
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Mengsi Hu,
Shandong Provincial Hospital, China

REVIEWED BY

Jingtong Zhang,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Wang Xianjin,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Jikai Liu

14111270004@fudan.edu.cn

Yidong Fan

fanyd@sdu.edu.cn

RECEIVED 03 November 2024

ACCEPTED 11 February 2025
PUBLISHED 03 March 2025

CITATION

Chang Q, Zhao S, Sun J, Guo W, Yang L,
Qiu L, Zhang N, Fan Y and Liu J (2025)
Identification of a novel prognostic and
therapeutic prediction model in clear
cell renal carcinoma based on Renin-
angiotensin system related genes.
Front. Endocrinol. 16:1521940.
doi: 10.3389/fendo.2025.1521940

COPYRIGHT

© 2025 Chang, Zhao, Sun, Guo, Yang, Qiu,
Zhang, Fan and Liu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 March 2025

DOI 10.3389/fendo.2025.1521940
Identification of a novel
prognostic and therapeutic
prediction model in clear cell
renal carcinoma based on Renin-
angiotensin system related genes
Qinzheng Chang, Shuo Zhao, Jiajia Sun, Wei Guo, Lin Yang,
Laiyuan Qiu, Nianzhao Zhang, Yidong Fan* and Jikai Liu*

Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
Background: Clear cell renal cell carcinoma is the most predominant type of

renal malignancies, characterized by high aggressiveness and probability of

distant metastasis. Renin angiotensin system (RAS) plays a crucial role in

maintaining fluid balance within the human body, and its involvement in

tumorigenesis is increasingly being uncovered, while its role in ccRCC

remains unclear.

Methods:WGCNA was used to identify RAS related genes. Machine learning was

applied to screen hub genes for constructing risk model, E-MTAB-1980 dataset

was used for external validation. Transwell and CCK8 assays were used to

investigate the impact of SLC6A19 to ccRCC cells.

Results: SLC6A19, SLC16A12 and SMIM24 were eventually screened to construct

risk model and the predictive efficiency for prognosis was validated by internal

and external cohorts. Moreover, the differences were found in pathway

enrichment, immune cell infiltration, mutational landscapes and drug

prediction between high and low risk groups. Experimental results indicated

that SLC6A19 could inhibit invasion and proliferation of ccRCC cells and GSEA

pinpointed that SLC6A19 was intimately correlated with fatty acid metabolism

and CPT1A.

Conclusion: The risk model based on the three RAS-related genes have a robust

ability to predict the prognosis and drug sensitivity of ccRCC patients, further

providing a valid instruction for clinical care.
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Introduction

Renal cell carcinoma (RCC) is one of the most common

malignancies in the urogenital system and ranks among the 10

most prevalent cancers worldwide (1). The main histologic subtypes

of RCC include clear cell renal cell carcinoma (ccRCC), papillary

renal cell carcinoma (pRCC), and chromophobe renal cell

carcinoma (chRCC), with ccRCC accounting for approximately

70% of all RCC cases diagnosed (2). Patients with early-stage ccRCC

typically achieve complete or partial remission through

nephrectomy; however, up to a third of these cases may still

progress to advanced stages and develop distant metastasis (3, 4).

ccRCC is responsible for the majority of kidney cancer deaths, and

the 5-year overall survival rate is less than 20% (5). Moreover, due to

the limited sensitivity of ccRCC to radiotherapy and chemotherapy,

finding effective treatments for patients with distant metastasis

poses a significant challenge. Although targeted therapies,

including VEGFR inhibitors, mTOR inhibitors (such as

everolimus), and immune checkpoint inhibitors, have significantly

improved the prognosis for advanced patients, some patients are

prone to developing resistance to these drugs and thus do not

benefit from them (4, 6). In line with advancements in genomic

sequencing technology, predictive models for outcomes and drug

sensitivity in ccRCC should be developed at the genetic level.

The Renin-Angiotensin System (RAS) is a crucial biochemical

pathway that maintains electrolyte balance, arterial blood pressure, and

extracellular volume (7). The RAS primarily consists of

angiotensinogen (AGT), renin, angiotensin-converting enzyme 1

(ACE1), and angiotensin-converting enzyme 2 (ACE2). The initial

step in the RAS cascade involved renin secreted by the kidney, which

cleaves angiotensinogen, primarily synthesized by hepatocytes, to form

the decapeptide angiotensin I (Ang I). Ang I is then further cleaved by

ACE1 to produce the octapeptide Ang II (8). Ang II, the final effector of

the RAS, modulates blood pressure by specifically binding to

angiotensin II receptor type 1 (AGTR1) and angiotensin II receptor

type 2 (AGTR2) (9). A vital alternative pathway within the RAS is the

conversion of Ang II to Ang(1–7) by ACE2, which counteracts the

effects of Ang II by acting on the Mas receptor(MASR) (10). Currently,

there is a growing body of research exploring the interaction between

the RAS and various neoplasms, such as pancreatic cancer,

glioblastoma, endometrial cancer, lung cancer, and breast cancer (7,

8, 11, 12). The core components of the RAS may influence tumor

angiogenesis, metastasis, and apoptosis by regulating multiple signaling

pathways, and RAS inhibitors are anticipated as potential novel agents

for the treatment of advanced malignancies (13, 14). Several studies

have also highlighted the crosstalk between the RAS and renal

disorders, including renal cancer, given that the kidney is one of the

primary target organs of the RAS (15, 16). Therefore, in this study, we

aim to develop a robust predictive model for ccRCC using diverse

bioinformatics algorithms based on the RAS pathway.

