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Background: Diabetic cardiomyopathy (DCM) is a heart disease caused by the

metabolic disorders of glucose and lipids associated with diabetes, leading to

heart failure and death in diabetic patients. Dapagliflozin (DAPA) serves as a

treatment for managing blood glucose levels in individuals with type 2 diabetes

mellitus (DM). However, the specific mechanisms by which DAPA treats DCM are

not yet fully understood.

Methods: Sprague-Dawley (SD) rats (n = 5/group) were randomly divided into

control, model, and intervention groups. Lipid metabolism-related genes

(LMRGs) were gotten from publicly available database. Differential expression

analysis of model vs. control and intervention vs. model samples was performed

to obtain differentially expressed genes (DEGs), and the result was recorded as

DEGs-Model and DEGs-Intervention. The intersection of genes with opposing

expression trends between DEGs-Model and DEGs-Intervention were

considered as candidate genes. Subsequently, candidate genes and LMRGs

were intersected to acquire hub genes, and the expression of hub genes was

analyzed in each group of samples. Then, the mechanism of action of these hub

genes were investigated through functional enrichment analysis, gene set

enrichment analysis (GSEA), and predictive of m6A binding sites.

Results: Ultimately, 68 candidate genes and 590 LMRGs were intersected to

derive 2 hub genes (Acsbg1 and Etnppl). Acsbg1 was significantly increase in

model group compared with control group. RT-qPCR results confirmed Acsbg1

was obviously higher expression in model group, while Etnppl was significantly

lower expression in model group compare to control groups and intervention

group. While the expression of Etnppl was significantly increase in intervention

group compared with model group. Functional enrichment analyses indicated
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that Acsbg1 and Etnppl were associated with fatty acid metabolism. The findings

of GSEA indicated that Acsbg1 and Etnppl might affect the occurrence and

progression of DCM through lysosome. And the Acsbg1 and Etnppl were located

at UCAGG in the RNA secondary structure.

Conclusion: This study identified 2 hub genes (Acsbg1 and Etnppl) as potential

new focal points for diagnosing and treating DCM.
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1 Introduction

Diabetic cardiomyopathy (DCM) is a distinct form of heart

disease that occurs in patients with diabetes mellitus (DM),

independent of traditional cardiovascular risk factors like

hypertension, coronary artery disease, and valvular diseases (1),

the prevalence of heart failure among diabetic patients globally

ranges from 19% to 26%, DCM is the leading cause of heart failure

in diabetic patients (2). DCM primarily arises from chronic

hyperglycemia and insulin resistance, leading to a maladaptive

shift in cardiomyocyte energy metabolism from glucose oxidation

to excessive reliance on fatty acid (FA) oxidation. This metabolic

shift, coupled with lipotoxicity-induced cellular damage,

inflammatory responses, activation of the advanced glycation end

products receptor for advanced glycation end products pathway,

myocardial fibrosis, and impaired calcium homeostasis, culminates

in structural and functional myocardial alterations, ultimately

causing DCM (3, 4). Due to the incomplete understanding of the

complex molecular mechanisms underlying DCM, developing

reliable therapeutic targets and effective pharmacological

interventions remains challenging (5). Therefore, exploring hub

genes in DCM is crucial for understanding its exact mechanisms

and developing new strategies to reduce the risk of DCM patients.

Lipid metabolism dysregulation plays a fundamental role in the

pathogenesis of DCM (6). Lipid metabolism disorders lead to an

increase in lipid peroxidation products, which further exacerbate

oxidative stress and inflammatory responses (7). The involvement

of peroxisome proliferator-activated receptor (PPAR) in diabetes-

related metabolic disturbances and lysosomal abnormalities can

impair lipophagy, the autophagic process that utilizes lipids as

substrates, leading to intracellular lipid accumulation (1, 8). This

is believed to significantly contribute to the development of DCM.

Consequently, a more in-depth investigation into how lipid

metabolism disorders contribute to DCM could offer new

theoretical insights and identify potential targets for effective

treatment of this condition.

Sodium-glucose cotransporter-2 (SGLT2) inhibitors, a novel class

of glucose-lowering medications, reduce plasma glucose PG by

producing glycosuria. significantly reduce hospitalization and
02
mortality rates in patients with heart failure (9). SGLT2 inhibitors

not only help lower blood sugar but also assist patients with type 2

diabetes in losing weight, reducing blood pressure, and decreasing the

risk of cardiovascular events. SGLT2 inhibitors may promote FA

oxidation and reduce fat accumulation in tissues by activating

AMP-activated protein kinase (AMPK) and increasing the

expression of fibroblast growth factor 21 (FGF21) (10). Dapagliflozin

(DAPA) is one of the earliest SGLT2 inhibitors used for glycemic

control in patients with type 2 diabetes mellitus (11). In obesity-related

cardiomyopathy (HFD), DAPA can significantly reduce body weight

and improve lipid levels (12). Besides its lipid-lowering effects, DAPA

provides direct protective effects against myocardial cell damage

induced by saturated FA However, the specific biological

mechanisms of DAPA treatment in DCM are currently unclear.

