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Background: Prediabetes is the precursor to type 2 diabetes and represents a 
critical, reversible window for intervention. This study aims to systematically 
review and conduct a network meta-analysis to evaluate the efficacy of aerobic 
training (AT), resistance training (RT), combined training (AT+RT), high-intensity 
interval training (HIIT), and traditional Chinese exercises (TCEs) on glycemic 
control, lipid profile, and weight management in prediabetic individuals. This 
marks the first time HIIT and TCEs have been included in such an assessment. 

Methods: A systematic search was conducted across PubMed, Web of Science, 
Cochrane (CENTRAL), Embase, CNKI, and WangFang Data for randomized 
controlled trials (RCTs) on the effects of different exercise modalities on 
prediabetic patients published up to August 10, 2024. Network meta-analysis 
was performed using the “gemtc” package in R software, and the quality of 
evidence was assessed using the CINeMA framework. 

Results: A total of 74 studies involving 5,683 participants were included. The 
network meta-analysis results showed that HIIT was the most effective for 
reducing haemoglobin A1c (HbA1c) (-0.44%, 95% CI: -0.55% to -0.32%, SUCRA 
93.8%), 2-hour plasma glucose (2hPG) (-1.3, 95% CI: -1.6 to -0.93, SUCRA 84.3%), 
and increasing high-density lipoprotein (HDL) (0.20, 95% CI: 0.03 to 0.36, SUCRA 
87.3%). AT+RT was most effective in reducing total cholesterol (TC) (-0.46, 95% CI: 
-0.61 to -0.32, SUCRA 98.3%), TG (-0.55, 95% CI: -0.69 to -0.42, SUCRA 99.9%), 
low-density lipoprotein (LDL) (-0.35, 95% CI: -0.53 to -0.18, SUCRA 82.2%), and body 
mass index (BMI) (-0.89, 95% CI: -1.6 to -0.14, SUCRA 66.4%). TCEs showed the 
most significant improvements in reducing 2hPG (-1.3, 95% CI: -1.5 to -1.0, SUCRA 
83.5%), body weight (BW) (-3.4, 95% CI: -6.4 to -0.51, SUCRA 79.1%), and wasit 
circumference (WC) (-4.27, 95% CI: -7.53 to -0.98, SUCRA 84.6%). 
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Conclusion: Various exercise interventions significantly improved glycemic and 
lipid profiles in prediabetic patients. HIIT and AT+RT were found to be the most 
effective interventions. For elderly individuals with limited physical activity or 
chronic conditions, TCEs can serve as a gentle and safe alternative. These 
findings provide the latest evidence to support exercise interventions for 
managing prediabetes. 

Systematic review registration: https://www.crd.york.ac.uk/prospero/, 
identifier CRD42024578405. 
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1 Introduction 

Prediabetes is a condition where blood glucose levels are 
elevated but not high enough for a diabetes diagnosis (1). In 
2019, the International Diabetes Federation (IDF) estimated that 
7.5% of the global adult population—around 374 million people— 
were affected by prediabetes, a figure expected to increase to 548 
million by 2045, presenting significant challenges for diabetes 
management (2). As the precursor to type 2 diabetes, prediabetes 
represents a crucial opportunity for intervention while it remains 
reversible (1, 3). Without intervention, up to 70% of individuals 
with prediabetes will develop diabetes, according to the American 
Diabetes Association (ADA). Additionally, prediabetes carries 
similar risks to diabetes, including cardiovascular disease, stroke, 
and kidney complications, affecting individuals of all ages (1, 4, 5). 
Addressing modifiable risk factors such as obesity, poor diet, and 
inactivity can help prevent or delay the onset of type 2 diabetes (6, 
7). Numerous studies show that both lifestyle changes and 
pharmacological interventions can reduce the risk of diabetes, 
with some individuals returning to normal glucose levels (8–10). 
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Notably, the Diabetes Prevention Program (DPP) found that 
lifestyle interventions were more effective than medication, 
offering longer-term benefits and broader health advantages 
(11, 12). 

Exercise plays a crucial role in lifestyle interventions, helping to 
improve blood sugar control, insulin sensitivity, body composition, 
blood pressure, and lipid levels, while also lowering cardiovascular 
risk (13, 14). Consequently, international guidelines recommend at 
least 150 minutes of moderate-to-vigorous aerobic activity and 
twice-weekly resistance training to prevent and manage type 2 
diabetes and cardiovascular conditions (15). Despite these 
recommendations, only 12% of older adults meet the required 
activity levels (16). While high-intensity interval training (HIIT) 
offers a time-efficient way to achieve similar health benefits, its 
practicality for older adults is often limited by physical challenges 
(17, 18). By contrast, Traditional Chinese Exercises (TCEs) offer a 
gentler and safer alternative, particularly for older individuals. 
Studies have shown that TCEs significantly improve blood 
glucose and lipid levels in patients with type 2 diabetes, helping 
to delay disease progression and reduce complications (19, 20). As a 
result, both the ADA and the American College of Sports Medicine 
(ACSM) recommend TCEs for individuals with type 2 diabetes, 
advising 2–3 sessions per week (21). 

Previous meta-analyses have generally grouped exercise into 
three broad categories: aerobic (AT), resistance (RT), and 
combined training (AT+RT), without fully exploring the 
specific roles and mechanisms of different exercise types in 
diabetes prevention (22–26). To address this, we conducted the 
first network meta-analysis comparing HIIT and TCEs. This 
study comprehensively evaluates the effectiveness of various 
exercise types in regulating blood glucose, lipid levels, and body 
weight in individuals with prediabetes. In addition to exercise 
type, we examined how different intensities, durations, 
frequencies, and cycles influence glycemic and lipid regulation. 
Our findings offer the latest evidence on the impact of exercise 
interventions for managing prediabetes, providing a foundation 
for future guidelines. 
 frontiersin.org 
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2 Method 

2.1 Protocol and registration 

This systematic review and network meta-analysis is registered 
with PROSPERO (Registration number: CRD42024578405). The 
study adheres to the PRISMA 2020 guidelines (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) and the PRISMA 
extension for network meta-analyses (PRISMA-NMA) (27, 28). 
      