SLC6A19 is a Na+-coupled transporter for neutral amino acids,

plays a pivotal role in the intestinal absorption of amino acids

derived from dietary proteins and in the renal reabsorption of
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circulating amino acids filtered at the glomerulus (17). It is

instrumental in sustaining amino acid homeostasis in humans.

Loss-of-function mutations in this transporter can precipitate a

range of amino acid metabolism disorders, with the most prevalent

being Hartnup disease (18). In this study, we revealed that SLC6A19

acts as a significant gene associated with the RAS pathway, playing a

crucial role in regulating the progression of ccRCC.
Materials and methods

Data collection

The expression profiles of bulk RNA-seq for ccRCC were

downloaded from TCGA database (https://portal.gdc.cancer.gov/,

532 primary tumor and 72 normal samples), GSE53757(72 tumor

and 72 normal samples) dataset in GEO database(https://

www.ncbi.nlm.nih.gov/geo/) and E-MTAB-1980 cohort(101

tumor samples) in ArrayExpress database(https://www.ebi.ac.uk/

arrayexpress/).For bulk RNA-seq in TCGA, the log2(TPM+1)

normalization of raw count matrix was adopted. The clinical and

survival data of ccRCC was collected from TCGA and ArrayExpress

databases. The scRNA-seq data was obtained from GSE159115

dataset containing 7 ccRCC and 6 normal samples in GEO database.
Calculation of RAS score

A gene set of the Renin-Angiotensin System (RAS), comprising 17

signature genes, was extracted from the “c2.cp.KEGG_RENIN_

ANGIOTENSIN_SYSTEM” collection in MsigDB database(https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp) and single sample gene

set enrichment analysis(ssGAEA) was utilized to calculate RAS

score based on expression level of 17 RAS signature genes in TCGA

database via “GSVA” package.
Weighted gene co-expression
network analysis

Weighted Gene Co-expression Network Analysis (WGCNA)

was utilized to identify co-expression gene modules and to screen

for the module most correlated with the RAS score. The analysis

was based on an expression matrix downloaded from the TCGA-

KIRC item. Initially, we calculated the median absolute deviation

(MAD) for each gene and selected the top 5000 for further analysis.

This step was performed to filter out hypovariant genes.

Subsequently, a scale-free co-expression network was constructed

using the ‘WGCNA’ package with a soft threshold parameter of 6,

resulting in the confirmation of seven modules. Finally, a

correlation analysis was conducted between the gene modules and

the RAS score. Genes within the module that showed the highest

relevance to the RAS score were selected for subsequent analysis.
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Differential expression analysis

Differentially expressed genes (DEG) were identified through

“limma” package and the selection criteria for differential genes

were an absolute value of the log2 fold change (|log2 FC|) greater

than 1 and an adjusted p-value less than 0.05.
Screening flow of key genes for
prognosis analysis

We performed an intersection of genes within the green module

identified by WGCNA analysis with those that were differentially

expressed between tumor and normal groups, as well as between

groups with high and low RAS scores, using the Venn diagram

approach. The genes resulting from this intersection were then

subjected to univariate Cox regression analysis to preliminarily

identify potential prognostic markers. Subsequently, two machine

learning algorithms, the Least Absolute Shrinkage and Selection

Operator (Lasso) regression and the Random Forest(RF) analysis,

were employed to further identify more robust prognostic genes

depending on “glmnet” and “randomForestSRC “ R packages

respectively. For Lasso regression, the model was specified with

alpha = 1, the family parameter was set to “cox” and the nlambda

parameter was set to 100.To determine the optimal regularization

parameter (lambda), we conducted cross-validation using the

“cv.glmnet” function and we considered the lambda value

corresponding to the 1-standard error rule (lambda.1se).With

regard to RF, we use the “rfsrc” function to fit a random forest

model to survival data and the top 20 most important genes are

selected for further analysis. Eventually, by intersecting the gene sets

obtained from two above algorithms, we successfully pinpointed the

key genes.
Construction and validation of risk model

We randomly divide the 532 patients in TCGA-KIRC into

training and testing cohorts in a 1:1 ratio. The key genes selected in

previous step were firstly included in multivariate cox regression

analysis based on expression and survival data in training cohort for

constructing predictive risk model utilizing “survminer” package

and the genes with following coefficient were determined while the

genes lacking coefficient were excluded. The risk score of each

patient was eventually calculated following the formula: Risk score=

∑n i Coefi * Expression (Xi). The “Coefi” was defined as the

coefficient of each gene and “Expression (Xi)” was defined as the

expression value of each gene. To evaluate the predictive efficiency

of risk model, K-M analysis, time-dependent ROC analysis and

principal component analysis(PCA) were performed. Furthermore,

we calculated the risk scores for patients in both the testing and

entire TCGA cohorts to internally validate the predictive accuracy

of our risk model. For external validation, we utilized the E-MTAB-

1980 cohort.
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Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) pathway enrichment analyses were conducted for

differentially expressed genes (DEGs) identified between the high

and low-risk groups, utilizing the ‘clusterProfiler’ package.

Additionally, Gene Set Enrichment Analysis (GSEA) was

performed on DEGs between different risk groups and DEGs

between groups with high and low SLC6A19 expression. For the

GSEA, ‘Hallmark’ gene sets were downloaded from the MsigDB

database and analyzed using the ‘clusterProfiler’ package.
Immune infiltration analysis

The CIBERSORT algorithm was used to calculate the immune

infiltration fractions of 22 immune cells in both high and low-risk

groups. The signatures for these 28 immune cells and 13 immune-

related pathways, along with their associated genes, were derived

from the articles with PMID: 28052254 and PMID: 30594216,

respectively (19, 20), ssGSEA analysis was conducted to calculate

their immune scores.
Somatic mutation analysis and drug
sensitivity analysis

Somatic mutation data of ccRCC was downloaded from the

TCGA database using the ‘TCGAbiolinks’ package, with the data

category selected as ‘Simple Nucleotide Variation’. To visualize the

mutation status of high-frequency mutant genes, waterfall charts

were generated using the ‘maftools’ package.

