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Guangzhou, China, 2Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key
Laboratory for Metabolic Diseases, Guangzhou, China, 3Department of Endocrinology, Shantou
Central Hospital, Shantou, China, 4Department of Endocrinology, Dongguan People’s Hospital Puji
Branch, Dongguan, China, 5Department of Endocrinology, People’s Hospital of Shenzhen Baoan
District, Second Affiliated Hospital of Shenzhen University, Shenzhen, China, 6Department of
Endocrinology, Jieyang People’s Hospital, Jieyang, China
Background: Diabetic foot ulcers (DFUs) constitute a significant complication

among individuals with diabetes and serve as a primary cause of nontraumatic

lower-extremity amputation (LEA) within this population. We aimed to develop

machine learning (ML) models to predict the risk of LEA in DFU patients and used

SHapley additive explanations (SHAPs) to interpret the model.

Methods: In this retrospective study, data from 1,035 patients with DFUs at Sun

Yat-sen Memorial Hospital were utilized as the training cohort to develop the ML

models. Data from 297 patients across multiple tertiary centers were used for

external validation. We then used least absolute shrinkage and selection operator

analysis to identify predictors of amputation. We developed five ML models

[logistic regression (LR), support vector machine (SVM), random forest (RF), k-

nearest neighbors (KNN) and extreme gradient boosting (XGBoost)] to predict

LEA in DFU patients. The performance of these models was evaluated using

several metrics, including the area under the receiver operating characteristic

curve (AUC), decision curve analysis (DCA), precision, recall, accuracy, and F1

score. Finally, the SHAP method was used to ascertain the significance of the

features and to interpret the model.

Results: In the final cohort comprising 1332 individuals, 600 patients underwent

amputation. Following hyperparameter optimization, the XGBoost model

achieved the best amputation prediction performance with an accuracy of

0.94, a precision of 0.96, an F1 score of 0.94 and an AUC of 0.93 for the

internal validation set on the basis of the 17 features. For the external validation

set, the model attained an accuracy of 0.78, a precision of 0.93, an F1 score of

0.78, and an AUC of 0.83. Through SHAP analysis, we identified white blood cell

counts, lymphocyte counts, and blood urea nitrogen levels as the model’s

main predictors.
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Conclusion: The XGBoost algorithm-based prediction model can be used to

dynamically estimate the risk of LEA in DFU patients, making it a valuable tool for

preventing the progression of DFUs to amputation.
KEYWORDS

diabetic foot ulcer, lower extremity amputation, risk factor, machine learning, SHAP
Introduction

At present, more than 550 million people are diagnosed with

type 2 diabetes mellitus (T2DM) globally, and the prevalence of

T2DM continues to increase (1). Projections indicate that by 2045,

the number of individuals diagnosed with diabetes worldwide will

increase to 700 million (1). Moreover, advancements in medical

treatment have substantially prolonged the life expectancy of

individuals with diabetes, leading to a notable increase in the

prevalence of chronic diabetic complications (2). Among the

myriad of diabetic complications, diabetic foot ulcers (DFUs)

constitute a particularly severe and prevalent issue. DFUs are

distinguished not only by their notably high mortality rate but

also by their substantial contribution to approximately 85% of

nontraumatic amputations worldwide (3). A previous study

indicated that patients with DFUs perceive the risk of lower-

extremity amputation (LEA) as a more significant concern than

mortality throughout the progression of the disease (4). This

phenomenon is attributable to the significant effects of LEA on

patients’ physical and psychological well-being, leading to

prolonged hospitalization, considerable financial strain, intricate

treatment protocols, and a significantly diminished quality of life.

Moreover, patients with DFUs who have undergone LEA have a

poor prognosis, with a 3-year mortality rate of 35–50% (5) and a 5-

year mortality rate of 52–80% (6). Consequently, conducting

personalized assessments for patients with DFUs to evaluate their

risk of amputation and identify associated risk factors can provide

essential insights for early intervention treatments. The results of

this analysis are expected to be useful for reducing the incidence of

amputation surgeries, decreasing patient mortality rates, and

lowering healthcare costs.

