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Metabolomics profiling identifies
diagnostic metabolic signatures
for pregnancy loss: a cross-
sectional study from
northwestern China
Nan Ding, Xin Yang, Ruifang Wang and Fang Wang*

Reproductive Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
Objective: To identify potential diagnostic metabolic biomarkers for pregnancy

loss (PL) by performing untargeted metabolomics analysis.

Methods: The present study performed untargeted metabolomics analysis on

plasma samples from PL patients (n=70) and control subjects (n=122) using liquid

chromatography‒mass spectrometry (LC‒MS). Metabolic profiles were evaluated

using orthogonal partial least squares discriminant analysis (OPLS-DA), and

pathway enrichment analysis was conducted via the KEGG database. LASSO

regression was employed to identify significant metabolites, and their diagnostic

performance was evaluated through receiver operating characteristic (ROC)

curves. Pearson correlation analysis was used to explore the relationships

between differentially abundant metabolites and clinical parameters.

Results: In total, 359 metabolites were identified, 57 of which were significantly

altered between the control and PL group through OPLS-DA. Differential

metabolites were significantly enriched in caffeine metabolism, tryptophan

metabolism, and riboflavin metabolism pathways. Key metabolites, such as

testosterone glucuronide, 6-hydroxymelatonin, and (S)-leucic acid, exhibited

strong diagnostic potential, with AUC values of 0.991, 0.936 and 0.952,

respectively, and the combined AUC was 0.993. Furthermore, Pearson

correlation analysis revealed a significant negative correlation between the

waist‒to‒hip ratio (WHR) and the abundance of testosterone glucuronide (r =

-0.291, p = 0.0146), and a significant positive correlation between WHR and (S)-

leucic acid (r = 0.248, p = 0.0381) in the PL group.

Conclusion: We identified a panel of plasma metabolites with significant

diagnostic potential for PL. These biomarkers may facilitate early, noninvasive

diagnosis and offer insights into metabolic dysregulation associated with

pregnancy loss.
KEYWORDS

pregnancy loss, untargeted metabolomics, LASSO regression, metabolic
signature, diagnosis
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Introduction

Pregnancy loss (PL) refers to the natural end of a pregnancy

before the fetus becomes viable, including all losses from conception

until 24 weeks of gestation, affecting approximately 12–15% of

recognized pregnancies globally (1, 2). Owing to increased

environmental pollution and increasing life stress, the clinical

incidence of PL has significantly increased in recent years (3, 4).

Despite extensive research, the underlying causes of PL remain

poorly understood and are often attributed to a complex interplay

of genetic, immunological, and environmental factors (5). The

absence of reliable metabolites complicates the early diagnosis

and management of PL, leading to profound psychological and

physiological impacts on affected women and their families (6).

In the context of PL, metabolomics can reveal critical metabolic

alterations associated with this condition (7). Previous research has

shown the effectiveness of metabolomics in identifying metabolic

signatures for numerous conditions, such as cancer, cardiovascular

diseases, autoimmune disease and metabolic disorders (8–11). For

example, Lili Zhang et al. investigated serum metabolic profiles in

women with recurrent abortion due to antiphospholipid syndrome,

and they reported significant disruptions in purine, amino acid, and

tyrosine metabolism (12). Another study utilized untargeted GC–

MS and targeted liquid chromatography–mass spectrometry (LC–

MS) to identify metabolic disturbances associated with recurrent

spontaneous abortion. Through this approach, lactic acid and 5-

methoxytryptamine were identified as significantly different

metabolites between the two groups, and their plasma

concentrations were further validated using targeted LC–MS (13).

Despite these advances, comprehensive metabolomics analyses

specifically targeting PL remain limited.

The integration of metabolomics with well-established

analytical techniques, such as LC–MS, enables the detection of

subtle metabolic alterations associated with PL. Moreover, the

application of machine learning algorithms to metabolomics data

has further improved the ability to identify and validate potential

metabolites (14). One such machine learning algorithm, least

absolute shrinkage and selection operator (LASSO) regression, is

particularly effective in managing high-dimensional data

characteristic of complex datasets (15, 16). LASSO regression

stands out for its ability to perform both variable selection and

regularization simultaneously, which helps prevent overfitting while

managing large datasets (17). This is especially beneficial in

metabolomics, where the number of metabolites often far exceeds

the number of samples. By shrinking the coefficients of less relevant

variables to zero, LASSO effectively refines the model, focusing on

the most significant metabolites (18). This enhances the robustness

of the model and increases the reproducibility of identifying the

most important metabolites.