To investigate the hub genes involved in lipid metabolism

during DAPA treatment for DCM, this study used DCM rats as a

model. Bioinformatics analysis was employed to examine the

biological pathways these hub genes participate in, and the

molecular regulatory network was explored. The aim is to provide

new reference points for clinical treatment research of DCM.
2 Materials and methods

2.1 Establishment of DAPA-intervened
DCM model

The 15 male Sprague-Dawley (SD) rats (180 g-220 g, 6-8 weeks

old) were obtained from the Beijing Huafukang Bio-technology Co.

(Production License No.: SCXK (Beijing) 2019-0010; Use License

No.: SYXK (Dian) K2020-0006). The Ethics Committee of the

Second Affiliated Hospital of Nanchang University granted ethical

approval (Approval No. NCULAE-20221031151). The rats were

randomly assigned to one of three groups: the control group (n = 5),

the DCMmodel group (n = 5), and the DCM + DAPA intervention

group (n = 5). Rats in the control group were fed a normal diet,

while rats in the model and intervention groups were fed a high-fat,

high-sugar diet for 4 weeks. After this feeding period, insulin

resistance was assessed using the peritoneal glucose tolerance test
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(IPGTT) and insulin tolerance test (IPITT). To induce DM in the

model and intervention groups, rats were given a single intravenous

injection of streptozotocin (STZ, 35 mg/kg). Control rats received

an intraperitoneal injection of citrate buffer at the same time.

Fasting blood glucose levels were measured from the tail vein 3

and 7 days after the STZ injection. Rats with fasting blood glucose

levels ≥ 11.1 mmol/L were considered successfully induced DM.

Following successful DM induction, rats in the DCM and DCM +

DAPA groups continued to receive the high-fat, high-sugar diet,

while the control group was maintained on a normal diet. After 8

weeks, echocardiography was performed, confirming the presence

of left ventricular diastolic dysfunction in both the model and

intervention groups, indicating successful induction of DCM. After

DCM model was confirmed, rats in the DCM + DAPA group were

administered dapagliflozin (DAPA) at a dose of 1 mg/kg/day in

their drinking water, while rats in the DCM group received no

treatment. Following 6 weeks of drug intervention, all rats were

euthanized under anesthesia according to ethical guidelines, and

myocardial tissue samples were collected from the left ventricle for

further analysis.
2.2 Hematoxylin and eosin staining

HE staining is a fundamental technique in histology and

pathology for visualizing tissue samples under a microscope. Tissue

sections (5 µm thick) were prepared from paraffin-embedded

specimens that had been fixed in 4% paraformaldehyde (PFA).

After baking at 64°C for 1 h, the tissue sections were deparaffinized

in xylene and then rehydrated through a graded ethanol series (100%,

95%, 80%, and 70%) to remove the xylene and gradually restore the

tissue’s water content. After rehydration, the sections were stained

with hematoxylin for 5 min, followed by a wash in running tap water

to differentiate the stain. The sections were then stained with eosin for

10-15 s to highlight cytoplasmic components. Finally, the slides were

dehydrated through a graded ethanol series (95% and 100%), cleared

in xylene, and mounted with a coverslip using a mounting medium

for microscopic examination. Finally, the stained tissue sections were

examined under a light microscope for histological analysis.
2.3 Masson staining

Masson’s staining effectively highlights collagen fiber changes,

enabling assessment of collagen proliferation and the progression of

DCM. First, prepare Weigert’s iron hematoxylin solution by mixing

Reagents A1 and A2 in a 1:1 ratio just before use. Apply the solution

to tissue sections for 5-10 min, then rinse with distilled water.

Differentiate with acid ethanol for 5-15 s, followed by a 30 s wash

in distilled water. Next, applying Masson’s blueing solution for 3-5

min, then rinse with distilled water (30 s). After, Biebrich Scarlet-Acid

Fuchsin was utilizing to stain for 5-10 min. During staining, prepare

the weak acid solution by mixing distilled water and weak acid in a

2:1 ratio. Following this, apply the weak acid solution to the sections

and wash for 30 s. Drain excess liquid and apply phosphomolybdic
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acid for 1-2 min, followed by a 30 s wash with the weak acid solution.

Clear the sections in xylene twice, for 1-2 min each, then mount with

neutral balsam. Finally, the proliferation of collagen fibers in the

tissues was observed and captured in images.
2.4 Source of data

Lipid metabolism-related genes (LMRGs) were gotten from

Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb): Using “lipid metabolism” as the

keyword, gene-ID was converted to rat gene, and then 590

LMRGs were obta ined by removing dupl icate genes

(Supplementary Table S1) (13).
2.5 Transcriptome sequencing and
data preprocessing

Total RNA was isolated and purified from tissue samples using

TRIzol (Invitrogen, CA, USA). Next, the quantity and integrity of

the total RNA were assessed using a NanoDrop ND-1000

spectrophotometer (NanoDrop, Wilmington, DE, USA) and a

Bioanalyzer 2100 system (Agilent, CA, USA), respectively.