Presently, widely utilized classification systems for DFU, such as

the Diabetic Ulcer Severity Score, the Meggitt–Wagner

classification, and the University of Texas Diabetic Wound

Classification, serve as standard instruments for informing

treatment strategies and predicting the risk of disease progression

in patients with DFUs (7–9). Although these classification systems

have the potential to predict amputation risk in patients, they have

not been universally adopted as the gold standard (10). This

limitation stems primarily from practitioners’ reliance on clinical

experience rather than objective statistical data for scoring.

Furthermore, these systems cannot be used to integrate

demographic information, clinical and laboratory data, medical
02
history, foot condition, and other pertinent risk factors

comprehensively (11, 12). This limitation has led to diminished

sensitivity and specificity in predicting amputation risk among

patients with DFUs.

DFUs present substantial complexity owing to the clinical

heterogeneity observed among patients and the multimodal data

obtained from various disciplines, such as imaging, surgery, and

endocrinology. To elucidate the complexity of DFUs, it is

imperative to use advanced analytical methodologies, such as

machine learning (ML) and artificial intelligence (AI) (13). These

data analysis techniques are used to develop algorithms for

predicting outcomes by “learning” from data (14). Through the

utilization of ML, clinical physicians can now predict the healing

trajectories of DFUs, assess the risk of amputation, and develop

personalized treatment plans on the basis of clinical data. Several

studies have investigated the application of ML techniques in

predicting diabetic foot amputations (15). However, the sample

sizes in some studies are relatively small, which may limit their

representativeness of the population (16–18).Moreover, several of

these small-sample studies employ only a single type of ML

algorithm for model development (18, 19). Consequently, there is

an urgent need for the development of more sophisticated and

advanced models capable of effectively addressing the heterogeneity

observed in patients with DFUs. While various ML algorithms have

been employed in several studies, their complex nature might limit

their interpretation by patients and clinicians in real-world clinical

settings (16, 17). The “black-box” nature of traditional ML

algorithms poses challenges in explaining the specific patient

characteristics that contribute to a particular prediction. The

limited interpretability of ML methods constrains their

application in medical decision support and it is also one of the

significant barriers to their implementation in real-world clinical

settings (20). To overcome these limitations, our study incorporated

the ML algorithm with SHapley Additive exPlanations (SHAPs)

(21). In addition to enhancing the precision of amputation risk

prediction in patients with DFUs, SHAP provides intuitive

explanations that empower patients to understand their own risk

factors. It can aid clinicians in comprehending the decision-making

process for evaluating disease severity and optimizing opportunities

for early intervention, while also contributing to the development of

interpretable and personalized risk prediction models.

In short, the small sample sizes of amputee patients, coupled

with the limited interpretability of models, constrains the
frontiersin.org
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application of priors ML models in medical decision support

systems. Thus, this study aimed to utilize data from multiple

medical centers concerning patients with DFUs to develop and

evaluate various ML models, ultimately identifying the best model

for predicting the risk of amputation during hospitalization.

Furthermore, SHAPs were used to visualize the optimal model

and investigate the factors influencing the prognosis of DFUs. The

objective was to equip healthcare providers with a concise and

valuable instrument for identifying DFU patients at risk of

amputation, enabling effective interventions to optimize clinical

outcomes and improve the quality of life for these patients.
Methods

In this retrospective cohort study, we developed a series of ML

models to predict the risk of amputation in patients with DFUs.