         
       

         
        

        
        

          
         

        
          

          
        

         
         
          
  

2.2 Search strategy and study selection 

We performed a comprehensive search across PubMed, Web of 
Science, Cochrane (CENTRAL), Embase, CNKI, and WangFang 
Data to identify randomized controlled trials (RCTs) examining the 
effects of various exercise modalities on individuals with 
prediabetes. The search included studies published from the 
databases ’ incept ion  to  August  10,  2024.  To  ensure  
comprehensive coverage of RCTs in the field of prediabetes, we 
modified the PubMed search strategy to include both “randomized” 
and “randomised” to account for potential discrepancies between 
American and British English spelling, thus minimizing the risk of 
missing relevant studies (29). Three reviewers (GS, BW, and LX) 
independently screened studies, with any discrepancies resolved by 
consulting a fourth reviewer (YE). Additionally, reference lists from 
included studies and relevant systematic reviews were screened for 
potential eligible studies. The full search strategy is detailed in 
Appendix 1. 
   

        
      

           

  
          

        
       

           
           

        
        

          

  
         

        
        

    

2.3 Eligibility criteria 

Study eligibility was assessed using the PICOS framework 
(Participants, Interventions, Comparators, Outcomes, and Study 
design) (30). Studies were included if they met the following criteria: 

2.3.1 Population 
We included studies with participants aged 18 years or older 

diagnosed with prediabetes, excluding those with diabetes, severe 
comorbidities, children, adolescents, or pregnant women. The 
diagnosis of prediabetes was based on the ADA criteria and met 
at least one of the following conditions: fasting blood glucose (FBG) 
between 5.6–6.9 mmol/L, hemoglobin A1c (HbA1c) between 39–47 
mmol/mol (5.7–6.4%), or 2-hour plasma glucose levels between 
7.8–11.0 mmol/L during an oral glucose tolerance test (OGTT) (31). 

2.3.2 Intervention 
We categorized exercise into five different types: AT, RT, 

AT+RT,  HIIT,  TCEs.  The  definitions  of  each  exercise  
intervention and the classification of exercise intensity are 
detailed in Appendix 2. 
   	Frontiers in Endocrinology 03	
  
           

        

2.3.3 Comparator 
Control groups consisted of either one of the five exercise types, 

health education, usual care, or a waitlist group. 
  
           

       
        

      
          

    

2.3.4 Outcome 
Studies were required to report at least one of the following 

outcomes: glycemic control (HbA1c, FBG, 2-hour postprandial 
glucose (2hPG)), lipid control (total cholesterol (TC), triglycerides 
(TG), high-density lipoprotein (HDL), low-density lipoprotein 
(LDL)), or weight control (body weight (BW), body mass index 
(BMI), waist circumference (WC)). 
   
         

2.3.5 Study design 
Only RCTs were eligible. Studies were excluded if they: 
  
	     
	       
	        
	      
	         

   

•	 Were non-randomized controlled trials. 
•	 Involved pharmacological treatments or dietary interventions. 
•	 Were conference abstracts, protocols, or systematic reviews. 
•	 Lacked sufficient data for analysis. 
•	 Did not provide full-text access through relevant databases 

or other sources. 
   

         
       

       
        

        
        

          
        

           
         

        

2.4 Data extraction 

For each eligible study, data were independently extracted using 
a pre-designed form. Extracted information included study 
characteristics (first author, publication year, country), population 
demographics (age, gender, sample size), intervention details (type, 
duration, frequency, intensity), and outcome measures. In cases 
where data were unavailable, the corresponding author was 
contacted up to three times over a three-week period. Two 
independent reviewers (GS, BW) conducted the data extraction, 
with a third reviewer (LX) verifying the results and resolving any 
discrepancies. If data were missing, the corresponding author was 
contacted up to three times within three weeks. 
     

       
         

           
         

           
         

         
        

          
       

2.5 Measures of treatment effect 

This meta-analysis evaluated treatment effects using mean 
difference (MD) and changes in standard deviation (SD). When 
SD values were not reported directly in the original studies, we 
estimated them based on standard error, 95% confidence intervals 
(CI), p-values, or t-statistics (32). To calculate the difference in SD 
before and after the intervention, we assumed a correlation 
coefficient of 0.5, reflecting a commonly accepted level of 
moderate measurement repeatability in the literature. This value 
was chosen to account for potential variability while ensuring the 
robustness and reliability of the results (32). 
 frontiersin.org 
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2.6 Quality assessment of evidence 

We assessed the risk of bias in the included trials using the 
Cochrane Risk of Bias tool for randomized controlled trials (version 
2.0) (Figure 1). This evaluation considered vital factors such as 
random sequence generation, allocation concealment, blinding, 
incomplete outcome data, and selective reporting (33). A study 
was classified as having a low overall risk of bias (score 1) if all 
domains were rated as low risk. If any domain was rated as high 
risk, the study was classified as high risk of bias (score 3). Studies 
with intermediate concerns were given a score of 2. Two 
independent reviewers performed the assessments, and 
disagreements were resolved through discussion. 

