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Background: Polycystic ovary syndrome (PCOS) is a complex endocrine

reproductive disorder that affects 10%-13% of women worldwide, characterized by

hyperandrogenemia, ovulatory dysfunction, and polycystic ovary formation.

Currently, there are no effective specific treatments for PCOS. Therefore,

identifying safe and effective therapeutic drugs for PCOS is clinically important.

Methods: In this study, a PCOS mouse model was induced using

dehydroepiandrosterone (DHEA) plus high-fat diet (HFD) to investigate the

therapeutic effects of laurolitsine (LL). The efficacy of LL was evaluated by

estrous cycle, glucose tolerance test (OGTT), insulin tolerance test (ITT), and

serum biochemical markers. Histopathological analysis of ovarian, gonadal fat,

and liver tissues was performed using hematoxylin and eosin (H&E) staining.

Furthermore, RNA-seq analysis and 16S rRNA sequencing were performed to

explore the potential mechanisms underlying LL’s effects on PCOS mice.

Results: LL exhibited therapeutic effects in PCOS mice. LL improved lipid

metabolism, glucose tolerance, insulin resistance, hormonal imbalance, and

ovarian dysfunction in PCOS mice. RNA-seq analysis revealed that LL may

improve PCOS by modulating key metabolic processes, including hormone

response, fatty acid metabolism, and lipid metabolism in the ovaries. Additionally,

LL significantly modulated the gut microbiota composition in PCOS mice,

particularly reducing the abundance of Proteobacteria and Lactobacillus johnsonii,

while increasing the abundance of Akkermansia muciniphila.

Conclusion: LL is a promising and novel therapeutic agent for PCOS, as it

ameliorates insulin resistance, ovarian dysfunction, and gut microbiota.
KEYWORDS
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1 Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine

reproductive disorder with a global prevalence of 10%-13% among

women of reproductive age (1–4). It is characterized by

hyperandrogenemia, ovulatory dysfunction and polycystic ovary

morphology, often accompanied by metabolic disorders such as

insulin resistance, obesity, and metabolism-associated fatty liver

disease (MAFLD) (3–6).

Hyperandrogenism is one of the core pathological features of

PCOS and a major factor in its development. In PCOS patients,

excessive secretion of luteinizing hormone (LH) suppresses the

secretion of follicle-stimulating hormone (FSH), disrupting endocrine

balance (7). This hormonal imbalance not only affects ovarian function

but also further exacerbates PCOS symptoms (8). Therefore, regulating

hormone levels is crucial for the effective treatment of PCOS. Ovarian

dysfunction, one of the core clinical manifestations of PCOS, typically

presents as ovulatory disorders and polycystic ovary morphology. This

dysfunction is closely associated with hyperandrogenemia, chronic

anovulation, and abnormal follicular development (3, 9). Therefore,

regulating ovarian function is critical for improving PCOS. Gut

microbiota dysbiosis plays a crucial role in the pathogenesis of

PCOS. Research has revealed significant differences in the gut

microbiota composition between PCOS patients and healthy

individuals, with PCOS patients exhibiting reduced microbial

diversity and an overgrowth of certain pathogenic bacteria (10, 11).

These microbial alterations are closely linked to insulin resistance and

inflammatory responses, which further exacerbate the progression of

PCOS (12). Therefore, modulating the gut microbiota has emerged as a

promising therapeutic target for improving metabolic and reproductive

dysfunctions in PCOS patients (13, 14).

Traditional treatments for PCOS, such as oral contraceptives and

metformin, are effective at controlling symptoms but often come with

side effects that limit their long-term clinical application. Oral

contraceptives may increase the risk of thromboembolic events, and

mood changes, while metformin commonly causes gastrointestinal

disturbances such as nausea, diarrhea, and abdominal discomfort (15,

16). Consequently, exploring novel, safe, and effective therapeutic

strategies for PCOS is of great clinical significance. Laurolitsine (LL), a

natural product derived from the Litsea glutinosa (Lour.), has been used

in traditional Chinese medicine for the treatment of metabolic disorders

including diabetes (17, 18). Our previous research has demonstrated

that LL exerts therapeutic effects on type 2 diabetes mellitus (T2DM) by

improving glucose and lipidmetabolism andmodulating gutmicrobiota

(19). In this study, we aimed to investigate the effects of LL in

dehydroepiandrosterone (DHEA) combinate high-fat diet (HFD)-

induced PCOS mice model to reveal its potential mechanisms.
2 Materials and methods