Samples with concentrations > 50 ng/µL, RIN values > 7.0, OD

260/280 > 1.8, and total RNA > 1 µg were considered suitable for

downstream experiments. Then, Poly(A) RNA was purified from 1

µg of total RNA using Dynabeads Oligo (dT)25-61005 (Thermo

Fisher, CA, USA) through two rounds of purification. Subsequently,

the poly(A) RNA was fragmented into small pieces using the

Magnesium RNA Fragmentation Module (NEB, cat. e6150, USA)

at 94°C for 5-7 minutes. The cleaved RNA fragments were then

reverse-transcribed to create cDNA using SuperScript™ II Reverse

Transcriptase (Invitrogen, cat. 1896649, USA). What’s more,

Polymerase Chain Reaction (PCR) amplification was performed

under the following conditions: initial denaturation at 95°C for 3

minutes; 8 cycles of denaturation at 98°C for 15 seconds, annealing

at 60°C for 15 seconds, and extension at 72°C for 30 seconds;

followed by a final extension at 72°C for 5 minutes. The average

insert size for the final cDNA library was 300 ± 50 bp. Sequencing

was carried out on the Illumina NovaSeq 6000 platform using the

paired-end 150 bp (PE150) sequencing mode.

Afterwards, data quality was assess using FastQC (v 0.11.9), and

low-quality data were filtered using Trimmomatic (v 0.39). For

mRNA sequencing reads alignment, clean data was mapped to the

reference genome (Rat Rnor 6.0 genome) using the alignment tool

hisat2 (v2.2.1) with default parameters. Finally, a gene expression

matrix was generated for subsequent analysis.
2.6 Base mass value and content
distribution of sequencing data

Phred scaled quality value (Q value) was used to assess the base

error probability. The Q value was inversely proportional to the
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probability of error, and when the Q value reached 30, the

probability of a base being in error was only 0.001, meaning that

only about 1 out of every 1,000 bases was likely to be in error. In

addition, the distribution of base types in the sequencing data was

analyzed, particularly with regard to the proportion of guanine (G)

as well as cytosine (C) in the DNA sequences. In general, a uniform

distribution of GC content means that the data have not been

affected by exogenous DNA contaminat ion or other

technical factors.
2.7 Comparison of transcriptome data with
reference genome sequences

To understand more deeply the comparison of the

transcriptome data with the reference genome sequence, the

study utilized a designated reference genome for alignment

analysis. Firstly, the sequences in the transcriptome data were

aligned with the reference genome sequences to determine their

positions in the genome. Then, the successfully aligned sequences

were assembled and quantitatively analyzed using StringTie

software (v 2.1.6) to probe gene expression and gene structure.

The analysis focused on the distribution of the sequences in

different regions of the genome (e.g. exons, introns, and

intergenic regions) (14).
2.8 Gene expression analysis

Next, the fragments per kilobase transcript model per million

mapped fragments (FPKM) was calculated to measure the expression

level of transcript or gene by the StringTie software (v 2.1.6). The

FPKM standardization method takes into account differences in

sequencing depth and gene length to make gene expression

comparable across samples. The number of sequences mapped to

the genome and the length of transcripts in each sample were

normalized to calculate FPKM values for each gene. Then these

FPKM values were log10 transformed to better demonstrate the

distribution of gene expression.
2.9 Identification of differentially
expressed genes

In order to assess the variability in the expression of the

transcriptome data of the 3 groups of samples, the transcriptome

sequencing data was analyzed via principal component analysis

(PCA). Differential expression analysis of model vs. control and

intervention vs. model samples was performed to obtain DEGs-

Model and DEGs-Intervention by the “DESeq2” R package

(v 1.34.0) (15) (|log2Fold Change (FC)| > 0.5 as well as p.value

< 0.05). Volcano maps as well as heat maps of the DEGs-Model

and DEGs-Intervention were visualized via “ggplot2” R package

(v 3.4.3) (16) and “ComplexHeatmap” R package (v 2.14.0) (17).
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2.10 Identification and functional
enrichment analysis of candidate genes

The intersection of up-regulated genes in DEGs-Model with the

down-regulated genes in DEGs-Intervention and down-regulated

genes in DEGs-Model with the up-regulated genes in DEGs-

Intervention were recorded as candidate genes via “ggvenn” R

package (v 0.1.9) (18). To elucidate the potential biological

functions and related pathways, Gene ontology (GO) enrichment

analysis was performed on candidate genes (p.value < 0.05). The

GO enriched results were sorted by P.value from smallest to largest,

and the top 10 significant pathways were shown via “GOplot” R

package (v 1.0.2) (19). Kyoto Encyclopedia of Genes and Genomes

(KEGG) was performed on candidate genes (p.value < 0.05). The

KEGG enriched results were sorted by count from smallest to

largest, and the top 10 significant pathways were shown by

“clusterProfiler” R package (v 4.7.1.003) (17).
2.11 Identification and functional
enrichment analysis of hub genes

Candidate genes and LMRGs were intersected to acquire hub

genes, while the expression of hub genes was analysed in each group

of samples via “ggvenn” R package (v 0.1.9). Then, GO enrichment

analysis was performed on hub genes (p.value < 0.05). The GO

enriched results were sorted by p.value from smallest to largest, and

the top 10 significant pathways were shown by “GOplot” R package

(v 1.0.2). And KEGG was performed on hub genes (p.value < 0.05).