Drug sensit ivity analysis was performed using the

“oncoPredict” package. The operating principle involves

establishing a training model based on existing cell line

expression matrices and drug sensitivity data, which can be

obtained from databases such as GDSC, CTRP, or CCLE. This

model is then used to make predictions on new expression matrices.

Drug sensitivity was quantified as the half-maximal inhibitory

concentration (IC50), with smaller values indicating greater

sensitivity to the drug.
Single-cell RNA-seq analysis

The single-cell RNA sequencing (scRNA-seq) data were

imported into Seurat objects using the Seurat R package,

facilitating advanced data analysis and visualization. We

performed cell quality control analysis and cells that failed to

meet the criteria (nFeature_RNA > 200 & nFeature_RNA < 2500

& mitochondrial genes<5%) were excluded (Supplementary

Figure 4). We employed the “LogNormalize” method to

standardize the seurat object and the top 2000 highly variable

genes were identified using normalized data. Principal component
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analysis (PCA) was conducted using the RunPCA function, and

batch effects were removed using the harmony method. The top 10

principal components were selected based on the ElbowPlot

function for cell clustering utilizing the FindNeighbors,

FindClusters, and RunUMAP functions. We utilize the

FindAllMarkers function to systematically identify differentially

expressed genes that serve as markers for each distinct cell

cluster. The cell types were preliminarily annotated using the

SingleR R package and further verified by manual tagging using

classic cell markers through Cell Marker2.0 website.
Cell lines and culture

The 786O and A498 cancer cell lines were purchased from

CellSource China. Their mycoplasma contamination status was

routinely checked before experiments. All cell lines were cultured

in media containing 10% fetal bovine serum (ExCell Bio, China)

and 1% penicillin and streptomycin (KeyGen Biotech, China). They

were incubated at 37°C with 5% CO2.
Cell transfection

To perform cell transfection, seed cells until the fusion degree

reaches 30%–50%. Prepare a transfection mixture by mixing 4 µg of

plasmid DNA or 20 nM siRNA with 200 µL of transfection buffer

and add 8 µL of jetPRIME reagent (Polyplus transfection,

101000046). After thorough mixing, let it stand for 10 minutes to

form complexes. Add the mixture to the culture dish, shake gently,

and incubate at 37°C with 5% CO2. Monitor cell growth and

morphology. After 48 or 72 hours, harvest cells to measure RNA

and protein expression levels.
Cell counting kit-8 assay

The cells were distributed into 96-well plates at an appropriate

density, typically ranging from 1x10^4 to 1x10^5 cells per well, and

cultured under conditions of 37°C and 5% CO2. At 24, 48 and 72

hours post-cell culture initiation, 10 µL of CCK-8 reagent was added

to each well. The plates were then allowed to react for 2 hours before

measuring the absorbance values at 450 nm at each of these time

points to evaluate the cell viability.
Transwell assay

The transwell assay was used to estimate the cell migration and

invasion abilities of various groups. A suspension containing

5x10^5 cells resuspended in serum-free medium was inoculated

into the upper chamber. For the migration assay, the chamber was

without matrix gel; for the invasion assay, it was filled with matrix

gel. Then, 500 µL of complete medium was added to the lower

chamber. The cells were cultured for 24 hours at 37°C, 5% CO2, and

90% humidity. After incubation, the cells that had migrated to the
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lower surface of the membrane were fixed for 30 minutes using 4%

paraformaldehyde and subsequently stained with crystal violet for

10 minutes. Finally, the wells were washed three times to remove

non-migrated cells, and the migrated cells were observed and

quantified using a microscope and ImageJ software (National

Institutes of Health, Bethesda, MD, USA).
Statistical analyses

All statistical analyses were conducted using R software (version

4.3.0) and GraphPad Prism (Version 9.0). For comparing

continuous variables that follow a normal distribution, Student’s

t-test was employed, while the Wilcoxon test was used for non-

parametric variables. The Spearman correlation analysis was

applied to determine the correlation coefficient between two

continuous variables. Finally, a p-value of less than 0.05 was

considered statistically significant.
Results

Expression and clinical role of RAS
signature genes in ccRCC

The expression profile of 17 signature genes was extracted from

the TCGA database. Initially, we compared the expression levels of

these 17 genes in tumor and normal tissues of ccRCC patients and

observed that the majority of these genes exhibited increased

expression in tumor tissue (Figure 1A). However, from the

Kaplan-Meier curves of these 17 genes, it was observed that most

genes were favorable to the overall survival of ccRCC patients

(Supplementary Figure 1). To further investigate the relationships

among these RAS signature genes, we conducted a correlation

analysis and generated a heatmap, which overall revealed a

positive correlation trend (Figure 1B). Additionally, the waterfall

plot revealed the mutation status of the 17 RAS signature genes in

ccRCC, with ANPEP, CTSA, ACE, ENPEP, and MME being the

only genes with a significantly higher mutation rate (Figure 1C).