2.1 Reagents

Laurolitsine (PubChem CID: 22179, Catalog Number: BP0922,

Purity ≥ 98%) was supplied by Desite (Chengdu, China).
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Dehydroepiandrosterone (DHEA) (PubChem CID: 5881, Catalog

Number: GC11070, Purity ≥ 99%) was supplied by Glpbio (USA).

Metformin (PubChem CID:4091, Catalog Number: S30880, Purity ≥

98%) was supplied by Shyuanye (Shanghai, China). A high-fat diet

(HFD, Catalog Number: D12492, 60 Kcal% Fat) was supplied by

Future Biotech (Beijing, China). The triglyceride (TG, Cat Number:

A110-1-1), cholesterol (CHO, Cat Number: A111-1-1), low density

lipoprotein cholesterol (LDL-c, Cat Number: A113-1-1), high density

lipoprotein cholesterol (HDL-c, Cat Number: A112-1-1), aspartate

aminotransferase (AST, Cat Number: C010-2-1), and alanine

aminotransferase (ALT, Cat Number: C009-2-1) assay kits were

purchased from Njjcbio (Nanjing, China). The serum testosterone

(T, Cat Number: E-OSEL-M0003), luteinizing hormone (LH, Cat

Number: E-EL-M3053), estradiol (E2, Cat Number: E- E-OSEL-

M0008), and follicle-stimulating hormone (FSH, Cat Number: E-EL-

M0511) enzyme-linked immunosorbent assay (ELISA) kits were

purchased from Elabscience (Wuhan, China).
2.2 Animal experiment

A total of 40 three-week-old female C57BL/6J mice were purchased

fromGempharmatech Co., Ltd. (Jiangsu, China). The animal study was

conducted according to the regulations of the National Institutes of

Health (NIH), USA. The experimental protocol was approved by the

Ethics Committee of HainanMedical University (Approval No. SYXK-

2017 0013). All mice were housed in standard cages under controlled

environmental conditions (25°C, appropriate humidity, and a 12-h

light/12-h dark cycle), with free access to food and water. Daily health

monitoring was performed throughout the experimental period. After

three days of acclimation, the mice were randomly divided into two

groups: the normal group (n=8) and the PCOS model group (n=32).

The normal group was fed a basic diet, whereas the model group was

fed an HFD. From day 8 to day 28 (weeks 2 to 4), the model group

received daily injections of DHEA (0.6 mg/kg/d) in combination with

the HFD to induce PCOS. Meanwhile, the normal group continued on

the basic diet and received vegetable oil injections as a control.

In the week 5, body weight, estrous cycle and oral glucose

tolerance test (OGTT) were assessed to confirm successful

establishment of the PCOS model. Subsequently, the PCOS mice

were randomly divided into four groups (n=8): PCOS model group,

low-dose laurolitsine group (LL-L group, 50 mg/kg/d), high-dose

laurolitsine group (LL-H group, 100 mg/kg/d), and metformin

group (Met group, 200 mg/kg/d) (19). The normal group

continued to receive a basic diet, while the PCOS model group,

LL-L group, LL-H group, and Met group continued with HFD.

After the week 9, all animals were fasted for 8 h, blood samples were

collected. Serum was centrifuged for analysis, and tissue samples

were obtained for further experiments.
2.3 Estrous cycle determination

Vaginal smears were used to assess the estrous cycle of the mice

(20). The vagina was flushed two to three times with 25 mL of sterile
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saline, and the vaginal fluid was then collected and placed on a slide.

After air-drying at room temperature, slides were stained with

methylene blue (MB). Vaginal cytology was used to assess the

estrous cycle’s stage.
2.4 Oral glucose tolerance test

After 8 h of fasting, the blood glucose levels of the mice were

measured, and the oral glucose dose was set at 2 g/kg body weight.