The KEGG enriched results were sorted by count from smallest to

largest, and the pathways were shown by “clusterProfiler” R package

(v 4.7.1.003). Gene-gene interaction (GGI) network was constructed

by GeneMANIA (http://www.genemania.org/), and the network

interactions of hub genes and the biological functions involved

were explored at the protein level.
2.12 Gene set enrichment analysis

The background gene set (“c2.cp.kegg_medicus.v2023.2.

Hs.symbols.gmt”) was downloaded from the MSigDB. The

Spearman correlation coefficients between the expression levels of

hub genes and other genes were ranked by “psych” R package (v

2.1.6) (20), and then the GSEA was performed through

“clusterProfiler” R package (v 4.7.1.3) (21) (|normalized enrichment

score (NES)| > 1 as well as adj. p < 0.05), and the pathways ranked in

the top 5 in the |NES| were selected for presentation.
2.13 Predictive analysis of m6A
binding sites

To investigate whether m6A affects the translational stability of hub

genes, the m6A binding sites of hub genes were predicted. Sequence
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files of the hub genes were acquired from National Center for

Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/

gene/). The m6A modification sites of the hub genes and their

locations in the RNA secondary structure were predicted by the

sequence-based RNA adenosine modification site predictor

(SRAMP, http://www.cuilab.cn/sramp/) database, with set the

parameter to “Analyze RNA secondary structure” and the tissue

parameter to “General (default)”.
2.14 Regulation network construction

The microRNAs (miRNAs) of biomarkers were predicted by

miRWalk (http://mirwalk.umm.uni-heidelberg.de/) and TargetScan

(http://www.targetscan.org/vert_72/) databases, and the

intersection of the results predicted by 2 databases was taken as

the key miRNA, and the key miRNA-mRNA network was

visualized via Cytoscape software (v 3.10.2) (22). Transcription

factors (TFs) for the hub genes were acquired from the

Encyc lopedia of DNA Elements (ENCODE, ht tps : / /

www.encodeproject.org/) database via NetworkAnalyst (http://

www.networkanalyst.ca), and the hub genes-TF network was

visualized via Cytoscape software (v 3.10.2).
2.15 Evaluation hub genes
expression levels

A total of 15 tissue samples (5 control samples, 5 model

samples, and 5 intervention samples) were acquired from the DCM

model. Total RNA from the 15 samples were extracted with the TRIzol

reagent (Ambion, USA) according to the manufacturer’s protocol.

Then the RNA concentration was tested using NanoPhotometer N50.

The cDNA was synthetized by reverse-transcribed using the

SureScript-First-strand-cDNA-synthesis-kit, and the reverse-

transcribed was performed with S1000™ Thermal Cycler (Bio-Rad,

USA). The sequences of all primers can be found in Supplementary

Table S2. The qPCR assay was performed with CFX Connect Real-time

Quantitative Fluorescence PCR Instrument (Bio-Rad, USA) (pre-

denaturation at 95℃ for 1 min, denaturation at 95℃ for 20s,

annealing at 55℃ for 20s, extension at 72℃ for 30s, a total of 40

cycles). The relative quantification of mRNAs was calculated using the

2-DDCT method. The results from the RT-qPCR were exported to Excel,

and then imported into Graphpad Prism 5 for statistical analysis

and visualization.
2.16 Statistical analysis

Bioinformatics analyses were performed by R programming

language (v 4.2.2). The statistical difference between two groups was

assessed using a Wilcoxon test. The p < 0.05 was considered

statistically significant.
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3 Results

3.1 Effect of DAPA treatment on
myocardial injury and fibrosis

HE staining results showed that in the control group, cardiac

muscle fibers were well-organized, with no evidence of myocardial

fiber damage and normal cellular spacing. In contrast, myocardial

tissue in the model group exhibited significant damage, with some

myofibrils dissolved, cardiac muscle fibers broken, and cellular

spaces markedly widened. After DAPA treatment, rat cardiac

muscle fibers appeared relatively well-aligned, with no fiber

damage and normal cellular spacing, suggesting that DAPA

played an important role in regulating myocardial injury and

associated pathological processes (Figures 1A–C). Additionally,

Masson staining revealed that in the model group, the degree of

fibrosis in myocardial tissue was severe, with abundant collagen

deposition. However, after DAPA treatment, the amount of

collagen fibers in the myocardial tissue was significantly reduced,

indicating that DAPA treatment effectively alleviated myocardial

tissue fibrosis (Figures 1D–F).
3.2 Quality control analysis of
sequencing data

The quality of the sequencing data was above Q30, and the GC

content was uniformly distributed and concentrated in 40%-60%,

with no GC offset, which indicated that the sequencing data had

high accuracy and stable quality (Figure 2A). The probability of

sequence matching to the exons region was above 89%, which

indicated the high availability and reliability of the data, and laid

the foundation for the subsequent gene expression analysis

(Figure 2B). The range and pattern of distribution of log10
(FPKM) in different samples and the mean line on a straight

line were shown by box plots, which indicated there was good

comparability in gene expression among the different samples.