This study involved the development, validation and subsequent

interpretation of the models. Following the preprocessing of the

data and the selection of relevant variables, models were

constructed utilizing 5 distinct ML algorithms. The model

performances were subsequently evaluated via both internal and

external validation datasets to identify the optimal model. Finally,

SHAP was used to elucidate the optimal model. Figure 1 illustrates
Frontiers in Endocrinology 03
the comprehensive research process, including the criteria for

inclusion and exclusion, data preprocessing, feature selection,

dataset partitioning, model development and validation, model

comparison, and selection and interpretation of the optimal model.
Study population and outcome

Data for the training cohort were derived from the clinical

records of patients with DFUs (Wagner grades 1–5) (22) admitted

to the Endocrinology Department at Sun Yat-sen Memorial

Hospital from January 2015 to October 2023. The inclusion

criteria were as follows: (1) a confirmed diagnosis of T2DM and

(2) over the age of 18. The exclusion criteria included: (1) diabetes

types other than T2DM; (2) refusal or discontinuation of treatment;

(3) the presence of malignant tumors; and (4) significant

deficiencies in clinical examination data or ambiguity in clinical

outcomes. On the basis of these criteria, a total of 1035 T2DM

patients with DFUs were included in the training cohort.

With data collected between January 2020 and October 2023, the

external validation cohort consisted of patients with T2DMandDFUs

from Shantou Central Hospital, Dongguan People’s Hospital, Jieyang

People’s Hospital and Shenzhen Central Hospital. The inclusion and

exclusion criteria were consistent with those of the training cohort.
FIGURE 1

Workflow for constructing explainable machine learning models for predicting the risk of amputation in diabetic foot ulcer patients. DFU, diabetic
foot ulcer; T2DM, type 2 diabetes mellitus; KNN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; RF, random forest;
XGBoost, extreme gradient boosting.
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Finally, the external validation cohort included a total of 297 patients

with T2DM complicated by DFUs. This study received approval from

the Ethics Committee of Sun Yat-sen Memorial Hospital. Given that

all patient data were anonymized and that the study did not influence

clinical decision-making, the requirements for individual patient

consent and an ethical informed consent statement were waived.

The baseline characteristics of the demographic and clinical variables

for the training cohort and external validation cohorts are detailed in

Table 1 and Supplementary Table 1.

The outcome of our study was amputation, which included both

minor and major amputations (any LEA). The term major

amputation refers to amputations above the ankle, and minor

amputation refers to any amputation below the ankle.
Study variables

Drawing upon contemporary research and clinical guidelines, we

selected 62 potential predictive factors that may influence the risk of

lower-limb amputation in patients with DF. The variables selected for

this study included the following demographic and clinical

characteristics: age, weight, height, body mass index (BMI),

Wagner grade, smoking history, alcohol consumption history, and

history of previous ulcers. Four comorbidities were considered:

hypertension, history of cardiovascular disease, diabetic

nephropathy (DN), and diabetic peripheral neuropathy (PND).

Additionally, in the present study, we incorporated lower-limb

vascular imaging examinations, which were conducted to assess

vascular occlusion, vascular calcification, and arteriosclerosis.

Furthermore, a total of 39 laboratory indicators were selected for

the study, including D-dimer, C-reactive protein (CRP), the

neutrophil count, hemoglobin (Hb), glycated Hb (HbA1c),

triglycerides (TGs), low-density lipoprotein (LDL), albumin (ALB),

blood urea nitrogen (BUN), and creatinine (Cr), among others.
Data preprocessing and feature selection

Following the selection of study variables, data were extracted

from the health information systems (HISs) of various hospitals.

Indicators with more than 20% missing data were subsequently

excluded from the analysis. Finally, a total of 55 candidate variables

were selected within the training cohort. For variables with missing

values constituting less than 5% of the data, imputation was

performed using the median value. In cases where the proportion

of missing data exceeded 5%, multiple imputation via random forest

(RF) methodology was applied to address the missing values (23).