We generated funnel plots for each direct comparison to 
identify minor study effects and publication bias. We also applied 
the CINeMA (Confidence in Network Meta-Analysis) framework 
to evaluate the certainty of evidence across six domains: within-
study bias, reporting bias, indirectness, imprecision, heterogeneity, 
and incoherence (34, 35). These domains assess potential systematic 
errors within studies, the effects of selective reporting and 
publication bias, the relevance of the evidence, the precision of 
effect estimates, consistency across studies, and the agreement 
between direct and indirect evidence. 
   

        
           
         

       
         
         

        
   

        
        
         

       
          

        

2.7 Statistical analysis 

We conducted the network meta-analysis using the gemtc 
package in R (version 4.3.3) to evaluate the efficacy of various 
exercise interventions for type 2 diabetes patients. The Bayesian 
framework within the gemtc package enables simultaneous 
comparisons of multiple treatments. To visualize the network of 
comparisons, we used the “networkplot” function in STATA 17, 
where nodes represent different interventions and edges denote 
direct head-to-head comparisons. 

Treatment effects were estimated using the Markov Chain 
Monte Carlo (MCMC) method, with a random-effects model 
applied to account for heterogeneity across studies (36, 37). 
Outcomes were standardized for comparability, using mean 
difference (MD) and 95% credible intervals (CrI) as the primary 
effect measure. Heterogeneity was assessed using t², following 
   Frontiers in Endocrinology 04
      
      

        
       

         
         

        
          
         

        
         

          
          

        
       
  

        
         

        
         

        
         

   
        
        

         
        

       
       

established thresholds (low <0.04; low-moderate 0.04-0.16; 
moderate-high 0.16-0.36; high >0.36) (38, 39). 

To assess local inconsistency, a node-splitting analysis was 
conducted within a Bayesian hierarchical framework using 
MCMC sampling in the gemtc package. Direct effects (obtained 
from head-to-head trials) and indirect effects (derived from the 
network) were separately estimated. Under the consistency model, 
direct and indirect evidence were analyzed jointly to estimate the 
overall effect. Under the inconsistency model, they were estimated 
separately, allowing for potential differences between the two 
estimates. The difference between direct and indirect effects was 
assessed by calculating a Bayesian p-value based on the posterior 
distribution of their difference, with p < 0.05 indicating significant 
inconsistency. When inconsistency was detected, the certainty of 
evidence  was  downgraded  according  to  the  CINeMA  
framework (40). 

To test the transitivity assumption, we compared the 
distribution of key modifiers across studies, including average age, 
Baseline HbA1c. This ensured comparability between groups and 
strengthened the robustness of the results. Intervention efficacy was 
ranked using Surface Under the Cumulative Ranking (SUCRA), 
quantifying the likelihood of an intervention being the best 
treatment option (41). 

We further explored potential moderators of treatment effect 
through meta-regression using the gemtc package, focusing on 
factors such as age, gender proportion, and intervention duration 
to explain heterogeneity. Subgroup analyses were also performed 
based on patient characteristics, intervention intensity, and 
duration to assess differences in treatment effects. 
  

     
 

          
       

         
          

          
        

3 Results 

3.1 Literature selection and study 
characteristics 

A total of 8,278 potential records were identified through the 
systematic search. After removing duplicates, 6,678 articles 
remained for title and abstract screening. The authors conducted 
full-text reviews on 191 articles that met the inclusion criteria. 
Ultimately, 74 studies were included in this systematic review and 
meta-analysis, involving 5,683 participants, of whom 46.7% were 
  

               
FIGURE 1 

Summary of the risk of bias assessment in the individual domains of the included studies. 
   frontiersin.org 
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male. The mean age of the participants was 56.25 years (standard 
deviation 6.6), and the mean body mass index was 26.79 (standard 
deviation 2.72). The complete screening and selection process is 
shown in Figure 2. A summary of the number of studies and 
participants for each outcome is presented in Table 1. 
        
 

             
              

             
           

         
      

       
               

        

3.2 Risk of bias, certainty of evidence, and 
consistency 

The risk of bias for each trial is presented in Appendix 4. Overall, 
7 studies (9.5%) were classified as having a low risk of bias, 53 studies 
(71.6%) as having an unclear risk of bias, and 14 studies (18.9%) as 
having a high risk of bias. In the consistency assessment, which 
evaluates the agreement between direct and indirect evidence, the 
node-splitting analysis identified inconsistencies in certain 
comparisons. For example, significant discrepancies were observed 
in the comparisons AT vs. TCEs (p = 0.006) and TCEs vs. C (p = 
0.028) for HbA1c, indicating inconsistency between direct and 
    Frontiers in Endocrinology 05 
         
        

       
        

           
        

            
          

          
         

         
           

       
        

          
     

         
         

         

indirect estimates. Consequently, the certainty of evidence for these 
outcomes was downgraded. However, no statistically significant local 
inconsistency was detected in most treatment comparisons 
(Appendix 5). Furthermore, the consistency assessment of HbA1c 
data (P = 0.0586) suggests that the results should be interpreted 
cautiously, indicating the need for more rigorous randomized 
controlled trials in the future. The t² results did not reveal any 
high heterogeneity in the network; most outcomes displayed low to 
moderate heterogeneity, with a few showing moderate to high levels 
of heterogeneity (Appendix 5). Using the CINeMA framework for 
quality assessment, we found that most pairwise comparisons yielded 
evidence of very low to moderate quality (Appendix 9). All networks 
met the transitivity assumption, ensuring indirect comparisons’ 
validity (Appendix 9, Supplementary Figure S9.1). Additionally, no 
asymmetry was detected in the funnel plot analysis, indicating no 
apparent publication bias (Appendix 10). 