And the log10(FPKM) density distribution plot was showed that

log10(FPKM) formed a centrally distributed peak for all samples,

which indicated that gene expression was not biased on the

whole (Figure 2C).
3.3 Identification and functional
enrichment analysis of 68 candidate genes

PCA result was showed significant differences between all 3

groups (Figure 3A). A total of 1,311 DEGs-Model were screened in

model vs. control samples, comprising 734 genes (Angptl4, Tekt4,

and Vnn3, etc.) with increased expression and 577 genes (Ffar4,

Krt86, and Olr649, etc.) with decreased expression (Figures 3B, C).

A total of 466 DEGs_Intervention were screened in intervention

vs. model samples, comprising 91 genes (AABR07021430.1,
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AABR07028795.1, and RT1−S2, etc.) with increased expression

and 375 genes (Pnoc, AABR07069371.1, and Thrsp, etc.) with

decreased expression (Figures 3D, E). Subsequently, the 734

up-regulated genes in DEGs-Model with the 375 down-

regulated genes in DEGs-Intervention and 577 down-regulated
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genes in DEGs-Model with the 91 up-regulated genes in

DEGs-Intervention were intersected, result ing in the

identification of 68 candidate genes (Figure 3F) (Supplementary

Table S3). Furthermore, candidate genes were enriched and

presented in 346 GO pathways, including 324 in biological
FIGURE 1

Histological analysis of myocardial injury and fibrosis in DCM rats. HE and Masson’s trichrome staining were used to assess the effects of DAPA on
myocardial injury and fibrosis in DCM rats. (A) The control group shows normal cardiac structure, while (B) the model group exhibits disrupted
muscle fibers and widened spaces. DAPA treatment (C) improves these changes with better-organized cardiac structure. Masson’s staining reveals
normal collagen in controls (D), increased fibrosis in the model group (E), and reduced collagen deposition with DAPA treatment (F). These results
demonstrate that DAPA effectively alleviates myocardial injury and fibrosis in DCM rats.
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process (BP), 12 in cellular component (CC), and 10 in molecular

function (MF) (Figure 3G). For example, positive regulation of

protein tyrosine kinase activity was enriched in BP; collagen-

containing extracellular matrix was enriched in CC; FAD binding

was enriched in MF. And the candidate genes were enriched and

presented in 23 KEGG pathways (such as cAMP signaling

pathway) (Figure 3H).
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3.4 Identification and functional
enrichment analysis of 2 hub genes

The 68 candidate genes and 590 LMRGs were intersected,

resulting in the identification of 2 hub genes (Acsbg1 and Etnppl)

(Figure 4A). In which, compared with control group, Acsbg1 was

significantly increase in model group (p < 0.05). In transcriptome
FIGURE 2

Quality assessment and gene expression analysis of RNA sequencing data. The quality of RNA sequencing data was evaluated using FastQC. (A) The
mean quality scores across all bases remained high (>38), demonstrating excellent sequencing quality. (B) The per sequence GC content showed
consistent distribution, with over 90% of sequences in each sample meeting quality standards. (C) Gene expression analysis indicated consistent
distribution patterns across samples, with log10(FPKM) values primarily ranging from -3 to 3. These results confirm the high quality and reliability of
the sequencing data.
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sequencing data, the expression of Etnppl was significantly increase

in intervention group compared with model group (p < 0.05)

(Figure 4B). Likewise, RT-qPCR results showed Acsbg1 was

obviously higher expression in model group compare to control
Frontiers in Endocrinology 08
groups and intervention group, while Etnppl was significantly lower

expression in model group compare to control groups and

intervention group (P < 0.05) (Figure 4C). Furthermore, the

Acsbg1 and Etnppl were enriched and presented in 31 GO
FIGURE 3

Differential gene expression analysis and functional enrichment. (A) PCA shows distinct clustering among the control, model, and DAPA groups,
indicating clear separation of gene expression profiles. (B) Volcano plot displays significantly DEGs between model and control groups, highlighting
upregulated (red) and downregulated (blue) genes. (C) Heatmap visualization illustrates the expression patterns of DEGs, with clear separation of
groups. (D) A second volcano plot shows DEGs between the DAPA treatment and model groups. (E) The accompanying heatmap represents the
distribution of DEGs, emphasizing the changes induced by DAPA. (F) Venn diagrams summarize the overlap of upregulated and downregulated
genes across different comparisons. (G) GO analysis reveals significantly enriched biological processes. (H) KEGG enrichment analysis highlights
pathways significantly associated with DEGs, detailing gene counts and statistical significance. These analyses underscore the molecular alterations
and potential therapeutic targets in DCM treated with DAPA.
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FIGURE 4