To identify the most predictive factors for amputation and reduce

the possibility of overfitting among the included variables, we used

least absolute shrinkage and selection operator (LASSO) regression

on the entire dataset of the training cohort. This approach

facilitated the elimination of confounding variables, thereby

enhancing model performance and mitigating the risk of

overfitting. In LASSO regression, the coefficient estimates were

regularized towards zero, with the degree of shrinkage being
Frontiers in Endocrinology 04
governed by an additional parameter, denoted as l. To calculate

the best possible values for l, we used 10-fold cross-validation and

iteratively applied LASSO regression to each fold. We subsequently

identified the optimal tuning parameter (min l) for the model by

minimizing the cross-validation error and validated the model

selection parameters to select the optimal predictive variable (24).

After a thorough evaluation of the model features and their

performance, we identified the min l-1se as the final parameter

for the Lasso model.
ML models

As mentioned above, we sequentially undertook the

development, validation, interpretation, and application of ML

models in the current study. Initially, the patients in the training

cohort were randomly partitioned, with 70% allocated to the

training set and 30% to the internal validation set. We used five

ML algorithms [extreme gradient boosting (XGBoost), support

vector machine (SVM), RF, k-nearest neighbors (KNN) and

logistic regression (LR)] to develop predictive models (25). In the

training set, model hyperparameters were optimized to reduce

overfitting and improve accuracy via GridSearch with tenfold

cross-validation. We subsequently constructed receiver operating

characteristic (ROC) curves and decision curve analysis (DCA)

curves via the internal validation set. We then assessed the

predictive performance of various ML models by calculating the

accuracy, area under the curve (AUC), recall rate, precision rate,

and F1 score (26, 27). The performance of the five models was

further validated using an external dataset, employing the same

methodological approach. We evaluated model performance via

AUCs and F1 scores as the principal metrics and selected the

optimal model on the basis of these metrics. To improve the

interpretability of the ML model outcomes and analyze the

contributing factors, we used SHAP to evaluate the feature

importance of the optimal model.
Statistical analysis

The normality of continuous variables was assessed via the

Kolmogorov–Smirnov (K–S) test. Continuous variables with

normal distributions are reported as the means (standard

deviations, SDs) and were compared via independent samples t

tests. Conversely, variables that did not follow a normal distribution

are presented as the median (interquartile range) and were

compared via the Kruskal–Wallis test. Categorical variables are

presented as frequencies and percentages (n, %). Comparative

analyses between the amputee and nonamputee groups were

conducted via Student’s t test, the Mann–Whitney U test, or the

chi–square test, contingent upon the distribution of the variables. A

p value of less than 0.05 was considered to indicate statistical

significance. Data preprocessing, model construction, validation,

and interpretation of the ML models were executed via R Studio

version 4.2 and Python (v. 3.8.3).
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TABLE 1 Characteristics of the training cohort patients at first admission.

Factors Total (n=1035) Non-amputation (n=563) Amputation (n=472) P values

Demographics

Age, yr 66.2 ± 12.2 64.6 ± 12.6 68.2 ± 11.5 <0.001

Duration of diabetes, yr 10.0 (5.0-20.0) 10.0 (5.0-20.0) 11.0 (5.0-20.0) 0.465

Sex, n (%) 0.210

Male 631 (61.0%) 341 (60.6%) 290 (63.0%)

Female 404 (39%) 222 (39.4%) 182 (37.0%)