Blood glucose levels were measured by drawing blood from the tail

vein at 15, 60, 90, and 120 min after glucose administration (21).
2.5 Insulin tolerance test

After 8 h of fasting, the body weight of the mice was measured,

and blood glucose levels were tested before the injection. The mice

received an intraperitoneal injection of insulin at a dose of 0.5 U/kg

body weight. Blood glucose levels were collected from the tail at 30,

60, 90, and 120 min after the injection.
2.6 Serum biochemical analysis

Blood samples were collected from the mouse’s eyeball and

allowed to stand at room temperature for 4 h. Subsequently, the

samples were centrifuged at 3500 rpm for 15 min at 4°C, and the

serum was transferred to new centrifuge tubes for further analysis.

Serum TG, CHO, LDL-c, HDL-c, ALT, and AST levels were

measured according to the instructions of commercial assay kits.

Additionally, serum levels of T, E2, LH, and FSH were determined

using ELISA kits.
2.7 Hematoxylin and eosin staining

Fresh tissues were fixed in 4% formaldehyde at room

temperature for 24 h. After fixation, the tissues were dehydrated

through a graded ethanol series. Subsequently, the tissues were

infiltrated with paraffin at 65°C, embedded, and sectioned into 4

mm-thick slices. The sections were floated in a 40°C water bath,

placed on glass slides, and baked in a 60°C oven for adherence.

Subsequently, the sections were deparaffinized in xylene three times

and rehydrated through 100% and 95% ethanol for 5 min each. The

sections were stained with hematoxylin for 5 min, rinsed for 10 min,

differentiated in 0.7% hydrochloric acid ethanol for 10 s, and

returned to blue with tap water for 10 min. The sections were

then stained with eosin for 5 min, dehydrated with 95% and

absolute ethanol for 5 min each, cleared twice in xylene, and

finally mounted with neutral resin (22).
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2.8 RNA-Seq analysis

Ovaries were collected from three mice in each of Normal, PCOS

and LL (100 mg/kg) groups for analysis. Total RNA was extracted and

its purity and integrity were verified using agarose gel electrophoresis, a

Qubit 4.0 fluorometer/MD, and a Q sep 400 bioanalyzer. A cDNA

library was constructed, and its quality was evaluated using an Agilent

Bioanalyzer 2100 system. The library was sequenced on the Illumina

NovaSeq platform, generating 150 bp paired-end reads. Differentially

expressed genes (DEGs) were identified and analyzed using

SangerBOX (http://vip.sangerbox.com), along with Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses.
2.9 16S rDNA sequencing

Fresh mouse fecal samples were collected, and total DNA was

extracted using a commercial kit from Wetware (Wuhan, China).

The V3-V4 region of 16S rDNA as then amplified using specific

primers. Upstream primers with barcode tags were employed to

distinguish different samples within the same library. The TruSeq

Nano DNA LT sample preparation kit was used for library

construction, and sequencing was performed on the Illumina

MiSeq PE300 platform. Data quality control and analysis were

conducted using the QIIME2 platform.
2.10 Data analysis

Statistical analyses were conducted using GraphPad Prism 8

(GraphPad Software Inc., La Jolla, CA). The normality of

data distribution was assessed using the Shapiro-Wilk test and

the Kolmogorov-Smirnov (K-S) test. All data included in

the statistical analyses were confirmed to follow a normal

distribution. For data that followed a normal distribution,

one-way analysis of variance (ANOVA) was utilized to compare

differences between groups. Results were presented as mean

± standard deviation (± SD). Differences were considered

statistically significant at P< 0.05.
3 Results

3.1 DHEA plus HFD induces PCOS in mice

To establish a PCOS mouse model, we used a combination of

DHEA plus HFD (Figure 1A) (23). Compared with the normal

group, the model mice exhibited significantly increased body weight

and impaired glucose tolerance, as demonstrated by the OGTT

results (Figures 1B, C), indicating severe glucose intolerance.
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Additionally, the estrous cycle of the DHEA plus HFD-induced

mice were disrupted (Figures 1D, E). These results collectively

confirm the successful establishment of the PCOS mouse model.
3.2 LL successfully improves glucose-lipid
metabolism and insulin resistance in PCOS
mice

To evaluate the effects of LL on PCOS, we administered LL

intervention in a PCOS mouse model induced by DHEA combined

with HFD. Compared with the normal group, the body weight, liver

weight, and gonadal fat weight of PCOS mice were significantly

increased (Figures 2A–C). However, after oral administration of LL

(100 mg/kg/d), the body weight, liver weight, and gonadal fat weight

of PCOS mice were significantly reduced (Figures 2A–C).