To enhance clarity and facilitate interpretation, we present a 
circular heatmap in Figure 3 summarizing SUCRA rankings. This 
visualization provides a comparative overview of the effectiveness of 
  

         
FIGURE 2 

PRISMA flow diagram of the search process for studies. 
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each intervention in improving glycaemic control, lipid profiles, 
and body composition, reinforcing the study’s key conclusions. 
   

         
         

        
        

        
          

          
          

            
       

         
        

         
         

3.3 Glycaemic control 

A total of 43 studies, comprising 3,895 participants, reported 
changes in HbA1c levels. The network meta-analysis indicated that 
all exercise interventions significantly reduced HbA1c levels in 
prediabetic individuals compared with control groups (Figure 4). 
HIIT demonstrated the most pronounced reduction (-0.44%, 95% 
CI: -0.55 to -0.32, SUCRA 93.8%, Moderate confidence of evidence), 
followed by combined aerobic and AT+RT (-0.39%, 95% CI: -0.53 
to -0.25, SUCRA 80.7%, Moderate confidence of evidence), with AT 
having a weaker effect (-0.3%, 95% CI: -0.34 to -0.24, SUCRA 47.2%, 
Moderate confidence of evidence). Comparisons further revealed 
that HIIT significantly outperformed AT, RT, and TCEs in 
improving HbA1c levels (Appendix 8, Supplementary Table S8.1). 

A total of 66 studies involving 5,404 participants reported 
changes in FBG. Compared with control groups, all exercise 
  

                   
                    

                     
                    

                      
  

FIGURE 3 

Circular Heatmap of SUCRA Rankings for Exercise Interventions Across All Outcomes.Note: This circular heatmap presents the Surface Under the 
Cumulative Ranking Curve (SUCRA) scores for five exercise interventions (HIIT, AT+RT, AT, RT, and TCEs) across nine outcomes: glycemic control 
(HbA1c, FBG, 2hPG), blood lipids (TG, TC, HDL, LDL), and body composition indicators (BMI, BW, WC).The color gradient represents SUCRA rankings, 
where red indicates the highest ranking, signifying the most effective intervention for improving that outcome, while blue represents lower rankings. 
The numbers inside each segment denote the SUCRA scores (range: 0–100), with higher values indicating a greater probability of being the most 
effective intervention. 
           
  

       

   

   

   

   

   

   

   

   

   

   

TABLE 1 Summary of the number of studies and participants for 
each outcome. 

Outcome Number of studies Number of participants 

HbA1c 43 3895 

FBG 66 5404 

2hPG 48 3941 

TC 32 2868 

TG 34 3172 

HDL 34 3150 

LDL 32 3100 

BMI 40 3226 

BW 23 1534 

WC 18 1155 
            
         

           

HbA1c, hemoglobin A1c; FBG, fasting blood glucose; 2hPG, 2-hour postprandial glucose; TC, 
total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; BMI, body mass index; BW, body weight; WC, waist circumference. 
   frontiersin.org 
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modalities yielded significant improvements (Figure 5). HIIT was 
associated with the most substantial reduction in FBG (-0.61, 95% 
CI: -0.75 to -0.45, SUCRA 94.1%, Very low confidence of evidence), 
followed by RT (-0.52, 95% CI: -0.61 to -0.44, SUCRA 75.3%, Low 
confidence of evidence), while TCEs showed a relatively smaller 
effect (-0.48, 95% CI: -0.58 to -0.38, SUCRA 60.7%, Low confidence 
of evidence). Further comparisons showed that HIIT and RT were 
significantly more effective than AT in lowering FBG (Appendix 8, 
Supplementary Table S8.2). 

48 studies, comprising 3,941 participants, reported changes in 
2hPG. All exercise interventions produced significant reductions 
compared with control groups (Figure 6). HIIT showed the most 
significant reduction in 2hPG (-1.3, 95% CI: -1.6 to -0.93, SUCRA 
84.3%, Very low confidence of evidence), followed by TCEs (-1.3, 
95% CI: -1.5 to -1.0, SUCRA 83.5%, Low confidence of evidence), 
and AT+RT (-1.1, 95% CI: -1.5 to -1.0, SUCRA 63.5%, Low 
confidence of evidence). Further analyses indicated that HIIT was 
significantly more effective than RT in reducing 2hPG (Appendix 8, 
Supplementary Table S8.3). 

The CINeMA assessment revealed that the overall certainty of 
the evidence for HbA1c, FBG, and 2hPG ranged from very low to 
moderate (Appendix 9, Supplementary Figure S9.2). 
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3.4 Lipid profiles 

The effects of different exercise interventions on serum lipid 
concentrations were evaluated using HDL, LDL, TC, and TG levels. 
A total of 32 studies (involving 2,868 participants) reported changes 
in TC, 34 studies (3,172 participants) reported changes in TG, 34 
studies (3,150 participants) reported changes in HDL, and 32 
studies (3,100 participants) reported changes in LDL. The results 
of the network meta-analysis indicated that, except for TCEs, which 
had no significant effect on TC, all other exercise interventions 
significantly improved HDL, LDL, TC, and TG levels (Figures 7). 
Among them, AT+RT was the most effective in reducing TC (-0.46, 
95% CI: -0.61 to -0.32, SUCRA 98.3%, Moderate confidence of 
evidence), TG (-0.55, 95% CI: -0.69 to -0.42, SUCRA 99.9%, 
Moderate confidence of evidence), and LDL (-0.35, 95% CI: -0.53 
to -0.18, SUCRA 82.2%, Low confidence of evidence). HIIT was the 
most effective intervention for increasing HDL (0.20, 95% CI: 0.03 
to 0.36, SUCRA 87.3%, Moderate confidence of evidence). 
Additionally, HIIT also showed promising results in improving 
TC (-0.29, 95% CI: -0.41 to -0.13, SUCRA 64.9%, moderate 
confidence of evidence), TG (-0.28, 95% CI: -0.41 to -0.14, 
SUCRA 69.0%, Moderate confidence of evidence), and LDL 
  

              
            

        

FIGURE 5 

(a) Network map of the effect on FBG, and forest plot of network effect 
sizes for compared with control. (b). Forest plot of network effect sizes 
between different exercise interventions and control for FBG. 
  