BMI, kg/m (2) 23.2 ± 3.7 23.7 ± 3.9 22.6 ± 3.3 <0.001

SBP, mmHg 135.5 ± 22.8 136.1 ± 22.6 134.6 ± 23.0 0.281

DBP, mmHg 72.9 ± 11.3 73.4 ± 11.4 72.3 ± 11.2 0.120

Medical history

Hypertension, n (%) 324 (31.3%) 155 (27.5%) 169 (35.8%) 0.004

Smoking (current or ever), n (%) 324 (31.3%) 155 (27.5%) 169 (35.8%) 0.004

Drinking (current or ever), n (%) 125 (12.1%) 54 (9.6%) 71 (15%) 0.007

CAD, n (%) 161 (15.6%) 79 (14.0%) 82 (17.4%) 0.140

Cerebral infarction, n (%) 114 (11.0%) 50 (8.9%) 64 (13.6%) 0.017

PAD, n (%) 996 (96.2%) 532 (94.5%) 464 (98.3%) 0.03

Prior ulcer, n (%) 107 (10.3%) 43 (7.6%) 64 (16.3%) 0.002

Diabetic nephropathy, n (%) 511 (49.4%) 261 (46.4%) 250 (53.0%) 0.034

Diabetic peripheral neuropathy, n (%) 757 (73.1%) 400 (71.0%) 357 (75.6%) 0.097

Wagner classification system, n (%) <0.001

I-III 520 (50.2%) 477 (84.7%) 43 (9.1%)

IV-V 515 (49.8%) 86 (15.3%) 429 (90.9%)

Clinical and laboratory data

WBC count, ×109/L 10.35 ± 5.62 7.2 ± 2.0 14.2 ± 6.1 <0.001

Hemoglobin, g/L 100.48 ± 25.96 114.2 ± 21.2 84.1 ± .21.1 <0.001

PLT count, ×109/L 307 (207-407) 255 (207-315) 399.0 (312-472) <0.001

LYM count, ×109/L 1.64 ± 0.82 2.06 ± 0.79 1.14 ± 0.51 <0.001

NEUT count, ×109/L 7.83 ± 5.50 4.64 ± 1.74 11.64 ± 6.0 <0.001

Potassium, mmol/L 4.09 ± 0.38 4.10 ± 0.38 4.08 ± 0.37 0.417

Sodium, mmol/L 140.48 ± 3.74 140.42 ± 3.26 140.56 ± 4.24 0.524

Phosphorus, mmol/L 1.15 ± 0.29 1.15 ± 0.26 1.16 ± 0.32 0.441

Calcium, mmol/L 2.10 ± 0.33 2.28 ± 0.14 1.89 ± 0.36 <0.001

Corrected calcium, mmol/L 2.29 ± 0.25 2.39 ± 0.11 2.18 ± 0.31 <0.001

Lactate dehydrogenase, U/L 191 (165-230) 185 (159-217) 203 (172-240) <0.001

NT-proBNP, pg/ml 500.0 (143-1841) 294.0 (106-1024) 824.0 (252-3179) <0.001

ALT, U/L 16 (11-24) 16 (11-24.) 16 (10-23.) 0.572

AST, U/L 19.0 (15-25) 19 (15-25) 19 (15-25) 0.486

Total bilirubin, mmol/L 8.30 (6.70-10.40) 8.00 (6.40-10.30) 8.50 (7.00-10.60) 0.059

(Continued)
F
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Results

Basic characteristics

As depicted in Figure 2, our study included a total of 1,332

patients diagnosed with DFUs. Among these, 1,035 patients were

allocated to the training cohort, whereas 297 patients were assigned to

the external validation cohort. The patients were categorized into two
Frontiers in Endocrinology 06
distinct groups on the basis of their posttreatment amputation status.

In the training cohort, 45.6% (472/1035) of the patients underwent

amputation, whereas in the external validation cohort, the incidence of

amputation was 43.1% (128/297). Our data suggest that patients who

underwent amputation presented elevated levels of inflammatory

markers, including WBC and PCT, alongside increased serum Cr

and BUN levels. Furthermore, these patients had increased levels of

platelets (PLTs), D-dimers, and fibrinogen. Conversely, the levels of
TABLE 1 Continued