Key gene expression and functional enrichment analysis. (A) Venn diagram illustrating the overlap between intervention-related genes and LMRGs.
(B) Violin plots show expression levels of key genes, Acsbg1 and Etnppl, across the control, model, and intervention groups, highlighting significant
differences among the groups (p-values indicated). (C) Quantitative analysis confirms significant changes in gene expression levels between groups,
with statistical significance denoted. (D) Gene Ontology (GO) enrichment analysis reveals that these key genes are primarily involved in fatty acid
metabolism and regulation. (E) Further pathway analysis indicates significant enrichment in the fatty acid degradation, adipocytokine signaling, and
PPAR signaling pathways. (F) Gene function network analysis illustrates complex interactions among these pathways. These results highlight the
critical role of these key genes in mediating the effects of DAPA treatment in DCM.
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pathways, including 18 in BP (such as long-chain FA biosynthetic

process) and 13 in MF (such as transaminase activity) (Figure 4D).

And the Acsbg1 and Etnppl were enriched and presented in 6

KEGG pathways (such as FA biosynthesis) (Figure 4E). The GGI

network results showed that the hub genes were functionally

associated with 18 genes (Abat, Agxt2,and Oat, etc.) and

predicted 7 functions (such as CoA-ligase activity) (Figure 4F).
3.5 GSEA of Acsbg1 and Etnppl

The GSEA results showed that Acsbg1 was enriched to 13 KEGG

pathways (lysosome, oxidative phosphorylation, and Parkinsons

disease, etc.), and the Etnppl was enriched to 14 pathways

(lysosome, proteasome, and ribosome, etc.) (Figures 5A, B). Among

them, both Acsbg1 and Etnppl were significantly enriched for 14

pathways including spliceosome, lysosome, ribosome, proteasome,

valine leucine and isoleucine degradation, N glycan biosynthesis, and

DNA replication (Supplementary Table S4).
3.6 Predictive analysis of m6A binding sites
for Acsbg1 and Etnppl

The m6A binding sites for Acsbg1 and Etnppl were located at

UCAGG in the RNA secondary structure. The m6A modification

sites of Acsbg1 were predominantly located in regions of low

confidence, while the m6A modification sites of Etnppl were

mostly concentrated in regions of moderate confidence, with 2

located in high confidence regions (Figures 6A, B).
3.7 Regulation network of Acsbg1
and Etnppl

A total of 292 miRNAs were predicted by TargetScan and 1,011

miRNAs were predicted by miRWalk were predicted by miRDB.

The 200 key miRNA were taken from the intersection of the 2

database (Figure 7A). The key miRNA-mRNA regulatory network

showed that the 184 key miRNAs were predicted by Acsbg1, and the

16 key miRNAs were predicted by Etnppl (Figure 7B). In which,

rno-mir-153-5p, rno-mir-6316, rno-mir-500-5p, rno-mir-3594-5p,

rno-mir-501-5p, and rno-mir-362-5p were co-predicted by Acsbg1

and Etnppl. Predicting the TFs of hub genes were important for

probing the expression regulation mechanism of hub genes. In this

study, 44 TFs were associated with Acsbg1 and Etnppl with

potential regulatory relationships. Among them, FOXC1, ESR1,

NF-kB1, TP63, SOX2, SRY, and POU2F2 were co-predicted by

Acsbg1 and Etnppl. (Figure 7C).
4 Discussion

Lipid accumulation in the heart is an independent pathogenic

event in the progression of DM, unrelated to other pathogenic
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factors such as ischemic, infectious, and rheumatic causes (23).

Previous studies have shown that DAPA regulates blood lipids in

diabetic patients to improve symptoms (24). Therefore, this study

explores the therapeutic effects of DAPA on rats with DCM,

identifying Acsbg1 and Etnppl as hub genes in the treatment

process, and providing new reference points for subsequent

clinical treatment research.

In this study, we established a DCM rat model and obtained

myocardial tissue samples after DAPA intervention for sequencing,

yielding stable and high-quality data. 1,311 genes were identified in

the model group compared to the control group, and subsequently

screened 68 candidate genes by intersecting DEG-model and DEG-

control. Furthermore, we employed bioinformatics methods and

intersected our findings with 590 LMRGs obtained from public

databases, ultimately identifying Acsbg1 and Etnppl.

Etnppl is a gene that encodes the Etnppl protein, primarily

expressed in the brain and liver, and is crucial for maintaining

phospholipid homeostasis (25). In the Etnppl gene knockout mouse

model constructed by Elmihi (26), increases in free glucose, total

cholesterol, and very low-density lipoprotein (VLDL) were

observed. This suggests that deletion of the Etnppl gene may lead

to reduced expression of the LRP-1 gene in the liver, thereby

decreasing VLDL uptake. Since the VLDL receptor is also

expressed in heart tissue (27), which is consistent with our

findings that in DCM rats treated with DAPA, increased

expression of the Etnppl gene might improve myocardial lipid

metabolism and alleviating the structural and functional disorders

of DCM. Besides, research conducted byWang et al. revealed that in

a palmitic acid-induced diabetic mouse model, Etnppl suppresses

autophagic flux through the activation of the ARG2/ROS signaling

pathway, thereby mediating palmitic acid-induced hepatic insulin

resistance (28). It is noteworthy that Xu et al. constructed a logistic

regression model based on Etnppl to assess its clinical significance.