The present study aimed to leverage untargeted metabolomics

combined with LASSO regression to identify a panel of diagnostic

metabolites for PL. By comparing the metabolic profiles of plasma

samples from women with a history of PL to those from women who

have had normal pregnancies without PL, the present study sought to

uncover metabolic signatures that can aid in the early detection and
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better understanding of PL. In addition, analyses that incorporated

clinical parameters, such as age, BMI, and waist–to–hip ratio (WHR),

which are potential confounding factors in PL, were performed to

explore the relationships between the identified metabolites and these

variables. The present findings may provide valuable insights for

developing noninvasive diagnostic metabolites for PL.
Methods

Study design and participants

The present study enrolled 192 participants, comprising 122 in

the control group and 70 in the PL group. The participants were

recruited from Lanzhou University Second Hospital between

February 2023 and September 2023. The inclusion criteria for the

PL group included women aged 18 to 42 years who had experienced

at least one PL in the past six months, in accordance with the

ESHRE diagnostic criteria (1). The exclusion criteria for the PL

group were as follows: presence of endocrine disorders, infections,

or immunological diseases; or a history of the most recent

pregnancy ending in an ectopic pregnancy, hydatidiform mole, or

congenital defects. The inclusion criteria for the control group were

women with no history of PL and at least one successful full-term

pregnancy. The exclusion criteria for the control group included the

presence of endocrine disorders, infections, or immunological

diseases. The present study was approved by the Institutional

Review Board of Lanzhou University Second Hospital (ethical

approval number: 2023A-553). All patients provided written

informed consent.
Sample collection and preparation

Fasting blood samples were collected from participants using

EDTA tubes and centrifuged at 1,500×g for 10 minutes at 4°C to

obtain plasma, which was then stored at -80°C. For metabolomics

analysis, 100 mL of plasma was placed in Eppendorf tubes, mixed

with 80% prechilled methanol, and vortexed thoroughly. The

samples were incubated on ice for 5 minutes, followed by

centrifugation at 15,000×g for 20 minutes at 4°C. A portion of the

supernatant was diluted with LC–MS-grade water to reach a 53%

methanol concentration. This mixture was transferred to fresh

Eppendorf tubes and centrifuged again at 15,000×g for 20

minutes at 4°C. The final supernatant was then injected into the

LC–MS/MS system for analysis via an Orbitrap Q Exactive™HF–X

mass spectrometer (19, 20).
UHPLC–MS analysis

UHPLC–MS/MS analysis was performed using a Vanquish

UHPLC system coupled with an Orbitrap Q Exactive™ HF-X

mass spectrometer (Thermo Fisher, Germany) at Novogene Co.,

Ltd. Samples were injected onto a Hypersil Gold column (100 × 2.1
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mm, 1.9 mm) and separated over a 12-minute linear gradient at 0.2

mL/min. The eluents for positive polarity mode consisted of 0.1%

formic acid in water (eluent A) and methanol (eluent B), whereas

those for negative polarity mode included 5 mM ammonium acetate

(pH 9.0, eluent A) and methanol (eluent B). The solvent gradient was

programmed as follows: initial 2% B for 1.5 minutes, increased to 85%

B over 3 minutes, increased to 100% B over the next 10 minutes,

decreased to 2% B over 0.1 minutes, and maintained at 2% B for 12

minutes. The mass spectrometer was operated in both positive and

negative modes with a spray voltage of 3.5 kV, capillary temperature

of 320°C, sheath gas flow rate of 35 psi, auxiliary gas flow rate of 10 L/

min, S-lens RF level of 60, and auxiliary gas heater temperature of

350°C. High-energy collision dissociation (HCD) was used as the

fragmentation method, with an isolation window scanning the m/z

range of 100–1,500. Collision energy was applied in three steps,

namely, 20 V, 40 V, and 60 V. The quality control (QC) samples were

interspersed among the study samples during analysis. The QC

samples were used to monitor and assess the data quality by

evaluating the correlation between QC injections, ensuring the

reliability and consistency of the analytical results. All samples were

analyzed in a single batch during the analytical run.
Data processing and metabolite
identification