Subsequently, the RAS score was determined using the ssGSEA

algorithm to evaluate the collective impact of these 17 genes on

ccRCC. The heatmap analysis indicated that the RAS score was

intimately correlated with a range of clinical parameters, including

T stage, M stage, AJCC stage, gender, and survival events

(Figure 1D). Sankey plot was also drawn and demonstrated that a

high RAS score mainly indicates earlier stage and alive events for

ccRCC patients (Figure 1E). To verify the prognostic role of the RAS

score, we performed Kaplan-Meier analysis, and the results showed

that a higher score significantly predicted a better prognosis for

ccRCC patients (Figure 1F, P<0.001).
Identification of the RAS related genes

To explore the underlying function of the RAS pathway in

ccRCC, we performed WGCNA to identify the gene module that is
frontiersin.org
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highly related to the RAS score. Initially, we selected the top 5,000

genes with the highest absolute median difference ranking from the

532 tumor samples of the TCGA-KIRC cohort. The soft threshold

power was set to 6 to achieve a scale-free topology (scale-free R2 =

0.9) (Figure 2A). Subsequently, co-expressed genes were clustered

into the same module, and seven modules were eventually

confirmed. The relationship among these modules was presented

in an eigengene adjacency heatmap (Figure 2B). We interacted

seven eigengene modules with RAS score and screened the most
Frontiers in Endocrinology 05
correlated module with phenotype, result showed that the MEgreen

module exhibited statistically significant positive correlation with

RAS score (Figure 2C, R = 0.7, P = 3e-80).We then conducted

differential gene analysis and filtered two types of differentially

expressed genes, one between the tumor and normal groups

(Figure 2D), and the other between the high and low RAS score

groups (Figure 2E). In the end, we intersect two kinds of DEGs with

genes in MEgreen module and 68 RAS related genes(RRGs) were

identified (Figure 2F).
FIGURE 1

Expression and clinical role of RAS signature genes based on TCGA database. (A) Differential expression of RAS signature genes between tumor and
normal tissue of KIRC cohort; (B) Correlation heatmap showing the relationship between RAS signature genes; (C) The mutation of RAS signature
genes in KIRC cohort; (D) Heatmap showing the correlation between RAS score and clinical parameters; (E) The Sankey diagram shows the
connection degree between the RAS score and clinical parameters of KIRC; (F) Kaplan-Meier curve showing the impact of RAS score on survival of
ccRCC patients. *p < 0.05, **p < 0.01, ***p < 0.005. ns, not significant.
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Construction and validation of prognostic
risk model based on RRG

For the sake of constructing a robust prognostic risk model, the

TCGA-KIRC cohort was randomly divided into training and testing

sets. In the training set, 60 prognostic genes were screened from 68

RAS-related genes (RRGs) through univariate Cox regression analysis

(Supplementary Figure 2). Afterwards, 60 prognosis genes acquired

from last step were recruited for further digging key genes using Lasso

regression and Randomforest method respectively, with the former

screening out 16 genes (Figures 3A, B) and the latter selecting 20 genes

(Figure 3C) that were more conducive to predicting prognosis of

ccRCC. The common genes obtained from both methods were

subjected to multivariate Cox regression analysis (Figure 3D). Three
Frontiers in Endocrinology 06
hub genes SLC6A19, SLC16A12 and SMIM24 were determined, risk

score was attained followed the formula: (-0.17×SLC6A19 expression)

+ (−0.12 × SLC16A12 expression) + (−0.13 × SMIM24 expression). For

follow-up analysis, we divided the risk score into high and low groups

with the median as the cutoff. Kaplan-Meier curves suggested that the

prognosis of the high-risk scoring group was significantly worse than

that of the low-risk scoring group in training (Figure 4A, P<0.0001),

testing (Figure 4B, P=0.0014) and whole cohorts (Figure 4C, P<0.0001).

The risk distribution map showed that higher risk scores correlated

with more deaths in ccRCC patients, and the expression of the three

hub genes was upregulated in the low-risk group (Figures 4D-F). In

order to validate the predictive efficiency of the risk model, time-

dependent ROC analysis was performed, with areas under the curve

(AUC) of 1-year, 3-year, and 5-year being 0.74, 0.73, and 0.74 in the
FIGURE 2

Identification of the RAS related genes via weighted gene coexpression network analysis. (A) The scale-free fit index(left panel) and the average
connectivity of soft threshold power(right panel) are confirmed for KIRC cohort; (B) Eigengene adjacency heatmap showing correlations between
seven modules; (C) The correlation between modules and RAS score; (D) Differentially expressed genes between tumor and normal tissue of ccRCC;
(E) Differentially expressed genes between high RAS score and low RAS score groups. (F) Venn diagram showing common genes between green
module and two kinds of DEGs.
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training set (Figure 4G), showing a robust prediction ability. Similarly,

a high predictive value was observed in the testing set and the entire

cohort (Figures 4H, I). Principal component analysis (PCA) was

applied to confirm that the risk score could significantly distinguish

patients, demonstrating that the risk model based on the expression

profile of the three hub genes was a strong prognostic marker

(Figures 4J-L). For further validation of the predictive value of the

risk model, external validation was performed in the E-MTAB-1980

cohort. The ROC curve showed AUCs of 1-year, 3-year, and 5-year to

be 0.78, 0.81, and 0.79, respectively (Figure 5A). Kaplan-Meier curves

also manifested that the prognosis of the high-risk group was

significantly worse than that of the low-risk group (Figure 5B).
Associations between risk score and
clinical characteristics

To eliminate the influence of other factors on the risk model

and confirm its independent predictive ability, the model and other

clinical variables were included in univariate and multivariate Cox

regression analyses. The results demonstrated that the risk model

could serve as an independent marker to predict the prognosis of

ccRCC patients (Figures 6A, B). Additionally, we developed a

nomogram that estimates the survival probability of patients
Frontiers in Endocrinology 07
(Figure 6C). Calibration curves and decision curve analysis

(DCA) showed the accuracy and predictive ability of the

nomogram for 1-, 3-, and 5-year survival rates of ccRCC patients

(Figures 6D, E). A Chi-square test was used to verify the

correlations between the risk score and clinical parameters such

as TNM stage, indicating that among patients with a high-risk

score, the proportion of patients with advanced clinical stage was

higher compared to the low-risk score group (Figure 6F).