Their findings indicated that the area under the AUC value was

greater than 0.8, suggesting the model’s efficacy in differentiating

between DCM and healthy control samples. This observation

underscores the potential of Etnppl as a target for DCM research

(29). Therefore, targeting Etnppl may offer a potential therapeutic

strategy for DCM.

The Acsbg1 gene is located on chromosome 15 at q25.1 and

encodes the Acsbg1 protein. Acsbg1 is a member of the long-chain

acyl-CoA synthetase family (30). Studies have shown that Acsbg1

affects FA b-oxidation and disrupts energy metabolism, leading to

cardiac metabolic disorders and increased risk of cardiovascular

diseases (31). Furthermore, Acsbg1 may be involved in chronic

inflammation, immune responses, and vascular abnormalities,

which are crucial factors in disease progression (32). Acsbg1 is

predominantly expressed in regulatory T (Treg) cells, particularly

showing high levels in pulmonary ST2+ Treg cells. Its expression is

regulated by TGF-b through the Smad2/3 signaling pathway.

Through lipid metabolism regulation, Acsbg1 maintains immune

tolerance and homeostasis, thereby suppressing inflammation. This

anti-inflammatory function may potentially influence inflammation

levels in cardiomyocytes affected by DCM (33).The present study

constitutes the initial discovery of an association between Acsbg1
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FIGURE 5

Gene set enrichment analysis (GSEA) of metabolic pathways. GSEA revealed significant enrichment of multiple metabolic pathways in the context of
DAPA treatment. (A) Pathways related to lipid and glucose metabolism showed notable enhancement in the control group compared to the model
group, particularly in fatty acid oxidation and glucose utilization processes. (B) Post-DAPA treatment, metabolic pathways demonstrated significant
restoration, with marked enrichment in energy metabolism and fatty acid degradation pathways. These findings suggest that DAPA effectively
modulates metabolic dysregulation in DCM, particularly impacting lipid and glucose metabolism.
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and DCM as a novel therapeutic target. Subsequent research will

focus on the role of Acsbg1 in diseases such as DCM, with the

objective of elucidating its underlying mechanisms. Furthermore,

future studies will explore whether Acsbg1 exhibits a specific

expression pattern in DCM and whether it correlates with the

severity or progression of the disease.
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Our study indicated a significant increase in the expression of

the Etnppl protein in the intervention group, while the expression

of Acsbg1 was markedly elevated in the model group. These up-

regulated and down-regulated genes suggest that the expression of

genes in the DCM heart undergoes substantial changes under the

conditions of DAPA intervention. In summary, Acsbg1 and Etnppl
FIGURE 6

Prediction score distribution and secondary structure analysis of Acsbg1 and Etnppl. The prediction score distribution along the query sequences for
Acsbg1 and Etnppl is depicted. (A) The score distribution for Acsbg1 reveals several high-confidence regions, indicating potential functional domains.
(B) Etnppl also shows high-confidence predictions but with a distinct circular arrangement. The secondary structure analysis indicates that Acsbg1
exhibits a complex branching structure, while Etnppl is characterized by multiple protruding branches. Both proteins are noted for their conserved
functional domains (highlighted in yellow), suggesting their important regulatory roles in metabolic processes.
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FIGURE 7

Regulatory mechanisms of key genes identified via bioinformatics analysis. (A) Venn diagram illustrating the overlap of predicted target genes
between the TargetScan and miRWalk databases, revealing 200 shared genes (18.1%). (B) Interaction network analysis highlights extensive regulatory
relationships among the predicted target genes. (C) Further transcription factor analysis identifies Acsbg1 and Etnppl as central regulatory nodes
interacting with multiple transcription factors, including SOX2, GATA3, and PPARG. These findings suggest complex regulatory networks that
underlie the therapeutic effects of DAPA in DCM.
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are key regulators of lipid metabolism, which is closely linked to

DCM. Therefore, targeting Acsbg1 and Etnppl could serve as a

potential strategy for DAPA treatment of DCM.

The GO and KEGG enrichment analysis results of hub genes

indicate their association with signaling pathways such as FA

biosynthesis, FA degradation, and FA metabolism. One of the key

characteristics of DCM is a disorder of energy metabolism, where

toxic lipid metabolites accumulate in the diabetic heart a condition

known as cardiac lipotoxicity (1). This may be related to increased

uptake of FA by cardiomyocytes and/or reduced allosteric

regulation of mitochondrial FA uptake, leading to incomplete FA

oxidation. Excessive FA and FA-derived metabolites are the main

pathogenic factors contributing to cardiac lipotoxicity in DCM

(23, 34).