The raw data files from UHPLC–MS/MS were processed using

Compound Discoverer 3.3 for peak alignment, peak picking, and

metabolite quantitation, following the protocols established in

previous studies (21, 22). First, retention times and mass-to-

charge ratios (m/z) were aligned across samples with a mass

tolerance of 5 ppm, a signal intensity tolerance of 30%, and a

defined intensity threshold. Metabolite identification was

performed by matching accurate m/z values, adduct ions, and

MS/MS fragmentation patterns against the mzCloud (https://

www.mzcloud.org/), mzVault, and MassList databases. In

databases containing fragmentation data, the acquired MS spectra

were compared with reference fragment ions and collision energies,

ensuring higher confidence annotations. Next, peak intensities were

normalized to reduce run-to-run variations and enable consistent

comparative analyses. Quality control (QC) samples were injected

to monitor instrument stability, and only features with a coefficient

of variation (CV) < 30% in the QC samples were retained. Finally,

the normalized peak areas of the confidently identified metabolites

were used for subsequent statistical analyses.
Data analysis

The identified metabolites were annotated using the KEGG and

HMDB databases (https://www.metaboanalyst.ca/). Since our

research focus is not on exogenous metabolites, we have excluded

them from further analysis. A detailed list of these excluded

exogenous metabolites is provided in Supplementary Table 1.
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To visualize metabolic differences and identify potential metabolic

signatures, orthogonal partial least squares discriminant analysis

(OPLS-DA) was performed using the ‘ropls’ package in R software.

Statistical significance was assessed using the t test, with

differentially abundant metabolites selected on the basis of a

variable importance in projection (VIP) score > 1 and a p value <

0.05. Heatmaps and volcano plots were generated using the

‘pheatmap’ and ‘ggplot2’ packages in R. Pathway analysis was

conducted using the MetaboAnalyst platform (version 6.0), a

widely used web-based tool for metabolomics data interpretation.

The list of significantly altered metabolites was uploaded using

HMDB (Human Metabolome Database) IDs, and these metabolites

were assigned on the basis of MS/MS spectral matching and

database searches. The KEGG database was used for pathway

enrichment analysis. Enrichment analysis was performed using

the hypergeometric test to identify overrepresented pathways

compared with a reference metabolome; pathways with a p value

< 0.05 were considered statistically significant. To assess the

biological importance of metabolites within pathways, the

relative-betweenness centrality algorithm was applied during

pathway topology analysis. The results were visualized via a

pathway impact plot, which integrates enrichment and topology

analyses to highlight the most significantly impacted pathways.
LASSO regression for metabolites selection
and ROC curve analysis

LASSO regression was employed via the ‘glmnet’ package in R

to identify significant metabolites associated with PL (23). The data

were divided into a training set (60% of the data) and a validation

set (40% of the data). Within the training set, 10-fold cross-

validation was applied using the ‘caret’ package in R to optimize

the model and avoid overfitting (24). The selected features from the

LASSO model were then validated using the validation set. ROC

curve, sensitivity, specificity, and confusion matrix analyses were

conducted using the ‘pROC’ package in R. Additionally, ROC curve

analysis on clinical data, including age, BMI, and WHR, was

conducted to compare their predictive performance with that of

the differentially metabolite abundance-based model.
Correlation analysis

Pearson correlation analysis was performed using the ‘Hmisc’

package in R to investigate the relationships between differentially

abundant metabolites and clinical parameters, such as age, BMI,

and WHR. Heatmaps were created with the ‘ComplexHeatmap’

package, and significant correlations were visualized using scatter

plots generated with the ‘ggplot2’ package, offering insights into the

metabolic alterations linked to clinical features in the control and

PL group. Additionally, a permutation test with 200 iterations was

employed to assess the statistical significance of the correlation

coefficient differences between the control group and PL group.
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Results