Furthermore, patients were grouped based on stage, and the risk

scores between different groups were compared. The findings

showed that the risk score was higher in the population with an

advanced stage (Figure 6G). The univariate and multivariate COX

regression also proved that this risk model served as an independent

prognostic indicator in the E-MTAB-1980 cohort (Figures 5C, D).

Moreover, the nomogram model was also constructed in the E-

MTAB-1980 cohort (Figure 5E), calibration curves and DCA

showed the accuracy and ability of this model (Figures 5F, G).
Stratified validation in predictive ability of
risk model

To ensure that the predictive power of the risk model was not

confounded by variables like gender, age, or clinical stage, we
FIGURE 3

Selection of key prognostic genes. (A) Identification of prognostic genes through Lasso regression; (B) Cross validation of selected genes; (C)
Identification of prognostic genes through RandomForest; (D) Common genes screened by Lasso regression and RandomForest.
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stratified ccRCC subtypes based on age (age ≤60 and age >60)

(Figures 7A, B, G, H), gender (male and female) (Figures 7C, D, I, J),

pathological stage(stageI&II and stageIII&IV) (Figures 7E, F, K, L).

We then performed the Kaplan-Meier and ROC analyses within
Frontiers in Endocrinology 08
specific subgroups utilizing OS and results demonstrated that all

subgroups showed better OS in the low-risk group and presented

appreciable AUC for risk score, which verified the predictive

stability of this risk model.
FIGURE 4

Construction and validation of prognostic model. Kaplan-Meier curve showing the different overall survival between high and low risk score groups
in (A) training set, (B) testing set and (C) whole TCGA-KIRC cohort. Risk distribution map showing the correlation between risk score and outcome
events in (D) training set, (E) testing set and (F) whole TCGA-KIRC cohort. ROC curve showing the predictive value of risk model for 1-, 3-, and 5-
year survival of ccRCC patients in (G) training set, (H) testing set and (I) whole TCGA-KIRC cohort. PCA showing the ability to distinguish ccRCC
patients into high and low-risk categories in (J) training set, (K) testing set and (L) whole TCGA-KIRC cohort.
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Mutation landscape and drug prediction of
various risk groups

The overall mutation condition in high and low-risk groups was

analyzed, revealing subtle differences in variant classification, variant

type, and SNV class. The top ten most variable genes were extracted
Frontiers in Endocrinology 09
and showed differences between each group (Figures 8A-D). To

predict the response of high-risk patients to various drugs and

identify appropriate treatments, drug sensitivity prediction was

performed using the ‘oncoPredict’ package, and the IC50 values of

different drugs for each patient were ultimately obtained. A correlation

analysis between the IC50 value and risk score was primarily
FIGURE 5

External validation of risk model in E-MTAB-1980 cohort. (A) ROC curve showing the predictive value of risk model for 1,3,5 year survival of ccRCC
patients. (B) Kaplan-Meier curve showing the different overall survival between high and low risk score groups. (C) Univariate Cox regression analysis
of clinical variables and risk score. (D) Multivariate Cox regression showing the independent prognostic value of risk model. (E) Nomogram to predict
1-, 3-, and 5-year OS of ccRCC patients. (F) Calibration curves to evaluate the accuracy of nomogram in predicting survival rate at 1, 3, and 5 years.
(G) Decision curve analysis(DCA) curve showing the ability of nomogram in predicting 1-,3-,5- years survival rate of ccRCC patients.
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conducted, and drugs with absolute correlation coefficients exceeding

0.4 were identified after screening (Figure 8E). We then conducted a

comparative analysis to assess the varying sensitivities of distinct risk

groups to commonly used tyrosine kinase receptor inhibitors (TKIs)
Frontiers in Endocrinology 10
in clinical settings. Sorafenib, Gefitinib, and Pazopanib demonstrated

higher IC50 values in the high-risk group, indicating less sensitivity to

these drugs, while only Erlotinib exhibited a significantly lower IC50 in

the high-risk group, showing a stronger sensitivity (Figure 8F).
FIGURE 6

Associations between risk score and clinical characteristics in TCGA cohort. (A) Univariate Cox regression analysis of clinical variables and risk score.
(B) Multivariate Cox regression showing the independent prognostic value of risk model. (C) Nomogram to predict 1-, 3-, and 5-year OS of ccRCC
patients. (D) Calibration curves to evaluate the accuracy of nomogram in predicting survival rate at 1-, 3-, and 5-year. (E) Decision curve analysis
(DCA) curve showing the ability of nomogram in predicting 1,3,5 years survival rate of ccRCC patients (F, G) Correlations between risk score and
clinical variables. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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Enrichment and immune analysis between
different risk groups

We firstly identified the differentially expressed genes between

high and low risk groups (Figure 9A). For purpose of digging the

underlying signaling pathways influenced by varying degrees of

risk, we conducted a series of enrichment analyses. The top five

pathways with the highest gene count in ‘Biological Process’,
Frontiers in Endocrinology 11
‘Cellular Component’, and ‘Molecular Function’ categories from

the GO analysis, as well as the top five pathways from KEGG, were

displayed for both up-regulated and down-regulated DEGs,

respectively (Figures 9B-E). Furthermore, GSEA analysis was

performed using the 50 classic pathways in the HALLMARK

model. The results showed that the activity of HALLMARK_

ADIPOGENESIS, HALLMARK_FATTY_ACID_METABOLISM,

HALLMARK_HEME_METABOL I SM , HALLMARK_
FIGURE 7

Stratified validation in predictive ability of risk model. KM survival curves predict the OS of the TCGA-KIRC cohort in (A) Age ≤ 60years, (B) Age >
60years, (C) Male, (D) Female, (E) StageI&II, (F) Stage III&IV; ROC curves showed the predictive ability for OS of the TCGA-KIRC cohort in (G) Age ≤