             
           
         
    

FIGURE 4 

(a) Network map of the effect on HbA1c, and forest plot of network 
effect sizes for compared with control. (b) Forest plot of network 
effect sizes between different exercise interventions and control for 
HbA1c measured in percentage. 
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(-0.31, 95% CI: -0.55 to -0.08, SUCRA 68.7%, Moderate confidence 
of evidence). AT+RT was relatively effective in increasing HDL 
(-0.13, 95% CI: 0.02 to 0.2, SUCRA 64.2%, low confidence of 
evidence). Further comparisons showed that AT+RT was 
significantly more effective than AT, RT, and TCEs in improving 
TC and TG levels and more effective than AT in improving LDL 
levels (Appendix 8, Supplementary Tables S8.4-S8.7). 

The CINeMA assessment indicated that the overall quality of 
evidence for TC, TG, HDL, and LDL ranged from very low to 
moderate (Appendix 9, Supplementary Figures S9.4-S9.7). 
   

         
         
        
         

           
            

        
   

         
            

           
         

       
  

3.5 Weight loss 

A total of 23 studies (involving 1,534 participants) reported 
changes in BW, and another 18 studies (1,155 participants) 
reported changes in WC. The network meta-analysis results 
indicated that TCEs were the most effective intervention for 
reducing BW (-3.4, 95% CI: -6.4 to -0.51, SUCRA 79.1%, Very 
low confidence of evidence) and WC (-4.27, 95% CI: -7.53 to -0.98, 
SUCRA 84.6%, Low confidence of evidence) (Appendix 6, 
Supplementary Figures S6.8-S6.9). 

40 studies (3,226 participants) reported changes in body mass 
index (BMI). Unlike the results for BW and WC, compared to the 
control group, AT+RT (-0.89, 95% CI: -1.6 to -0.14, SUCRA 66.4%, 
Very low confidence of evidence) was the most effective 
intervention for reducing BMI (Appendix 6, Supplementary 
Figure S6.8). 
  

             
           
         
 

FIGURE 6 

(a) Network map of the effect on 2hPG, and forest plot of network 
effect sizes for compared with control. (b). Forest plot of network 
effect sizes between different exercise interventions and control for 
2hPG. 
  

                    
FIGURE 7 

Forest plot of network effect sizes between different exercise interventions and control for blood lipids (TG, TC, HDL, and LDL). 
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Our CINeMA assessment, a robust tool for evaluating evidence 
quality, reaffirms the reliability of our findings. The overall quality 
of evidence for BMI and WC, as shown in our analysis, ranged from 
very low to moderate, while the quality of evidence for BW was 
primarily very low to low (Appendix 8, Supplementary Figures 
S9.8-S9.10). 
     
    

         
         

        
         

         
      

       
       

       
        

     
      
       

             
         

         
         

          
        

      

3.6 Subgroup analysis of different 
intensities of exercise interventions 

To further investigate the differential effects of exercise intensity 
on various metabolic indicators, we conducted a subgroup analysis 
based on seven exercise intensity classifications. Specifically, aerobic 
training (AT) and resistance training (RT) were each categorized 
into three intensity levels: low-intensity aerobic training (LAT) and 
low-intensity resistance training (LRT), moderate-intensity aerobic 
training (MAT) and moderate-intensity resistance training (MRT), 
and high-intensity aerobic training (HAT) and high-intensity 
resistance training (HRT). Meanwhile, combined aerobic and 
resistance training (AT+RT) was divided into two subgroups: 
moderate-intensity aerobic and moderate-intensity resistance 
training (MAT+MRT) and moderate-intensity aerobic and high-
intensity resistance training (MAT+HRT). Additionally, HIIT and 
TCEs were analyzed as a whole, as they could not be classified by 
intensity. According to our findings, HIIT demonstrated the best 
intervention effects in controlling HbA1c, FBG, 2hPG, and HDL 
levels. MAT+HRT improved TC and TG levels most effectively. 
HAT yielded the most significant results in lowering LDL and 
improving BMI. Meanwhile, TCEs showed clear advantages in 
reducing BW and WC (Appendix 11). 
  

           
       

        
         

       
        

          
                
         

              
            

         
            
             

             
        

   
         
         

         

3.7 Meta-regressions 

To further test the robustness of the results, we conducted a 
meta-regression analysis to explore potential sources of 
heterogeneity for all outcome measures. The factors included 
publication year, mean age, percentage of male participants, BMI, 
sample size, intervention duration, training frequency, session 
duration, and weekly training time. The regression analysis 
showed that the reduction in FBG was associated with publication 
year (b = -0.29; 95% CI: -0.41 to -0.17) and BMI (b = 0.24; 95% CI: 
0.07 to 0.41), independent of other confounding factors. The 
reduction in 2hPG was related to BMI (b = 0.60; 95% CI: 0.22 to 
0.98) and training frequency (b = -0.36; 95% CI: -0.63 to 0.09), 
independent of other confounders. The reduction in TC was 
associated with BMI (b = 1.58; 95% CI: -0.33 to 0.01), while 
reductions in LDL (b = 0.14; 95% CI: 0.01 to 0.28) and body 
weight (BW) (b = -3.2; 95% CI: -5.5 to -0.68) were associated with 
the proportion of male participants, independent of other 
confounders (Appendix 12). 

