles across

different TyG-i ranges. Those with values near the 7.94 inflection

point may constitute a key population for targeted preventive

interventions. Clinicians should closely monitor TyG-i as an early

biomarker indicative of elevated T2D risk, particularly among

patients with MASLD. Interventions aimed at sustaining TyG-i

around the inflection point through lifestyle modifications—

including dietary improvements, physical activity enhancement,

and weight management—should be prioritized for individuals

approaching this critical level. Such proactive measures could delay

or prevent the progression from insulin resistance to overt T2D,

thereby improving clinical outcomes. Additionally, the prospect of
Frontiers in Endocrinology 07
pharmacological strategies targeting the TyG-i warrants investigation.

As the understanding of TyG-i’s metabolic implications advances,

clinical trials designed to assess treatments that modulate TyG-i are

necessary to expand therapeutic options for high-risk populations.

From a public health perspective, our findings underscore the

importance of recognizing TyG-i as a valuable marker in T2D risk

stratification. Health professionals and policymakers should consider

integrating TyG-i assessments into preventive care frameworks to

optimize resource allocation and intervention efficacy. Furthermore,

educational programs aimed at raising awareness of the significance

of metabolic health and elevated TyG-i levels could encourage early

evaluation and engagement in risk-reducing behaviors.

The precise mechanisms underlying the U-shaped relationship

between the TyG-i and the risk of developing diabetes in individuals

with MASLD are still not fully understood. There is a notable positive

association between higher TyG-i values and diabetes, likely linked to

insulin resistance. Persistently high TG levels intensify liver fat

accumulation, causing increased hepatic triglyceride production

and worsening insulin sensitivity (32). This metabolic disturbance

enhances lipogenesis, which further reduces insulin’s effectiveness in

managing glucose metabolism and increases liver lipid accumulation,

eventually damaging pancreatic beta-cell functionality (33). The

build-up of lipid droplets within pancreatic islets disrupts glucose-
TABLE 3 Relationship between TyG-i and incident diabetes in different models.

Variable Model 1 (HR, 95%CI, P) Model 2 (HR, 95%CI, P) Model 3 (HR, 95%CI, P)

TyG-i 2.03 (1.57, 2.63) <0.0001 2.13 (1.62, 2.79) <0.0001 1.48 (1.05, 2.09) 0.0256

TyG-i (quartile)

Q1 Ref Ref Ref

Q2 1.33 (0.83, 2.15) 0.2349 1.33 (0.82, 2.14) 0.2455 1.01 (0.62, 1.66) 0.9545

Q3 1.63 (1.03, 2.57) 0.0361 1.63 (1.03, 2.60) 0.0386 1.28 (0.77, 2.12) 0.3375

Q4 2.76 (1.81, 4.21) <0.0001 2.82 (1.82, 4.37) <0.0001 1.56 (0.92, 2.64) 0.0967

P for trend <0.0001 <0.0001 0.0403
Model 1: we did not adjust for any covariants.
Model 2: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, and SBP.
Model 3: we adjusted for sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbA1c.
HR, hazard ratio; CI, confidence interval; Ref, Reference; TyG-i, triglyceride glucose index.
TABLE 4 Relationship between TyG-i and incident T2D in different
sensitivity analyses.

Exposure
Model 4
(HR, 95%CI, P)

Model 5
(HR, 95%CI, P)

TyG-i 1.45 (1.02, 2.06) 0.0380 1.50 (1.03, 2.17) 0.0347

TyG-i (quartile)

Q1 Ref Ref

Q2 1.04 (0.63, 1.72) 0.8763 1.21 (0.71, 2.06) 0.4947

Q3 1.25 (0.74, 2.09) 0.4024 1.36 (0.78, 2.39) 0.2760

Q4 1.54 (0.90, 2.63) 0.1135 1.76 (0.99, 3.15) 0.0548

P for trend 0.0568 0.0386
Model 4 was sensitivity analysis after excluding individuals with age≥60 years. We adjusted
sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC,
and HbA1c.
Model 5 was sensitivity analysis after excluding individuals with SBP≥140 mmHg or DBP≥ 90
mmHg. We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT,
AST, GGT, HDL-C, TC, and HbA1c.
HR, hazard ratios; CI, confidence; Ref, reference; TyG-i, triglyceride glucose index.
TABLE 5 The result of the two-piecewise Cox proportional hazards
regression model.

Incident Diabetes HR (95%CI) P-value

Fitting model by standard linear regression 1.48 (1.05, 2.09) 0.0256

Fitting model by two-piecewise Cox proportional
hazards regression

The inflection point of TyG-i 7.94

≤7.94 0.21 (0.07, 0.66) 0.0072

>7.94 1.76 (1.23, 2.52) 0.0020

P for the log-likelihood ratio test 0.004
fr
We adjusted sex, age, alcoholic intake, smoking status, exercise habits, SBP, ALT, AST, GGT,
HDL-C, TC, and HbA1c.
HR, hazard ratios; CI, confidence; TyG-i, triglyceride glucose index.
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FIGURE 3

The nonlinear relationship between TyG-i and incident diabetes. The nonlinear relationship was detected after adjusting for sex, age, alcoholic
intake, smoking status, exercise habits, SBP, ALT, AST, GGT, HDL-C, TC, and HbA1c.
FIGURE 4