60years, (H) Age > 60years, (I) Male, (J) Female, (K) StageI&II, (L) Stage III&IV.
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OXIDATIVE_PHOSPHORYLATION, and HALLMARK_

GLYCOLYSIS was significantly reduced in the high-risk group

(Figure 9F). The infiltration fraction of 22 immune cells for each

patient in the TCGA-KIRC cohort was calculated using the

CIBERSORT method. A number of these cells showed

differences in infiltration degree between high and low-risk

groups. Among them, T regulatory cells (Tregs), resting natural
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killer (NK) cells, monocytes, and M0 macrophages exhibited the

most significant differences (Figures 9G, H). Furthermore, we

characterized 28 immune cell types and 13 immune functions

from the literature. Using ssGSEA, we quantified their respective

scores in each patient based on the expression profiles of

characteristic genes. Subsequently, we performed a Spearman

correlation analysis to examine the relationship between these
FIGURE 8

Mutation and drug prediction analyses. (A) The summary of the mutation state in high-risk score group. (B) The summary of the mutation state in
low-risk score group. (C) The top 10 most frequently mutated genes in high-risk score group. (D) The top 10 most frequently mutated genes in low-
risk score group. (E) Correlation between drug targets and risk score. (F) Comparison of sensitivity of common targeted drugs in different risk
groups. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. ns, not significant.
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immune scores and the patients’ risk scores. We observed a

positive correlation between the infiltration levels of the

majority of immune cells and the associated risk (Figure 9I).

The correlation heatmap indicated that immune pathways such as
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CCR, Checkpoint, Inflammation-promoting, Parainflammation,

T-cell co-stimulation, and T-cell co-inhibition were positively

correlated with risk scores. In contrast, MHC Class I and Type

II IFN response showed an opposite trend (Figure 9J).
FIGURE 9

Enrichment and immune analyses. (A) DEGs between high and low risk groups; (B) GO pathway enrichment of up-regulated DEGs in high-risk
group; (C) KEGG pathway enrichment of up-regulated DEGs in high-risk group; (D) GO pathway enrichment of down-regulated DEGs in high-risk
group; (E) KEGG pathway enrichment of down-regulated DEGs in high-risk group; (F) GSEA analysis for DEGs between high and low risk groups; (G)
Cibersort analysis showing the proportion of 22 immune cells in various risk groups; (H) Differences in infiltration fraction of 22 immune cells among
different risk groups; (I) Correlation analysis between immune cell infiltration and risk score; (J) Heat map showing the correlation between immune
pathways and risk score. *p < 0.05, **p < 0.01, ***p < 0.005.
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Singel-cell analysis for ccRCC and
normal samples

For purpose of investigating the expression of three pub genes

in tumor and normal tissue, we performed single-cell analysis to

identify their distribution within cell level. By integrating 7 ccRCC

samples and 6 normal samples from the GSE159115 dataset, 17 cell

clusters were ultimately identified (Figure 10A). We subsequently

annotated the cell clusters based on the expression of classical cell

marker genes. CD30, NKG7 were major cell markers of NKT cell

and they were mainly distributed in clusters 2 and 14(Figure 10B).

EPCAM and KRT8 were signatures of epithelial cell and they

presented in clusters 5, 8, 10, 11, 12 and 15(Figure 10C). CA9

and NDUFA4L2 served as marker genes of ccRCC cells and they

were distributed in clusters 4, 7, 8, 10, 11, 12, 15, which overlapped

with the distribution of epithelial cell markers and this resulted

from that ccRCC originates from renal tubular epithelial cells

(Figure 10D). Therefore, only cluster5 was not within the overlap

and we preliminarily labeled 5 as normal epithelial cells and defined

other cell populations as malignant cells. Furthermore, we identified

other two cell populations endothelial cells and macrophage/

monocyte cells utilizing their typical markers VWF/PECAM1 and

CD16/CD68 respectively (Figures 10E, F). Overall, five distinct cell

types were eventually categorized (Fig10G). Then, we examined the

distribution of SLC6A19, SLC16A12 and SMIM24 in five cell

populations and found that they were scattered in normal

epithelial and malignant cells, where the former showed more

obvious expression (Figure 10H).
The role of SLC6A19 in ccRCC

Univariate Cox regression analysis indicated that among the

three hub genes, SLC6A19 had the most significant impact on the

prognosis of ccRCC patients (Figure 11A), Therefore, we conducted

a series of analyses to investigate the function of SLC6A19 in

ccRCC. First, we conducted a comparative analysis of SLC6A19

gene expression levels between tumor and normal tissues across two

distinct databases: TCGA and GSE53757. The findings revealed a

significant downregulation of SLC6A19 in tumor tissues

(Figure 11B). Next, we explored the association between SLC6A19

expression and the clinical staging of ccRCC and concluded that the

gene was significantly downregulated in the advanced stages of the

disease (Figure 11C). To verify the expression difference of

SLC6A19 between normal and ccRCC tissues, we downloaded

immunohistochemical data from the HPA database, and the

results showed that SLC6A19 expression was significantly higher

in normal tissue and reduced in ccRCC tissue (Figures 11D, E).