Based on the regression analysis results, we performed a 
subgroup analysis. The results indicated that patients with lower 
BMI experienced more significant improvements in 2hPG and TC 
   Frontiers in Endocrinology 09
        
        

         
          

         
         

  

after exercise interventions. Similarly, higher training frequency was 
associated with enhanced improvements in 2hPG. In addition, 
exercise interventions appeared to have a more pronounced effect 
on LDL improvement in populations with a lower proportion of 
male participants. In comparison, a higher proportion of male 
participants was linked to more significant reductions in BW 
(Appendix 14). 
   

          
            

          
          

          
       

  

3.8 Sensitivity analyses 

To assess the robustness of our findings, we performed two 
types of sensitivity analyses: excluding 14 studies at high risk of bias 
(Appendix 12), and reanalyzing the data after adjusting all potential 
sources of heterogeneity to the median (Appendix 13). In both 
analyses, the results remained consistent with those of the primary 
network meta-analysis, supporting the stability of our 
main conclusions 
  

             
       

        
        

          
           

          
         

       
         

         
        

         
       

   
         

         
         

        
           

         
        

          
         

       
       

        
        

          
        

         
         

     

4 Discussion 

This study is the first to include HIIT and TCEs in a systematic 
network meta-analysis, comprehensively evaluating the efficacy of 
five different exercise interventions on glycemic control, lipid 
profile, and weight management in prediabetic patients. We 
found that HIIT was the most effective exercise for controlling 
blood glucose. HIIT showed a strong trend in improving lipid levels, 
particularly in increasing HDL levels, which was the most notable 
effect. These findings suggest that HIIT may have potential 
advantages in managing and preventing diabetes, warranting 
further exploration of its specific mechanisms and clinical value 
in future studies. Moreover, TCEs demonstrated certain benefits in 
improving glycemic control and weight management. Given the 
physical capabilities and safety concerns of elderly populations, we 
recommend traditional Chinese exercises as a moderate-intensity 
and effective alternative. 

Our meta-analysis revealed that HIIT was the best intervention 
for improving glycemic control. Recent reviews have shown that 
HIIT is superior to continuous aerobic exercise in improving 
insulin resistance and blood glucose control, particularly in 
individuals with type 2 diabetes or those at high risk of 
developing the disease (42, 43). This further supports HIIT’s 
advantage in blood glucose regulation, suggesting that exercise 
intensity may be more crucial than volume in reducing HbA1c 
(44, 45). From a metabolic perspective, HIIT significantly increases 
AMP/ATP concentrations within skeletal muscle cells, accelerates 
glycogen breakdown, and rapidly activates AMP-activated protein 
kinase (AMPK) and p38 mitogen-activated protein kinase (p38 
MAPK), which further enhances the expression and translocation 
of glucose transporter type 4 (GLUT4) on muscle cell membranes 
(46). Upregulation and enhancement of GLUT4 function improve 
glucose uptake in muscle tissues, promoting insulin sensitivity (46). 
Particularly during the recovery phase after exercise, muscles utilize 
glucose more efficiently, facilitating effective blood glucose 
   frontiersin.org 
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regulation. Additionally, AMPK and p38 MAPK phosphorylate and 
activate PGC-1a protein, promoting mitochondrial biogenesis and 
lipid metabolism, further improving muscle cells’ energy 
metabolism efficiency (47, 48). From a cardiovascular perspective, 
HIIT shows more significant potential for controlling blood glucose 
(49). HIIT’s recovery periods allow the body to recover quickly 
from high-intensity stress, preventing the excessive accumulation of 
reactive oxygen species (ROS) (50). Compared with moderate-

intensity continuous training (MCT), HIIT effectively reduces 
oxidative stress damage to endothelial cells by shortening the 
time window of ROS generation (51). Additionally, a study by 
Martins et al. (52) showed that, for individuals at high risk of type 2 
diabetes, HIIT achieved similar improvements in HbA1c as AT+RT 
within a shorter training period, demonstrating its unique clinical 
advantages. However, for elderly or low-physical-capacity 
populations, high-intensity exercise may increase the risk of 
injury and strain the cardiovascular system, highlighting the need 
for safer exercise options. To address this, we included TCEs in the 
network meta-analysis and found that TCEs have the potential to 
improve glycemic and lipid metabolism in prediabetic patients. 
Compared with HIIT, TCEs, characterized by low intensity and 
emphasizing balance and flexibility, are better suited for 
these populations. 

Interestingly, we found that TCEs had a similar effect to HIIT in 
improving 2hPG levels. Traditional Chinese exercises focus on slow, 
rhythmic movements, mental regulation, and controlled breathing, 
helping practitioners meditate during exercise (53). This process 
effectively alleviates anxiety, improves mental health, and helps 
reduce negative physiological responses triggered by stress (53). 
Studies have shown that psychological regulation also positively 
affects  blood  glucose  control  (54).  TCEs  activate  the  
parasympathetic nervous system while inhibiting excessive 
sympathetic nervous activity, reducing the secretion of stress 
hormones such as cortisol and norepinephrine, improving insulin 
sensitivity, and reducing insulin resistance (55–57). At the same 
time, controlled breathing improves blood circulation and oxygen 
transport, promoting aerobic metabolism and enhancing glucose 
and fatty acid utilization by cells (58). In our study, AT+RT was the 
most effective intervention for reducing HbA1c besides HIIT. 
Previous studies have indicated that AT+RT is more effective in 
reducing HbA1c than AT or RT alone, which aligns with our 
findings (59, 60). The likely reason is that AT and RT improve 
HbA1c through different physiological mechanisms. Combining 
both training methods generates additional metabolic benefits 
through synergistic effects in different metabolic pathways, 
leading to more effective glycemic regulation and HbA1c 
improvement (61). 