Factors Total (n=1035) Non-amputation (n=563) Amputation (n=472) P values

Clinical and laboratory data

Globulin, g/L 34.45 ± 6.60 36.52 ± 6.37 31.97 ± 5.99 <0.001

ALB, g/L 30.34 ± 7.28 34.46 ± 5.61 25.42 ± 5.85 <0.001

INR 1.11 ± 0.51 1.02 ± 0.18 1.21 ± 0.72 <0.001

APTT, s 29.17 ± 6.93 26.92 ± 4.03 31.86 ± 8.53 <0.001

Fibrinogen, g/L 5.16 ± 1.63 4.52 ± 1.34 5.92 ± 1.62 <0.001

D-dimer, mg/L 0.96 (0.52-1.90) 0.69 (0.40-1.14) 1.53 (0.79-2.92) <0.001

BUN, mmol/L 8.23 ± 6.28 5.61 ± 3.31 11.36 ± 7.44 <0.001

Uric acid, mmol/L 317 (238-404) 301.0 (222.0-388.0) 333.00 (253.0-414.0) <0.001

eGFR (ml·min-1·1.73 m-2) <0.001

≤60, n (%) 399 (38.6%) 147 (26.1%) 252 (53.4%)

>60, n (%) 636 (61.4%) 416 (73.9%) 220 (46.6%)

Triglycerides, mmol/L 1.32 ± 0.86 1.49 ± 1.05 1.12 ± 0.48 <0.001

Total cholesterol, mmol/L 3.86 ± 1.31 4.24 ± 1.33 3.42 ± 1.14 <0.001

HDL, mmol/L 0.88 ± 0.29 0.96 ± 0.29 0.79 ± 0.25 <0.001

LDL, mmol/L 2.43 ± 0.92 2.69 ± 0.96 2.11 ± 0.76 <0.001

Fasting blood glucose, mmol/L 11.76 ± 5.21 8.96 ± 3.02 15.08 ± 5.33 <0.001

HbA1c, % 8.61 ± 2.35 8.39 ± 2.29 8.88 ± 2.40 0.01

Procalcitonin, ng/ml <0.001

≤0.5, n (%) 889 (85.9%) 511 (90.8%) 378 (80.1%)

>0.5, n (%) 146 (14.1%) 52 (9.2%) 94 (19.9%)

Lower-limb vascular imaging examination

Plaque, n (%) 974 (94.1%) 516 (91.7%) 458 (97.0%) 0.002

Vascular intima calcification, n (%) 169 (16.3%) 92 (16.4%) 77 (16.3%) 0.990

Vascular media calcification, n (%) 407 (39.3%) 222 (39.4%) 185 (39.1%) 0.938

Narrowing of below-the-knee arteries, n (%) 797 (77.0%) 399 (70.9%) 398 (84.3%) <0.001

Stenosis of below-the-knee arteries, n (%) 474 (45.8%) 212 (37.7%) 262 (55.5%) <0.001

Narrowing of above-the-knee arteries, n (%) 531 (51.3%) 260 (46.2%) 271 (57.4%) <0.001

Stenosis of above-the-knee arteries, n (%) 121 (11.7%) 49 (8.7%) 72 (15.3%) 0.001
The mean ± standard deviation (SD) was calculated for continuous variables with normal distributions, and the p value was calculated via independent-samples t tests. Nonnormally distributed
variables are expressed as medians (interquartile ranges), and comparisons were conducted via the Kruskal–Wallis test. Categorical data are presented as frequencies (percentages).
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CAD, coronary artery disease; PAD, peripheral arterial disease; WBC, white blood cell; PLT, platelet; LYM,
lymphocyte; NEUT, neutrophil; NT-proBNP, N-terminal pro b-type natriuretic peptide; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLB, globulin; ALB, albumin; INR,
international normalized ratio; APTT, activated partial thromboplastin time; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-
density lipoprotein.
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Hb, serum ALB, serum globulin (GLB), and lipids (including TGs,

HDL, and LDL) were significantly lower in amputee patients than in

nonamputee patients. The baseline characteristics of all the candidate

variables for the training cohort are detailed in Table 1.
Features selected

To attain a further reduction in data dimensionality, in the

present study, we utilized LASSO regression analysis to identify and

select relevant features from the training cohorts. The LASSO

regression model incorporated a total of 55 variables, and the plot

of the coefficients for this analysis is shown in Figure 3A. Each curve

represents one variable. For each value of l, the variables and their

corresponding nonzero coefficients form a LASSO model. We
Frontiers in Endocrinology 07
subsequently used 10-fold cross-validation to analyze and

determine the optimal LASSO regression parameters (28). When

l = 0.0058, the cross-validation error of the model is minimized.