Effect size of TyG-i on diabetes in prespecified and exploratory subgroups. The model was adjusted for sex, age, alcohol consumption, smoking
status, exercise habits, systolic blood pressure, ALT, AST, GGT, HDL-C, total cholesterol, and HbA1c, excluding the stratification variable in each
instance.
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induced insulin release, leading to diabetes onset (34, 35). Moreover,

low TyG-i levels are similarly linked to an increased risk of

developing diabetes. Interestingly, Black individuals exhibit

unexpectedly low TG levels despite high insulin resistance or risk

factors for diabetes, a phenomenon potentially explained by the

inhibition of insulin-sensitive lipase activity and the consequent

reduction in free fatty acid release from fat tissue due to

hyperinsulinemia (36–39). Additionally, those with the PNPLA3

148M allele have lower triglyceride levels, increased insulin

resistance, and greater vulnerability to diabetes (40). Pancreatic a-
cells are vital for maintaining glucose, amino acid, and lipid balance

(41). Malfunctions in these a-cells can result in hypoglycemia, which

may indicate a-cell dysregulation, a core pathogenic process in

diabetes development (42).

Our study is limited to a Japanese cohort, which may constrain

the generalizability of our findings. It is essential to consider how

genetic, dietary, and healthcare system differences might influence

the observed associations between the TyG-i and the risk of T2D.

Genetic predispositions play a significant role in metabolic

regulation and the pathogenesis of diabetes. Ethnic variations in

genes related to lipid metabolism and insulin sensitivity could

modulate the relationship between the TyG-i and diabetes risk.

For example, certain genetic polymorphisms prevalent in Asian

populations may impact triglyceride levels and glucose homeostasis,

potentially yielding risk profiles distinct from those in other ethnic

groups (43). The traditional Japanese diet—characterized by high

consumption of rice, fish, and soy products—imposes unique

metabolic effects (44). Dietary patterns may interact with genetic

factors to influence TyG-i levels and their associations with diabetes

risk. Notably, omega-3 fatty acids abundant in fish have been

documented to improve insulin sensitivity, which could affect

metabolic outcomes within our cohort (45). Recognizing dietary

variations across populations is critical when interpreting our

results, as these differences could inform culturally tailored

dietary recommendations for T2D prevention. Moreover, the

Japanese healthcare system, with its emphasis on universal

coverage and preventive care, may significantly impact the

management of metabolic diseases (46, 47). Routine health

screenings and early interventions are commonplace in Japan,

potentially facilitating better management of conditions associated

with the TyG-i, such as MASLD. This proactive healthcare

approach may alter the observed relationship between TyG-i and

diabetes risk, underscoring the need for caution when extrapolating

our findings to populations with differing healthcare

infrastructures. In light of these considerations, we stress the

importance of further research involving diverse populations to

validate the U-shaped association between the TyG-i and T2D risk.

Future investigations should include a broad range of ethnic groups

to examine the consistency and applicability of these findings across

varied demographic and clinical contexts.

This study offers several notable advantages. Firstly, we

identified a U-shaped association, allowing us to pinpoint the

optimal inflection point where the TyG-i affects T2D risk.

Secondly, we applied rigorous statistical adjustments to our

results to reduce confounding factors, thereby enhancing their
Frontiers in Endocrinology 09
validity. Lastly, we employed a diverse array of sensitivity analyses

to bolster the validity and reliability of our results, thereby

enhancing the overall methodological strength of the study.

Despite these strengths, several limitations warrant consideration.

Primarily, the research focused on a Japanese cohort, which may

restrict the applicability of the results to other ethnic and geographic

populations. Additionally, the definition of T2D employed in this study

did not incorporate oral glucose tolerance testing, potentially resulting

in an underestimation of T2D incidence. Secondly, although we have

controlled for known confounding variables, the possibility remains

that unmeasured factors—such as certain lifestyle habits or genetic

predispositions—may have influenced the observed relationship

between the TyG-i and T2D. Nevertheless, the calculated E-value of

2.32 exceeds the relative risk of 1.78 associated with both TyG-i and

potential unknown confounders, implying that the effect of such

unmeasured variables on this association is likely minimal. In future

prospective investigations, we will strive to systematically collect and

incorporate comprehensive information on lifestyle and genetic factors

to further validate and strengthen our results. Thirdly, the absence of

repeated measurements of the TyG-i precluded the assessment of the

impact of longitudinal dynamic changes in TyG-i on T2D risk. The

TyG-i, like other metabolic markers, is subject to fluctuations

influenced by various factors, including dietary habits, physical

activity, weight changes, and underlying metabolic conditions. These

dynamic changes may significantly impact an individual’s risk profile

for T2D. Incorporating analyses of TyG-i variability over time could

enhance our understanding of its relationship with diabetes risk. In

light of these considerations, we plan to design future studies to

investigate the relationship between changes in the TyG-i and

diabetes prognosis.
Conclusion

This research revealed a U-shaped relationship between the

TyG-i and the risk of T2D in adults with MASLD. These results

underscore that early intervention using the TyG-i may effectively

improve the risk of T2D in patients with MASLD.
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