GSEA analysis revealed seven shared pathways between Acsbg1

and Etnppl, particularly the lysosomal pathway. Since excess

saturated FA disrupt lysosomal function and increase protein

toxicity in cardiomyocytes, we propose these hub genes may reduce

lipid accumulation in DCM through enhanced lysosomal-mediated

lipophagy, thereby improving FA metabolism (35, 36). Leucine

accumulation, resulting from impaired BCAA metabolism,

triggers both mTOR-mediated cell death and PPARa-enhanced FA

oxidation, leading to increased cardiac lipid toxicity and vulnerability

to ischemia-reperfusion injury (37). Another noteworthy pathway

involves the proteasome, which plays a crucial role in cardiac

function by clearing damaged proteins. In DCM, impaired

proteasome activity leads to the accumulation of damaged proteins,

resulting in proteotoxic stress and subsequent cardiac dysfunction

(38). Related studies have shown that proteasome inhibition protects

cardiac function by enhancing antioxidant gene expression and

reducing oxidative damage and pathological remodeling (39). We

hypothesized that Acsbg1 and Etnppl modulate these pathways in

DCM pathogenesis. DAPA treatment appears to normalize both

leucine metabolism and proteasome activity, potentially offering

therapeutic benefits for DCM patients.

Subsequently, the hub genes-TFs regulatory networks for

Acsbg1 and Etnppl were constructed to identify key TFs with

potential regulatory roles. The cardioprotective effects of estrogen

are well-established. The analysis of co-predicted TFs associated

with hub genes, ESR1 emerged as a significant regulator of glucose

homeostasis. ESR1 exerts its effects through dual regulation of

solute carrier family 2 member 4 (Slc2a4), it enhances

transcription through cooperative action with SP1 and CEBPA

TF while inhibiting NF-kB activity, and promotes glucose

transporter type 4 (GLUT4) translocation to the cell membrane.

These mechanisms collectively contribute to improved insulin

sensitivity (40). NF-kB is another crucial TF involved in DCM

pathogenesis. It promotes disease development through two main

mechanisms: inducing ferroptosis and mediating lipotoxicity-

induced damage. These roles make NF-kB an important potential

target for DCM therapeutic interventions (41). In summary, TFs

such as ESR1 and NF-kB may influence DCM by regulating the

transcription of Acsbg1 and Etnppl.

Studies have identified a strong involvement of pyroptosis in the

progression of DCM (42), while m6A methylation acts as a crucial
Frontiers in Endocrinology 14
RNA epigenetic regulation mechanism (43). Meng et al. (44)

discovered that METTL14 can suppress NLRP3-related pyroptosis

in DCM by increasing the m6A methylation level of the TINCR

gene, thereby reducing the mRNA stability of NLRP3. Previous

research has also linked altered m6A modification patterns to

myocardial fibrosis and myocyte hypertrophy in DCM (45). In

the current study, the dysregulation of lipid and obesity-associated

mRNAs in the DCM model might be related to altered m6A

modifications of key genes (46). M6A sites were located at the

UCAGG motifs in the RNA secondary structure, and suggest that

DAPA might improve these differentially methylated sites directly

or indirectly. However, further research is needed to confirm these

findings. In this study, we employed bioinformatics approaches to

analyze sequencing data and lipid metabolism-related genes,

identifying two DCM-associated hub genes: Acsbg1 and Etnppl.

Through comprehensive analyses including GSEA, m6A

methylation profiling, and GGI network analysis, we further

elucidated the molecular regulatory mechanisms of DAPA in

DCM, providing a theoretical foundation for future investigations

into the disease pathogenesis.

Despite the promising findings, our study has several

limitations that warrant consideration. Due to limitations in

terms of time, resources and other objective conditions, this study

was unable to investigate the reversibility of the expression changes

of Acsbg1 and Etnppl after the cessation of DAPA treatment. The

significance of the reversibility of gene expression changes after

DAPA treatment will be explored in future studies. To further

validate and expand upon the current research results, it is planned

that the relevant experiments will be repeated in a variety of

different animal models in order to compare the intervention

effect of DAPA on DCM in different animal models. At the same

time, opportunities to collaborate with clinics will be actively sought

in order to collect human tissue samples to investigate the

mechanism and effect of DAPA on DCM from the human level.

The small sample size of this study will be addressed by conducting

large-scale sample analysis and introducing multi-sample validation

experiments to enhance the extrapolation of results. Furthermore,

the roles of other pathways in DCM will be explored to achieve a

more comprehensive understanding of the pathogenesis of DCM.

At the level of gene function research, the latest gene editing

technology will be employed in combination with gene knockout

experiments to provide a comprehensive analysis of the function of

core genes in the pathogenesis of DCM. The development of DCM

involves the abnormalities of many genes, and through gene

knockdown, we can identify the specific roles of specific genes in

the pathogenesis of DCM, which is of great significance.
5 Conclusion

In conclusion, this study successfully established a DAPA-

treated DCM model and identified novel hub genes specifically

associated with lipid metabolism in DCM pathogenesis. Through

comprehensive functional prediction and systematic analysis of

these genes, we have not only unveiled potential therapeutic
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targets for DAPA treatment but also provided valuable insights into

the molecular mechanisms underlying DCM. These findings

contribute significantly to our understanding of DCM

pathophysiology and may pave the way for developing more

effective therapeutic strategies for DCM patients.
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