Through transwell assays, we found that the 786O and A498 cell

lines with downregulated SLC6A19 exhibited stronger invasiveness,

while those overexpressing SLC6A19 showed weaker penetration

ability (Figure 11F). Moreover, the results of CCK8 assay indicated

that SLC6A19 may suppress the proliferation of ccRCC

(Figure 11G). Additionally, we also elucidated the correlation

between SLC16A12&SMIM24 and clinical stage of ccRCC, results
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showed that in the patients with advanced stage including distant

metastasis or lymph node metastasis, both two genes demonstrated

lower expression (Supplementary Figure 5).
Identification of downstream pathways of
SLC6A19 via GSEA analysis

To further explore the underlying mechanisms of SLC6A19 in

modulating ccRCC, we employed the GSEA method to identify

pathways closely correlated with SLC6A19. Through cross-

validation with training, testing, and the entire TCGA dataset, we

found that the fatty acid metabolism pathway was significantly

enriched (Figures 12A-C). For further verifying this finding, we

performed the GSEA analysis utilizing three external datasets, and

the results consistently revealed that SLC6A19 was closely

associated with fatty acid metabolism (Supplementary Figure 3).

We next investigated the relationship between SLC6A19 and

CPT1A, a key enzyme in fatty acid beta-oxidation, the

inactivation of which could contribute to the progression of

ccRCC. Spearman correlation analysis demonstrated that CPT1A

expression was strongly positively correlated with SLC6A19 in the

TCGA dataset, a finding that was further validated in the GSE53757

and E-MTAB-1980 cohorts (Figures 12D-F). Subsequently, we

divided samples from the aforementioned cohorts into high and

low SLC6A19 expression groups and compared the expression

levels of CPT1A between these groups. Box plots indicated that

when SLC6A19 expression was high, CPT1A expression also

increased, suggesting that the two genes may have a synergistic

function (Figures 12G-I).
Discussion

It is a widely accepted belief was that the tumorgenesis of

ccRCC resulted from disorder of multiple pathway mainly

including the dysregulation of von hippel-lindau/HIF protein

signaling and PI3K/AKT/mTOR, the deletion of 3P chromosome

and the defection of homologous recombination repair (21–24).

Moreover, the progress of ccRCC was also intimately associated

with various aberrant metabolisms such us the reprogramming of

lactate metabolism, glycolysis, tricarboxylic acid cycle, pentose

phosphate pathway, fatty acid synthesis and degradation,

tryptopha and arginine metabolism (25). Recently, more and

more evidences indicated that the imbalance of RAS regulating

blood volume and blood pressure was intimately linked to the

etiology and progression of malignancies, especially was extensively

studied in breast and lung cancer (8, 12, 25–28). Recent studies have

documented a correlation between RAS and urogenital

malignancies. Specifically, they have observed that under the

long-term influence of AngII, normal prostate cells can exhibit

hypertrophy and hyperplasia and extracellular matrix (ECM) was

more susceptible to degradation by the upregulation of MMP-2 and

MMP-9, suggesting a potential role of RAS in the pathogenesis of

prostate cancer (29). In bladder cancer, the expression of the
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angiotensin II type 2 receptor (AT2R) is downregulated and it has

been demonstrated that AT2R can suppress tumor growth and

angiogenesis by inactivating the extracellular signal-regulated

kinase (ERK) pathway, which in turn leads to a reduction in

vascular endothelial growth factor (VEGF) production

(30).Indeed, several studies have detailed the role of intrarenal

renin-angiotensin system (iRAS) in regulating angiogenesis, cell
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differentiation, and proliferation. Moreover, the dysregulation of

four pivotal enzymes within iRAS, neutral endopeptidase (NEP/

CD10), angiotensin-converting enzyme-2 (ACE2), angiotensin-

converting enzyme(ACE) and aminopeptidase A (APA) were

considered to be intimately linked to the progression of renal

malignancies (31). Herein, we screened 17 characteristic genes of

RAS and preliminarily elucidated their correlation with ccRCC,
FIGURE 10

Single-cell analysis of ccRCC and normal kidney tissues. (A) UMAP plots showing 17 cell clustering, colored with 7 ccRCC and 6 normal kidney
samples and with 17 cell clusters; (B) Expression of NKT cells markers in 17 cell clusters; (C) Expression of epithelial cell markers in 17 cell clusters;
(D) Expression of ccRCC cell markers in 17 cell clusters; (E) Expression of endothelial cells markers in 17 cell clusters; (F) Expression of macrophage/
monocyte cells markers in 17 cell clusters; (G) UMAP plots showing the five distinct cell types in ccRCC and normal kidney samples;(H) UMAP plots
showing the expression of SLC6A19, SLC16A12 and SMIM24 in five distinct cell types.
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subsequently, we constructed a robust survival prognosis model

employing a suite of bioinformatics methods majorly including

WGCNA, ssGSEA, Lasso and Randomforest analyses, offering

enhanced predictive accuracy for patient outcomes.

RAS encompasses multiple axes, among which the AngII

signaling through its receptors AGTR1 and AGTR2 has been the
Frontiers in Endocrinology 16
subject of extensive research, where this axis is known to intersect

with a variety of pathways implicated in tumorigenesis, highlighting

its potential role in cancer biology. AGTR1 and AGTR2 are

fundamentally G protein-coupled receptors (GPCRs). Upon

binding of AngII to AGTR1, it induces conformational alterations

in the associated G protein, which triggers a cascade of intracellular
FIGURE 11

The role of SLC6A19 in ccRCC; (A) Univariate Cox regression for SLC6A19, SLC6A12 and SMIM24. (B) Differential expression of SLC6A19 between
tumor and normal tissues in TCGA,GSE53757; (C) Differential expression of SLC6A19 in various clinical stages; (D) Immunohistochemical result from
the HPA database showing SLC6A19 expression in normal tissue; (E) Immunohistochemical result from the HPA database showing SLC6A19
expression in ccRCC tissue; (F) Transwell assay showing the impact of SLC6A19 to invasive ability of 786O and A498 cell lines; (G) CCK8 assay
showing the impact of SLC6A19 to proliferation of 786O and A498 cell lines. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. ns, not significant.
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signaling events, initiating a multitude of downstream pathways