Furthermore, the serum TG, CHO, and LDL-c levels were

significantly elevated in PCOS mice (Figures 2D–G), but LL

intervention significantly reduced these lipid parameters, indicating

a notable improvement in lipid metabolism. Serum ALT and AST

levels showed no significant changes (Figures 2H, I), and both LL-L

and LL-H did not exhibit hepatotoxicity (Figure 2J), demonstrating a

favorable safety profile. Adipose tissue is considered a key factor in

the etiology of PCOS, particularly in metabolic abnormalities

associated with overweight and obesity (24). H&E staining revealed

marked accumulation of gonadal fat in PCOS mice, accompanied by

more numerous and larger lipid droplets (Figure 2J). LL intervention
Frontiers in Endocrinology 04
significantly reduced the size of lipid droplets. Furthermore, PCOS

mice exhibited significantly elevated fasting blood glucose (FBG),

impaired glucose tolerance, and increased insulin resistance

(Figures 2K–O). After LL treatment, the FBG levels, glucose

tolerance, and insulin resistance were significantly improved in

PCOS mice. Collectively, these findings indicate that LL

significantly alleviates lipid metabolism disorders, impaired glucose

tolerance, and insulin resistance induced by DHEA plus HFD in

PCOS mice.
3.3 LL alleviates hormonal imbalance in
PCOS mice

Elevated androgen levels, decreased ovulation, and polycystic

ovarian morphologic alterations are major characteristics of PCOS in

patients, which are similarly observed in the PCOS mice model. We

evaluated serum FSH, LH, E2, and T levels to assess the effects of LL on

hormonal regulation. Compared with the normal group, serum T and

LH levels were significantly increased, while FSH levels were

significantly decreased in PCOS mice. No significant change was

observed in E2 levels (Figures 3A–D). Following LL intervention,

serum T and LH levels in PCOS mice were significantly decreased,

similar to the effects observed Met group (Figure 3A, C). In addition,

both LL andMet dramatically reduced the LH/FSH ratio in PCOSmice

(Figure 3E). These results indicate that LL effectively alleviates

hormonal imbalance, thereby improving PCOS-like features in mice.
FIGURE 1

DHEA plus HFD induces PCOS in mice. (A) A schematic representation of the animal experiment. (B) Changes in body weight between normal and
PCOS mice. (C) Glucose tolerance levels between normal and PCOS mice. (D) Vaginal smears from different stages of the estrous cycle between
normal and PCOS mice. Red arrows indicating nuclear epithelial cells. Blue arrows indicating cornified squamous epithelial cells. Green arrows
indicating leukocytes. (E) Trends in the estrous cycle. Data are presented as mean ± SD (Normal group, n = 8; PCOS group, n = 32). **p < 0.01, ***p
< 0.001 vs. Normal.
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3.4 LL improves ovarian function in PCOS
mice

Ovarian dysfunction is a key characteristic of PCOS. To confirm

the ameliorative effects of LL on folliculogenesis and ovulation, we

assessed ovarian morphology in PCOS mice. Compared to normal

mice, PCOS mice showed a reduced number of corpora lutea and a

significantly increased number of follicles, accompanied by

vacuolization and structural disorganization (Figures 4A–C).