Baseline clinical characteristics

Table 1 presents the baseline clinical characteristics of the study

participants, which included 122 women in the control group and

70 women in the PL group. The median age in the PL group was

significantly lower than that in the control group (30 years vs. 33

years, p < 0.001). The PL group had a higher median BMI (22.6 kg/

m² [Q1-Q3: 21.5-24.7]) than the control group (21.8 kg/m² [Q1-Q3:

20.2-23.4], p = 0.006). Furthermore, the PL group presented a

significantly greater WHR (0.9 [Q1-Q3: 0.8-0.9]) than the control

group (0.8 [Q1-Q3: 0.8-0.8], p < 0.001). In terms of race, the

majority of participants in both groups were Han Chinese, with no

significant difference observed between the two groups (p = 0.726).

However, education levels significantly differed between the two

groups. A significantly greater proportion of women in the control

group had a university education or above (91% vs. 67.1%, p <

0.001), whereas the PL group had a greater percentage of

participants with a high school education or below (32.9% vs. 9%,

p < 0.001). With respect to the number of pregnancy losses, none of

the women in the control group experienced a loss, whereas the PL

group included participants with varying numbers of losses,

including 17.1% with one loss, 50% with two losses, and 32.9%

with three or more losses (p < 0.001).
OPLS-DA model and permutation test

Figure 1 illustrates the OPLS-DAmodel and its evaluation through

permutation tests. TheOPLS-DA plot (Figure 1A) revealed a separation

between the control and PL group, indicating distinct metabolic
Frontiers in Endocrinology 04
profiles. The x-axis (t1) explained 7.0% of the variance between the

two groups, whereas the y-axis (to1) explained 8.0% of the variance

within each group. A permutation test with 200 iterations (Figure 1B)

was used to evaluate the OPLS-DA model. The histogram shows the

frequency distribution of the permuted R2Y and Q2 values, with an R2Y

value of 0.932 and an Q2 value of 0.899, which were both significantly

higher than those obtained from the permuted models (p = 0.005),

confirming the reliability and predictive performance of the model.
Differential metabolite analysis

Figure 2 shows an in-depth analysis of the differentially

abundant metabolites between the control and PL group. In total,

57 differentially abundant metabolites were identified on the basis of

VIP> 1 and p values<0.05 (Supplementary Table 2). The heatmap

shown in Figure 2A displays the differentially abundant metabolites,

revealing distinct clustering patterns between the two groups. In

addition, the volcano plot shown in Supplementary Figure S1A

illustrates the differentially abundant metabolites using log2-fold

changes and -log10 p values. Testosterone glucuronide, 6-

hydroxymelatonin, and (S)-leucic acid demonstrated statistical

significance and fold changes, with testosterone glucuronide

exhibiting the greatest significance and fold change. Among the

57 significantly altered metabolites, 54 were successfully matched to

known metabolic pathways in the KEGG database using the

MetaboAnalyst platform. The pathway impact plot revealed

several significantly impacted pathways, including caffeine

metabolism, tryptophan metabolism, and riboflavin metabolism

(Figure 2B). The bubble plot shows these pathways, with larger

and more vividly colored bubbles indicating pathways with greater

impact and significance.
TABLE 1 Clinical characteristics of PL patients and controls.

Variables Total (n = 192) Control (n = 122) PL (n = 70) p

Age (year) 32 (29.8, 36) 33 (30.2, 37) 30 (28, 32.8) < 0.001

BMI (kg/m2) 22 (20.6, 23.5) 21.8 (20.2, 23.4) 22.6 (21.5, 24.7) 0.006

WHR 0.8 (0.8, 0.9) 0.8 (0.8, 0.8) 0.9 (0.8, 0.9) < 0.001

Race, n (%) 0.726

Han Chinese 183 (95.3) 117 (95.9) 66 (94.3)

Other ethnicities 9 (4.7) 5 (4.1) 4 (5.7)

Education, n (%) < 0.001

High school or below 34 (17.7) 11 (9) 23 (32.9)

University or above 158 (82.3) 111 (91) 47 (67.1)