Most prediabetic patients also exhibit lipid abnormalities and 
other metabolic disorders, which may increase the risk of 
progression to type 2 diabetes (62, 63). Therefore, in this study, 
lipid metabolism indicators were analyzed as secondary outcomes 
to provide a more comprehensive assessment of metabolic 
characteristics in prediabetes. Our meta-analysis results indicated 
that AT+RT was the most effective intervention for improving lipid 
profiles, particularly in reducing TC, TG, and LDL levels, consistent 
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with the findings of Zhang (24) and Schwingshackl (23). The 
superiority of AT+RT is biologically plausible. RT improves lipid 
metabolism primarily through activation of the Akt/mTOR 
pathway, thereby enhancing protein synthesis and promoting 
lipid clearance (64). In contrast, AT activates the AMPK–PGC-1a 
signaling axis, which enhances mitochondrial function and fatty 
acid oxidation (65). Importantly, evidence indicates that AT+RT 
does not impair anabolic signaling. Phosphorylation of Akt and the 
fractional synthesis rate (FSR) of myofibrillar proteins following 
concurrent training are comparable to RT alone, suggesting 
preserved hypertrophic responses (66). More critically, a 
synergistic effect appears to occur in mitochondrial adaptation. 
Compared to either modality alone, AT+RT may further enhance 
mitochondrial biogenesis in skeletal muscle, particularly when RT 
precedes AT. This phenomenon may be influenced by the 
sequence-dependent activation of mTOR and PGC-1a pathways 
(67). These findings support the superior metabolic and lipid profile 
benefits observed with AT+RT. 

Regarding HDL, HIIT showed the most significant intervention 
effect. The superior effectiveness of HIIT may be attributed to 
exercise intensity as a critical determinant of energy substrate 
utilization during exercise (68). HIIT, compared to moderate-

intensity continuous training, more effectively enhances adipocyte 
function and improves glycogen breakdown, thereby reducing 
glycogen conversion into fat. Although HIIT excelled in 
improving lipid metabolism, we did not observe notable 
advantages in reducing body weight and waist circumference. 
This may be because changes in body weight depend primarily on 
overall energy expenditure rather than solely on fat oxidation (69). 
Additionally, HIIT offers greater efficiency in the dose-response 
relationship by shortening the required exercise time to achieve the 
same effect, making it more sustainable for long-term adherence in 
prediabetic populations (70). However, one meta-analysis reported 
adverse events in 34% of the included studies, with most related to 
high-intensity interval training, primarily musculoskeletal injuries, 
whereas moderate-intensity exercise resulted in fewer injuries (42). 
Lee et al (17). found that physical function limitations are common 
among older adults with prediabetes. Among prediabetic patients 
aged ≥53 years, 32% had activity limitations, 56% had lower limb 
restrictions, over one-third reported chronic pain, and one-quarter 
required treatment for arthritis. Thus, in clinical practice, exercise 
intervention should be personalized based on the patient’s 
functional status and comorbidities. Moreover, exercise intensity 
and total energy expenditure play a crucial role in the lipid-
improving effects of aerobic exercise. Moderate-intensity aerobic 
exercise has been shown to significantly increase HDL levels (71). A 
previous meta-analysis confirmed that, compared to other exercise 
modalities, moderate-intensity aerobic training, due to its relatively 
higher energy expenditure, effectively increases adiponectin levels in 
both prediabetic and diabetic adults (72). Adiponectin, in turn, 
promotes the hepatic uptake of HDL cholesterol and facilitates 
reverse cholesterol transport (73), a mechanism that is considered 
potentially important for preventing cardiovascular risks associated 
with diabetes and metabolic disorders (74). Additionally, 
adiponectin activates the AMPK pathway via its receptors, which 
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further enhances glucose uptake and fatty acid oxidation, thereby 
improving insulin sensitivity (75). However, the improvement of 
LDL may require higher-intensity aerobic exercise (71). Our 
subgroup analysis yielded similar findings, as HAT was superior 
in reducing LDL levels, while low-to-moderate intensity TCEs 
demonstrated a better trend in increasing HDL levels. In Ma et al 
(76).’s study, TCEs and AT had similar overall effects. However, 
TCEs outperformed AT in regulating HDL levels in prediabetic 
patients, while AT was more effective in reducing HbA1c, which 
aligns with our results. However, Ma et al. noted that the glycemic 
improvement effect of TCEs appeared later than that of AT. This 
observation was supported by Yu et al. (20), who found that TCEs 
required more than six months to achieve significant glycemic 
improvement. However, only one study in the subgroup analysis 
on HbA1c involved a three-month intervention period, which may 
not fully capture the short-term effects, and this result should be 
interpreted with caution. Our meta-regression analysis revealed no 
significant correlation between exercise intervention duration and 
improvements in glycemic and lipid outcomes, suggesting that 
short-term TCEs may also confer significant health benefits. This 
finding aligns with Dong et al.’s study (19), which similarly found 
that short-term TCEs significantly improved glycemic and lipid 
indicators, further validating our conclusions. 