After LL intervention, the formation of corpora lutea increased,

and the number of follicles with vacuolated cystic dilatation

decreased in PCOS mice (Figures 4A–C). However, LL did not

significantly affect ovary weight or uterus weight in PCOS mice

(Figures 4D, E). These results suggest that LL may improve ovarian

function in PCOS mice.
Frontiers in Endocrinology 05
3.5 RNA-seq predicts the mechanisms of
action of LL in PCOS mice

To further explore the potential mechanisms of LL’s effects in

PCOS mice, we conducted RNA-seq analysis on ovary tissues from

PCOS mice with or without LL treatment. Principal component

analysis (PCA) showed a clear separation between the PCOS group

and the LL (100mg/Kg/d) group (Figure 5A). The volcano plot

revealed 53 upregulated and 25 downregulated genes in the LL

group compared with the PCOS group (Figure 5B). A heatmap

illustrated differential expression of these genes (Figure 5C). Among

them, we observed significant modulation of Lhcgr (luteinizing

hormone/choriogonadotropin receptor) and Tnc (tenascin-c), both

of which are involved in critical ovarian function. Lhcgr is essential

for LH-mediated follicular maturation and ovulation; its
FIGURE 2

LL successfully improves glucose-lipid metabolism and insulin resistance in PCOS mice. (A) Body weight. (B) Liver weight. (C) Gonadal fat weight.
(D) Serum triglyceride (TG) levels. (E) Serum total cholesterol (CHO) levels. (F) Serum low-density lipoprotein cholesterol (LDL-c) levels. (G) Serum
high-density lipoprotein cholesterol (HDL-c) levels. (H) Serum alanine aminotransferase (ALT) levels. (I) Serum aspartate aminotransferase (AST)
levels. (J) H&E staining of liver and gonadal fat tissues. (K) Fasting blood glucose levels. (L, M) Oral glucose tolerance test (OGTT). (N, O) Insulin
tolerance test (ITT). Data are presented as mean ± SD (n=8 per group). *p < 0.05, **p < 0.01, ***p < 0.001.
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downregulation in PCOS may lead to impaired follicle maturation

and anovulation, while LL treatment restored Lhcgr expression,

suggesting a potential mechanism for LL in improving ovarian

function (25, 26). In contrast, Tnc known to mediate tissue

remodeling and inflammation, was upregulated in PCOS mice,

reflecting excessive extracellular matrix deposition and granulosa

cell apoptosis (27). LL treatment downregulated Tnc, suggesting

that LL may alleviate ovarian inflammation and fibrosis, promoting

healthier follicular development. GO analysis revealed that LL

treatment primarily impacted biological processes such as
Frontiers in Endocrinology 06
response to organic substances, hormones and endogenous

stimuli (Figures 5D–F). These findings are consistent with the

potential therapeutic effects of LL on ovarian function and

metabolic health in PCOS. Additionally, KEGG pathway

enrichment analysis indicated that LL primarily affected pathways

associated with ovarian steroidogenesis, apoptosis signaling, ether

lipid metabolism, and arginine and proline metabolism (Figure 5G).

These pathways are critical for maintaining ovarian function and

metabolic homeostasis, further supporting LL’s role in improving

ovarian function and metabolic regulation. Further analysis through
FIGURE 4

LL improves ovarian pathologic damage in PCOS mice. (A) Pathological changes in ovary morphology. (B) Number of cystic follicles. (C) Number of
corpora lutea. (D) Ovary weight. (E) Uterus weight. Data are presented as mean ± SD (n = 8 per group). *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 3

LL alleviates hormonal imbalance in PCOS mice. (A) Serum testosterone (T) levels. (B) Serum estradiol (E2) levels; (C) Serum luteinizing hormone (LH)
levels; (D) Serum follicle-stimulating hormone (FSH) levels. (E) LH/FSH ratio. Data are presented as means ± SD (n = 8 per group). *p < 0.05, **p <
0.01, ***p < 0.001.
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Gene Set Enrichment Analysis (GSEA) demonstrated that oxidative