Number of PL, n (%) < 0.001

0 122 (63.5) 122 (100) 0 (0)

1 12 (6.2) 0 (0) 12 (17.1)

2 35 (18.2) 0 (0) 35 (50)

≥3 23 (12) 0 (0) 23 (32.9)
BMI, Body mass index; WHR, Waist-Hip Ratio; PL, Pregnancy loss. p<0.05 was considered statistically significant.
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Screening of differential metabolites

Figure 3 shows the results of LASSO regression and the

subsequent analysis of selected metabolites. In Figure 3A, the

coefficients of the metabolites are plotted against the log of the

regularization parameter (l), demonstrating the selection process

for the most important metabolites in distinguishing between the

control and PL group. Figure 3B shows the three most important

metabolites selected by the LASSO model, namely, testosterone

glucuronide, 6-hydroxymelatonin and (S)-leucic acid.
Frontiers in Endocrinology 05
Abundance and diagnostic performance of
key metabolites

Figure 4A compares the abundance levels of these metabolites

between the control and PL group. Significant differences in

abundance were observed for all three metabolites, with p values

indicating significant differences (p<0.0001). These findings

suggested that these metabolites play crucial roles in the

metabolic alterations associated with PL. An ROC curve of the

LASSO model revealed that the combined AUC value was 0.993,
FIGURE 2

Differential metabolites and pathway enrichment analysis. (A) Heatmap of the top 43 differential metabolites identified between the control and PL
group, showing distinct clustering patterns. (B) Pathway enrichment analysis bubble plot. The x-axis represents the pathway impact, and the y-axis
represents the -log10 of the p-value.
FIGURE 1

OPLS-DA model and permutation test evaluation. (A) OPLS-DA score plot showing the separation between the PL group and the control group
based on their metabolic profiles. (B) Permutation test results with 200 iterations to evaluate the robustness of the OPLS-DA model.
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indicating high predictive accuracy for the selected metabolites in

the validation set (Figure 4B). The performance of the optimal

metabolite model was evaluated using a confusion matrix

(Supplementary Figure S1B) and classification performance

indicators (Supplementary Figure S1C). The confusion matrix

revealed that the model achieved a sensitivity of 1.0000 and a

specificity of 0.9643, indicating high diagnostic accuracy. In

addition, the model had an accuracy of 0.9868. The positive

predictive value (PPV) was 0.9796, and the negative predictive

value (NPV) was 1.0000, reflecting the robust ability of the model to

distinguish between the control and PL group.
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Comparative diagnostic performance of
the key metabolites and clinical parameters

The diagnostic performance of the clinical parameters and

metabolites was evaluated via receiver operating characteristic

(ROC) curve analysis. Among the clinical parameters, WHR had

the highest AUC (0.724), followed by age (AUC = 0.696) and BMI

(AUC = 0.435). The combined clinical model achieved an AUC

value of 0.775 (Figure 5A). Furthermore, the combined model,

which integrated both key metabolites and clinical parameters,

achieved an AUC value of 1.000 (Figure 5B).
FIGURE 4

The most important metabolites and their diagnostic performance. (A) Box plots comparing the abundance levels of the three significant metabolites
between the control and PL group (****p < 0.0001). (B) ROC curves demonstrating the diagnostic performance of a panel of metabolites in the
test dataset.
FIGURE 3

Screening of differential metabolites using LASSO regression. (A) LASSO regression cross-validation plot identifying the optimal l to minimize
deviance. (B) Bar plot of the regression coefficients for the three most important metabolites selected by the LASSO model.
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Correlation analysis between differentially
abundant metabolites and clinical
parameters

Figure 6 shows the Pearson correlations between differentially

abundant metabolites and clinical parameters within the PL group.

The heatmap shown in Figure 6A depicts the Pearson correlation

coefficients between core differentially abundant metabolites and

clinical phenotypes. The scatter plot shown in Figure 6B further

illustrates the negative correlation between WHR and testosterone

glucuronide, which indicated that higher WHR values were

associated with lower levels of testosterone glucuronide (r =

-0.291, p = 0.0146), whereas (S)-leucic acid was significantly

positively correlated with WHR (r = 0.248, p = 0.0381).