Previous meta-analyses (19, 20, 77, 78) on TCEs did not include 
BW, BMI, and WC as evaluation metrics despite the significant 
importance of these factors in assessing the overall metabolic health 
and cardiovascular risk of prediabetic patients (79). Our meta-

analysis found that TCEs were the most effective intervention for 
reducing BW and WC. Unlike other exercise modalities, traditional 
forms of exercise not only emphasize physical movement but also 
psychological well-being, which has been linked to improved sleep 
quality, emotional stability, and stress regulation. These factors may 
contribute to weight management by lowering cortisol levels and 
reducing stress-induced overeating (80). However, such traditional 
exercise practices often occur within a broader lifestyle context, 
where individuals may gradually adjust their dietary habits or adopt 
healthier behaviors over time. This is particularly relevant in 
Eastern cultures, where traditional exercise habits are closely 
associated with comprehensive lifestyle changes, including dietary 
improvements. Additionally, the number of AT+RT studies 
included in our analysis was limited, and none reported WC or 
BW data. Therefore, while our findings highlight the potential 
benefits of TCEs in weight management, these results should be 
interpreted with caution, and future studies should incorporate 
comprehensive lifestyle assessments. Beyond weight management, 
the suitability of different exercise modalities for prediabetic 
individuals is also an important consideration. In clinical trials 
such as the DPP (10) and the Finnish Diabetes Prevention Study 
(81), adults with multiple comorbidities and functional limitations 
were excluded, as these conditions might interfere with their 
participation in the interventions. Thus, the trial results may not 
fully represent the needs of these high-risk populations (82). Even 
though most lifestyle interventions involve moderate-intensity 
aerobic exercises such as jogging, cycling, or brisk walking, 
prediabetic individuals may find it challenging to engage in such 
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activities. Additionally, certain types of aerobic exercises, such as 
jogging, while beneficial for cardiovascular and respiratory health, 
may be challenging to manage in terms of intensity and volume and 
are unsuitable for frail elderly individuals or those with chronic 
illnesses. Therefore, as a gentle, safe, and sustainable exercise 
intervention, TCEs may offer fitness and health maintenance 
advantages that other aerobic exercises cannot achieve. From a 
public health perspective, TCEs also hold significant potential for 
promoting diabetes care and prevention within community 
settings (77). 
    

          
       

          
     

           
        

       
         

         
         

        
        

          
      

          
             
           

          
            

          
       

          
           

           
          
         

         
       
         

           
          

       
          

        
       

         
        

           
         

        

4.1 Strengths and limitations 

To our knowledge, this study is the most comprehensive and 
up-to-date systematic review and network meta-analysis evaluating 
the effects of various exercise modalities, including HIIT and TCEs, 
on adults with prediabetes. These exercise interventions  are
recommended by the ADA and the ACSM as part of diabetes 
management and health risk reduction strategies (21). We 
employed the CINeMA framework for quality assessment, 
ensuring the credibility of the study results. Additionally, we 
conducted regression analyses on several key variables to examine 
the influence of potential moderating factors on exercise outcomes, 
further enhancing the generalizability of the findings. Finally, 
sensitivity analyses were performed, adjusting all potential sources 
of heterogeneity to the median and reanalyzing the data, thereby 
verifying the robustness of the conclusions. 

However, this study has several limitations. First, the quality of 
the included studies was often rated as a moderate risk of bias, with 
the certainty of evidence ranging from very low to moderate. Many 
of the included RCTs did not report allocation concealment or 
blinding of participants, making it difficult to assess the risk of bias. 
This inadequate reporting may have introduced selective bias in the 
study design and implementation. Although we conducted 
sensitivity analyses excluding studies at high risk of bias, and 
found that the main results remained robust, the overall risk of 
bias across studies was moderate to high, and our findings should 
therefore be interpreted with caution. Second, the number of studies 
involving AT+RT, HIIT, and TCEs was limited, which imposes 
certain restrictions on the reliability and generalizability of our 
findings. Larger, well-designed randomized controlled trials in 
high-risk populations are needed to further validate the efficacy 
and safety of these interventions. Third, most studies on TCEs did 
not describe exercise intensity in their designs. Although TCEs are 
generally classified as low- to moderate-intensity exercises, this 
study’s lack of specific intensity data limits further exploration of 
the optimal exercise intensity for prediabetic patients undergoing 
TCEs interventions. Future research should report standardized 
intensity metrics, such as metabolic equivalents (METs) or heart 
rate zones, to enhance comparability and reproducibility across 
studies. Fourth, in this meta-analysis, we found that most of the 
included studies did not categorize the different subtypes of 
prediabetes (IGT, IFG, or HbA1c). Additionally, some studies 
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included participants based on only one of these criteria, which 
could have led to the inclusion of subjects with other undiagnosed 
glycemic abnormalities. This subtype ambiguity may have 
contributed to the confounding of results, affecting the precise 
evaluation of the effects of different exercise interventions. Due to 
these factors, this study could not conduct a subgroup analysis of 
different  prediabetes  subtypes,  potentially  limiting  the  
understanding of how each subtype responds to exercise 
interventions. Future studies should ensure transparent 
classification and detailed reporting of prediabetes subtypes, and 
may also explore the integration of continuous glucose monitoring 
with artificial intelligence (CGM-AI) to identify dynamic glycaemic 
patterns and latent metabolic sub-phenotypes, thereby informing 
more precise and mechanism-based personalized exercise 
prescriptions (83). 
  

       
       

         
           
         

         
         

        
          
        

       
  

5 Conclusions 

In this comprehensive meta-analysis, we confirmed the 
effectiveness of various exercise interventions in improving 
glycemic and lipid control in prediabetic patients. Evidence of 
very low to moderate quality suggests that HIIT and AT+RT are 
likely the most effective exercise modalities for enhancing glucose 
and lipid metabolism in prediabetic individuals. For elderly patients 
with limited physical activity, reduced exercise capacity, or multiple 
comorbidities, we recommend moderate TCEs as the preferred 
exercise option. Our study provides the latest evidence to optimize 
exercise intervention strategies for prediabetic patients, offering a 
sc ient ifi c  bas i s  for  fu ture  c l in ica l  appl i ca t ions  and  
guideline development. 
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