phosphorylation, fatty acid metabolism, mitochondrial translation,

and gene groups related to translation were significantly

downregulated in the ovary tissues of PCOS mice, while LL

reversed these genomic changes (Figures 5H–K). Notably,

oxidative stress has been reported to play a critical role in

hyperandrogenemia-induced organ dysfunction, including kidney

injury, further supporting the involvement of oxidative stress

pathways in PCOS pathogenesis (28). These results suggest that

LL may improve PCOS by modulating key metabolic processes,

including hormone response, fatty acid metabolism, and lipid

metabolism in the ovary. The gene expression patterns after LL

treatment are closely associated with the phenotypic improvements

in ovarian function and metabolic regulation. Specifically, the

upregulation of Lhcgr and downregulation of Tnc indicate that

LL restores key signaling pathways involved in folliculogenesis and

reduces ovarian inflammation. GO, KEGG, and GSEA analyses

further support that LL exerts therapeutic effects by modulating

pathways such as steroidogenesis, oxidative stress, and

mitochondrial function, thereby improving ovarian function and

alleviating metabolic dysregulation in PCOS mice.
Frontiers in Endocrinology 07
3.6 LL effectively regulates PCOS gut
microbiota

The gut microbiota has been recognized as an essential

mediator of metabolic diseases including PCOS, and modulation

gut microbiota is considered an effective strategy for the prevention

and treatment of these related diseases (29). a-diversity reflects

within-sample richness and evenness, while b-diversity describes

between-sample compositional differences. Through 16S rDNA

sequencing analysis, principal co-ordinates analysis (PCoA) and

unweighted pair-group method with arithmetic mean (UPGMA)

showed that both LL-L and LL-H interventions distinctly shifted the

gut microbiota composition away from that of the PCOS group

(Figures 6A, B). However, a-diversity analyses (Shannon, Simpson,

Chao1, and ACE) did not reveal significant differences in species

richness and diversity among the groups (Figures 6C–F), indicating

that LL intervention primarily affects microbial composition rather

than overall diversity.

At the phylum level, Proteobacteria (or Pseudomonadota) was

significantly elevated in PCOS mice. This phylum is closely

associated with microbial dysbiosis and low-grade inflammation
FIGURE 5

RNA-seq predicts the mechanisms of action of LL in PCOS. (A) Principal component analysis (PCA). (B) Volcano plots of differentially expressed
genes (DEGs). (C) Heatmap of DEGs. (D) Gene Ontology (GO) analysis for biological processes, (E) cellular components, and (F) molecular functions.
(G) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (H–K) The Gene Set Enrichment Analysis (GSEA) analysis.
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driven by endotoxins (30), a chronic inflammatory state that has

been identified as a key contributor to insulin resistance and

hyperandrogenism in PCOS. Notably, LL-L and LL-H

significantly reduced the abundance of Proteobacteria, which may

help alleviate gut-derived inflammation and systemic metabolic

stress (Figures 6G, H).

At the species level, 29 species were found to be significantly altered

between the PCOS group and LL-treated groups (Figure 6I).

Specifically, Faecalibaculum rodentium, Lactobacillus johnsonii,

Bacteroides vulgatus, and Sphingomonas echinoides were markedly

enriched in PCOS mice. These species have been linked to low-grade

intestinal inflammation, gut microbiota dysbiosis, and disrupted

estrogen metabolism, all of which are central to PCOS pathogenesis

(31, 32). Notably, Lactobacillus johnsonii is known for its high b-
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glucuronidase activity, which may affect estrogen recycling and

exacerbate hormonal imbalance (33). LL treatment markedly

decreased the abundance of these species, thereby helping to restore

gut microbial balance. Meanwhile, LL intervention, particularly LL-H

promoted the enrichment of beneficial species such as Akkermansia

muciniphila, which has been shown to be a beneficial bacterium

associated with intestinal mucosal barrier integrity and enhanced

anti-inflammatory responses. It plays a positive role in improving

obesity-related metabolic syndromes and regulating glucose and lipid

metabolism (34). These findings suggest that LL modulates the gut

microbiota in a dose-dependent manner, targeting key species involved

in metabolic regulation and hormonal balance. This remodeling of the

gut microbial community may underlie the potential therapeutic effects

of LL in alleviating PCOS-related phenotypes.
FIGURE 6

LL alters microbiota composition in PCOS mice. (A) The b-diversity based on the principal co-ordinates analysis (PCoA). (B) Unweighted Pair-group
Method with Arithmetic Mean (UPGMA) clustering. The a-diversity of the gut microbiota analyzed using (C) Shannon index, (D) Simpson index,
(E) chao1, (F) ACE. (G) Heatmap representing the changes in intestinal microbial at the phylum level. (H) Relative abundance of gut microbiota at a
phylum level. (I) Heatmap representing the changes in intestinal microbiota at the species and genus levels.
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Through T-test and LEfSe analysis, we further investigated the