Additionally, the correlation of WHR with the levels of

testosterone glucuronide or (S)-leucic acid were evaluated in the

control group. The scatter plot shown in Supplementary Figure S1D

indicates that both correlations were nonsignificant in the control

group (WHR vs. testosterone glucuronide: r = –0.0294, p = 0.748;

WHR vs. (S)-leucic acid: r = 0.126, p = 0.168), suggesting no evident

associations (Supplementary Figures S1D, E). Moreover, a

permutation test comparing the correlation coefficients between

the control and PL group revealed a statistically significant

difference (p = 0.04) in the correlation between WHR and

testosterone glucuronide, whereas the correlation between WHR

and (S)-leucic acid did not differ significantly (p = 0.28).
Discussion

In the present study, we identified differentially abundant

metabolites between the control and PL group, which were
Frontiers in Endocrinology 07
primarily enriched in the caffeine metabolism, tryptophan

metabolism, and riboflavin metabolism pathways. Caffeine

metabolism emerged as a key pathway in the present analysis.

Caffeine is widely consumed, and its metabolism involves several

enzymes, such as cytochrome P450, which are integral to oxidative

stress responses and liver function (25–27). Disruptions in caffeine

metabolism may reflect dysregulated detoxification processes or

oxidative stress, both of which are critical for maintaining

pregnancy. Studies have suggested that high caffeine intake during

pregnancy may increase the risk of pregnancy complications,

including PL (28). Therefore, the significant alterations in caffeine

metabolism observed in PL patients may reflect either direct caffeine

exposure or dysregulated detoxification processes that impact

pregnancy outcomes.

Amino acids play fundamental roles in various biological

processes, including protein synthesis, immune regulation, and

neuroendocrine function (29, 30). Our findings revealed

significant alterations in amino acid metabolism pathways, with

tryptophan metabolism emerging as a key pathway in PL patients.

Tryptophan, an essential aromatic amino acid, plays a critical role

in protein synthesis, immune regulation, and neuroendocrine

function (31). The metabolism of tryptophan primarily proceeds

through three major pathways, namely, the kynurenine (KYN)

pathway, the serotonin (5-HT) pathway, and the indole pathway

(32). The KYN pathway, which dominates tryptophan metabolism,

is mediated by several enzymes, including tryptophan-2,3-

dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO).

These enzymes are critical for modulating immune responses (33,

34). Dysregulated IDO activity has been associated with decreased

kynurenine levels in PL patients, which may impair immune

tolerance and increase the risk of fetal rejection. Additionally,

tryptophan serves as a precursor for serotonin synthesis, a key
FIGURE 5

Comparative diagnostic performance of key metabolites and clinical indicators. (A) ROC curves illustrating the diagnostic performance of individual
clinical parameters (age, BMI, and WHR). (B) ROC curves comparing the diagnostic performance of combined key metabolites, clinical parameters,
and the integrated model.
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neurotransmitter involved in regulating inflammation and

maternal–fetal communication (35). Reduced tryptophan

availability in PL patients may compromise serotonin production,

exacerbating systemic inflammation and negatively affecting

pregnancy outcomes (36). The present findings aligned with these

observations, further supporting the critical role of tryptophan

metabolism in pregnancy maintenance.

In addition, the present study revealed enrichment in the riboflavin

metabolism pathway, highlighting its potential involvement in PL.

Riboflavin, also known as vitamin B2, is a precursor for the synthesis of

flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN),

which act as essential cofactors for numerous redox enzymes involved

in energy metabolism, oxidative stress regulation, and detoxification

processes (37). Riboflavin metabolism plays a critical role in redox

reactions, energy production, and cellular homeostasis (38, 39).

Deficiency in riboflavin has been shown to impair mitochondrial

function, resulting in disrupted ATP synthesis and increased

production of reactive oxygen species (ROS) (40, 41). This imbalance

may contribute to oxidative stress, a condition linked to adverse

pregnancy outcomes, such as preeclampsia, intrauterine growth

restriction, and spontaneous abortion (42, 43). In the present study,

the significant alterations in riboflavin metabolism observed in PL

patients may indicate disrupted mitochondrial energy production and

heightened oxidative stress, both of which may compromise

pregnancy maintenance.