that regulate diverse physiological responses, including activation of

MAPK, c-Src, Tyk2, Pyk2, Jak2, p21Ras, Akt and receptor tyrosine

kinases (32). Currently, AGTR1 has been identified as a

protumorigenic factor, with its oncogenic properties primarily

manifested in the following aspects: (i) facilitating cell

proliferation and angiogenesis by activating PI3K/AKT signaling

cascade and increasing both VEGF and VEGF receptor 2 expression

in endothelial cells (33); (ii)inhibiting cell apoptosis in a manner of

NF-kB activation (26); (iii) inducing cell migration, invasion, and

metastasis by increasing expression of endothelial adhesion

molecules like E-selectin, P-selectin and vascular cell adhesion

molecule-1 (VCAM-1) (34). Conversely, AGTR2 can exert anti-
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tumor effects predominantly through its antagonistic action on

angiogenesis (35). The ACE2-Ang-(1–7)-MasR axis, which

represents a newly discovered component of the RAS, has been

shown to be up-regulated or down-regulated in different cancers

(36). It had been suggested that ACE2 expression is decreased in

breast cancer, NSCLC, hepatocellular carcinoma and pancreatic

cancer (37–40). The MasR has been found to be significantly up-

regulated in colon cancer tissues and in association with colorectal

cancer metastasis compared with levels in non-neoplastic colon

mucosal tissue (41).

Our study culminated in the identification of three key RAS-

related genes—specifically SLC6A19, SLC16A12, and SMIM24,

which have been demonstrated to be significantly correlated with
FIGURE 12

Correlation between SLC6A19 and fatty acid metabolism pathway. GESA presenting SLC6A19 involved pathways in training (A), testing (B) and whole
TCGA (C) sets; Correlation analysis between SLC6A19 and CPT1A in TCGA (D), GSE53757 (E) and E-MTAB-1980 (F) cohorts; Differential expression of
CPT1A between high and low SLC6A19 groups in TCGA (G), GSE53757 (H) and E-MTAB-1980 (I) cohorts. ***p < 0.005, ****p < 0.001.
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the prognosis of ccRCC and utilizing these genes, we developed a

robust prognostic model. Among these trio of genes, SLC16A12 has

garnered considerable attention in the context of ccRCC, with a

substantial body of research dedicated to understanding its role

(42–44). In contrast, the remaining two genes, SLC6A19 and

SMIM24, have received significantly less attention in tumor-

related research, with scant reports on their potential implications

in oncology. SLC6A19, functioning as a sodium-coupled neutral

amino acid transporter, plays a pivotal role in the intestinal

absorption of amino acids derived from dietary proteins and in

the renal reabsorption of filtered amino acids (45).In one article, a

decrease in SLC6A19 expression within ccRCC tumor tissues was

noted, corroborating the findings of our research. While it is

imperative to emphasize that our research has dug the underlying

pathway about SLC6A19 and identified a robust correlation

between this gene and fatty acid metabolism in ccRCC, which

was initially uncovered through GSEA and further substantiated by

subsequent experimental validations. With regard to SMIM24,it

was considered as a kind of membrane component and mainly

mentioned in Alzheimer disease (46).

In the concluding segment of the article, the pivotal role of

SLC6A19 in clear cell renal cell carcinoma (ccRCC) is underscored,

highlighting its intriguing interplay with fatty acid metabolism. This

discovery not only deepens our understanding of ccRCC’s

pathophysiology but also presents potential avenues for

therapeutic intervention. Generally, ccRCC is histologically

distinguished by the presence of lipid droplets within the

cytoplasm, with fatty acids being the predominant constituents of

these deposits and the abnormalities in certain pivotal enzymes

within the fatty acid metabolism pathway may exert profound

influence on the development of ccRCC (47). Carnitine

palmitoyltransferase 1A (CPT1A) is a one of the most crucial

components in fatty acid metabolism, serving as the rate-limiting

enzyme in the b-oxidation pathway, its deficiency can result in a

range of metabolic disorders, including hypoketotic hypoglycemia,

hepatomegaly, increased concentrations of circulating free fatty acid

and the abnormal deposition of lipids within skeletal muscle tissue

(48). Research has established that the expression of CPT1A is

significantly downregulated in ccRCC tumor tissues and patients

exhibiting reduced CPT1A levels were frequently correlated with a

poorer OS (49, 50). Emerging data indicated that the enhancing

CPT1A activity could potentially represent a novel therapeutic

target for the management of ccRCC (41).

It is noteworthy to highlight that our research has uncovered a

significant positive correlation between the expression levels of

SLC6A19 and CPT1A, a finding that has been consistently

validated across multiple cohorts. Western blot provided

compelling evidence that the downregulation of SLC6A19 results

in a concomitant reduction in CPT1A expression. This discovery

not only strengthens the link between these two proteins but also

suggests a regulatory interplay that could have profound

implications for the understanding of ccRCC’s metabolic

pathways and the development of targeted therapies.
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Conclusion

Firstly, the risk model that was established based on RAS related

genes can availably predict the prognosis of ccRCC patients and

accurately forecast the responsiveness of patients to various

commonly utilized targeted therapies in clinical settings.

Secondly, SLC6A19 plays a significant role in ccRCC and presents

intimately correlation with fatty acid metabolism alongside with

CPT1A, which is extensively considered as a tumor suppressor

of ccRCC.
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