changesn gut microbiota following LL intervention. In the PCOS

group, Lactobacillus johnsonii was dominant species. In contrast,

Lachnospiraceae bacterium 10_1 dominated in the LL-L group

(Figures 7A, B, E). In the LL-H group, Akkermansia muciniphila and

Burkholderiales bacterium YL45 became the dominant species, while

Lactobacillus johnsonii remained the dominant species in the PCOS

group (Figures 7C, D, F). Notably, Lactobacillus johnsonii, enriched in

the PCOS group, has been linked to intestinal inflammation and

hormonal disruption, potentially contributing to the pathogenesis of

PCOS. After LL intervention, the abundance of Lactobacillus johnsonii

decreased, while the beneficial bacterium Akkermansia muciniphila

increased, which are associated with anti-inflammatory effects and

improved metabolic health. These findings further support the gut

microbiota remodeling effect of LL intervention.

OTU (Operational Taxonomic Unit) is a term commonly used in

microbial ecology to classify groups of closely related individuals

based on DNA sequence similarity, typically in 16S rRNA gene

sequencing analysis. Further analysis of OTU changes using DESeq2

revealed that, compared to the normal group, 13 bacterial OTUs were

upregulated and 10 were downregulated in the PCOS group
Frontiers in Endocrinology 09
(Figures 8A, D). In the LL-L group, 18 bacterial OTUs were

upregulated and 32 were downregulated compared to the PCOS

group (Figures 8B, E), while in the LL-H group, 29 OTUs were

upregulated and 23 were downregulated (Figures 8C, F). Venn

diagram analysis further demonstrated that LL significantly

regulated OTUs associated with PCOS. Specifically, LL-L treatment

significantly downregulated OTUs such as OTU_25, OTU_111,

OTU_140, and OTU_686, while LL-H treatment reduced OTUs

including OTU_25, OTU_111, OTU_140, OTU_87, and OTU_69,

while upregulating OTU_51 (Figures 8G–J). These findings indicated

that LL significantly altered gut microbiota at the OTUs levels,

educing PCOS-related pathogenic taxa and enriching beneficial

microbial populations, thereby contributing to the improvement of

gut dysbiosis in PCOS mice. LL treatment may specifically modulate

the gut microbiota composition in the PCOS model, particularly by

increasing the abundance of Akkermansia muciniphila, while

reducing the relative abundance of Proteobacteria and Lactobacillus

johnsonii. These changes may help improve the host’s metabolic

function, inflammatory responses, and endocrine balance, thereby

offering a potential microbiota-targeted intervention strategy for the

treatment of PCOS.
FIGURE 7

(A, C, E, F) Linear discrimination analysis (LDA) effect size LEfSe. Histogram of the LDA scores computed for differentially abundant species among
the Normal, PCOS, LL-L, LL-H. The LDA scores (log 10) > 2 are listed. (B, D) T test.
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4 Discussion

PCOS is a metabolic syndrome commonly associated with insulin

resistance, ovarian dysfunction, and gut microbiota dysbiosis (35, 36).

However, most clinical treatments fail to effectively alleviate PCOS

symptoms. Increasing evidence suggests that traditional Chinese

medicine can effectively treat PCOS in both animal and human trials

(37). LL is a natural alkaloid in traditional Chinesemedicine, previously

shown to improve diabetic db/db mice (19). Building on this, we

assessed the effects and probable mechanisms of LL on the PCOS mice

model induced by DHEA plus HFD. Our research demonstrated that

LL significantly reduced dyslipidemia and insulin resistance, improved

hormone levels, and alleviated ovarian dysfunction. These effects may

be mediated through processes such as response to hormone, fatty acid

metabolism, lipid metabolism, regulation of gut barrier function,

alleviation of gut dysbiosis, and enhancement of beneficial gut

microbiota. These findings suggest that LL may play an essential role

in the treatment of PCOS.