LASSO algorithms were further employed to refine the selection

of significant metabolites. The present analysis identified
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testosterone glucuronide, 6-hydroxymelatonin and (S)-leucic acid

as key metabolites with strong diagnostic potential. These

metabolites demonstrated high area under the curve (AUC)

values in the ROC curve analysis, indicating their utility as

noninvasive metabolites for PL and surpassing the diagnostic

accuracy of clinical indicators alone. Testosterone glucuronide is

a conjugated form of testosterone involved in androgen

metabolism (44). In the context of PL, altered levels of

testosterone glucuronide may reflect disruptions in hormonal

regulation. 6-Hydroxymelatonin is a metabolite of melatonin, a

hormone known for regulating sleep–wake cycles and reproductive

functions (45). Changes in melatonin metabolism have been linked

to various reproductive disorders, suggesting that alterations in

melatonin metabolism in PL patients may indicate disruptions in

circadian rhythms and reproductive health. (S)-Leucic acid is a

metabolite of leucine, a branched-chain amino acid, and it has been

studied for its anabolic effects (46), particularly in promoting

muscle protein synthesis. However, the role of (S)-leucic acid in

reproductive health and pregnancy remains largely unexplored. The

present findings suggested that (S)-leucic acid may be involved in

metabolic pathways that are critical for maintaining a

healthy pregnancy.

Correlation analysis revealed a significant negative association

between waist–to–hip ratio (WHR) and testosterone glucuronide in

the PL group, implying that an elevated WHR may coincide with

lower levels of testosterone glucuronide. Such disruptions could

impair maternal–fetal communication and contribute to adverse
FIGURE 6

Correlation analysis between differential metabolites and clinical parameters in PL group. (A) Heatmap showing the Pearson correlation coefficients
between core metabolites and clinical phenotypes parameters (age, BMI, WHR) in the PL group. (B) Scatter plots illustrating the significant
correlations between WHR and testosterone glucuronide levels (negative correlation) and (S)-Leucic acid levels (positive correlation).
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pregnancy outcomes. Of note, this relationship was not observed in

the control group, highlighting the specificity of metabolic

alterations in PL patients. Although (S)-leucic acid was also

positively correlated with WHR in the PL group, the difference in

correlation coefficients compared with those in the control group

was not statistically significant, possibly reflecting the limited

sample size. Nevertheless, the apparent involvement of (S)-leucic

acid in metabolic pathways relevant to pregnancy warrants further

study to clarify its mechanistic role in PL and to assess its potential

diagnostic value.

In conclusion, the present findings suggest that caffeine

metabolism, tryptophan metabolism and riboflavin metabolism

pathway may play important roles in the pathophysiology of PL,

Moreover, testosterone glucuronide, 6-hydroxymelatonin, and (S)-

leucic acid showed potential as noninvasive diagnostic metabolites.

Further validation in larger cohorts is necessary to confirm these

findings and to better understand the role of metabolic alterations

in the pathophysiology of PL.
Limitation

Despite the promising findings, this study has several limitations.

Firstly, the sample size is relatively small, which may limit the

generalizability of the results and prevent detailed stratification

analyses, such as differentiating metabolic variations among

PL cases with different recurrence histories. Secondly, the study

design is cross-sectional, which prevents us from establishing

causal relationships between the identified metabolic alterations

and PL. Although we applied OPLS-DA and LASSO regression

to prioritize key metabolites and minimize irrelevant variation

and multicollinearity, these methods cannot fully account for

confounding factors such as age, BMI, and WHR. We employed a

permutation test to further address this issue, but future studies

incorporating matched or statistically adjusted designs are warranted.

Additionally, we did not collect detailed dietary information or

account for variations in education level, which may influence

metabolic profiles. Finally, the study focuses solely on plasma

metabolites and includes limited clinical data. Future studies should

aim to integrate multi-omics approaches and more comprehensive

clinical datasets to provide a deeper understanding of the molecular

mechanisms underlying PL.
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