Obesity and dyslipidemia are closely associated with PCOS, and

both significantly impact the fertility of PCOS patients. Therefore,

weight management is a critical clinical objective in the symptomatic

treatment of PCOS (38). In our study, we found that LL intervention
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effectively reduced gonadal fat accumulation and mitigated body

weight gain in PCOS mice. Meanwhile, dyslipidemia, characterized

by elevated levels of TG, CHO, and LDL-c, is the most common

metabolic abnormality observed in PCOS patients (39). LL intervention

significantly reduced serum LDL-c, CHO, and TG levels in PCOSmice,

demonstrating its capacity to improve lipid metabolism and providing

an additional therapeutic benefit for managing PCOS-relatedmetabolic

disturbances (40). Furthermore, LL could significantly improve the

FBG levels, glucose tolerance, and insulin resistance of PCOS mice.

Notably, LL-H (100 mg/kg) demonstrated pronounced improvements

in key parameters, including body weight, liver and gonadal fat weight,

serum lipid levels, and glucose tolerance, highlighting a dose-

dependent efficacy of LL in alleviating PCOS symptoms. These

findings indicate that LL significantly alleviates lipid metabolism

disorders, impaired glucose tolerance, and insulin resistance induced

by DHEA plus HFD in PCOS mice.

Hyperandrogenism is one of the main causes and contributing

factors to the development of PCOS, and it is a characteristic

manifestation of hormonal imbalance in the disease. In PCOS

patients, excessive LH suppresses FSH, disrupting endocrine balance

and impairing follicular development, leading to an increased LH/FSH

ratio (41). Additionally, elevated T levels affect metabolism and
FIGURE 8

LL intervention modulates gut microbial OTU composition in PCOS mice. (A–C) Volcano plots showing differential expressed OTUs between groups
analyzed using DESeq2. (A) PCOS group vs. normal group. (B) LL-L group vs. PCOS group. (C) LL-H group vs. PCOS group. (D–F) Heatmaps of the
differentially expressed OTUs. (G, I) Venn diagrams of differentially regulated OTUs in comparisons between the PCOS group and each treatment
group. (H, J) Histogram of different OTU expressions.
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appetite, resulting in metabolic imbalance and weight gain (42).

Therefore, treating PCOS requires lowering blood androgen levels

and addressing hormonal imbalance (43). Our research demonstrated

that LL significantly improved hormonal imbalance in PCOS mice by

reducing the serum LH/FSH ratio and testosterone levels.

In this study, we found that LL intervention effectively improves

the gut microbiota structure in PCOSmodel mice. Although there were

no significant changes in a-diversity, b-diversity analysis indicated that
LL reshaped the microbiota composition, making it closer to a normal

state, suggesting its beneficial regulatory effect on the gut microbiome.

This is consistent with previous studies indicating that the pathology of

PCOS does not significantly impact the overall diversity of the gut

microbiota, but there are differences in microbial composition (44).

Regarding microbiota composition, Proteobacteria and Lactobacillus

johnsonii were significantly increased in PCOS mice, which is closely

related to the inflammatory state. LL-L and LL-H intervention reduced

its abundance, potentially helping to alleviate systemic inflammation.

LL-H significantly enriched Akkermansia muciniphila, a bacterium

known to help strengthen the gut barrier and improve metabolic

disorders (34). This suggests that LL may improve PCOS-related

endocrine and metabolic abnormalities by modulating key

microbiota members.

Although LL showed promising therapeutic efficacy in our

PCOS mouse model, further research-including antibiotic

intervention and fecal microbiota transplantation experiments- is

necessary to clarify the precise mechanisms underlying LL’s

regulation of gut microbiota. In addition, long-term safety

evaluations and clinical studies are required to fully understand

its potential limitations or side effects.
5 Conclusion

Our study demonstrated that LL alleviates PCOS symptoms

induced by DHEA plus HFD in mice, showing improvements in

insulin resistance, hormonal disorder, and ovarian dysfunction. The

potential mechanisms underlying LL’s ameliorative effects on PCOS

may involve the regulation of ovarian hormone response and

alterations of the gut microbiota. In summary, LL holds a

promising therapeutic treatment for PCOS.
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