Nevertheless, to further reduce the number of variables included in

the model, we opted for lmin-1 se (l = 0.0111) as the final

parameter for the LASSO regression analysis (Figure 3B) (29).

Ultimately, seventeen variables were identified as predictive

factors for amputation in the ML model. The regression

coefficients of these variables are depicted in Figure 3C.
Model building and evaluation

In the model development and validation phase, using

GridSearchCV from the sklearn library, we initially identified the
FIGURE 2

Flowchart of patient selection. T2DM, type 2 diabetes mellitus; DFU, diabetic foot ulcer.
FIGURE 3

LASSO regression analysis was used to select potential variables. A total of 53 variables were initially included, and 17 variables were ultimately
selected for further analysis. (A) LASSO coefficient analysis of the clinical features. (B) Tuning parameter selection in the LASSO regression model
from 10-fold cross-validation. (C) Plot of the LASSO coefficient of the 17 candidate predictors for amputation. WBC, white blood cell; BUN, blood
urea nitrogen; PLT, platelet; TG, triglyceride; Pct, procalcitonin; LDL, low-density lipoprotein; UA, uric acid; HGB, hemoglobin; ALB, albumin; GLB,
globulin; LYM, lymphocyte.
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optimal hyperparameters for five distinct ML models.

Comprehensive details regarding the hyperparameters of the ML

models are presented in Table 2. The final models were

subsequently trained using the optimized hyperparameters and

the 17 variables selected through LASSO regression as input

features. The five ML models (KNN, LR, SVM, RF, and XGBoost)

demonstrated robust discriminative capabilities, as evidenced by

their AUCs (95% CI) of 0.94 (0.91-0.97), 0.93 (0.90-0.96), 0.93

(0.90-0.96), 0.95 (0.92-0.98), and 0.93 (0.90-0.96), respectively, in

the internal validation set. The AUC curves of the five ML models

evaluated on the internal validation dataset are displayed in

Figure 4. Furthermore, the F1 score was also chosen to compare

model performance, as it effectively measures accuracy in

imbalanced datasets by harmonizing precision and recall

(Table 2). Moreover, the DCA is visually presented in Figure 4B

as an adequate representation of the model’s clinical utility.
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To validate the model in different patients, we created an

external validation cohort and rigorously assessed the model’s

performance. The external cohort was recruited from four

hospitals from 2020–2023. The baseline characteristics of the 17

variables selected as input features for the ML models in the

external validation cohorts are detailed in Additional File 1. In

the external validation cohort, the AUC values (95% CIs) for the

KNN, LR, SVM, RF, and XGBoost models were 0.77 (0.73, 0.82),

0.80 (0.75, 0.85), 0.81 (0.76, 0.86), 0.83 (0.78, 0.87), and 0.84 (0.80,

0.90), respectively (Figure 5A). In Table 3, we presented a summary

of the performance metrics for the five models, including the AUC,

accuracy, precision, recall, and F1 score. In addition, Figure 5B

visually presented the DCA in the external validation cohort,

effectively illustrating the model’s clinical utility.

Compared with the other models, XGBoost consistently

demonstrated superior AUCs and F1 scores when evaluated with
TABLE 2 Hyperparameters of the ML models and comparison of performance among the five models in the internal validation cohort.

ML model Hyperparameters AUC Accuracy Precision Recall F1 score

KNN n_neighbors:17; p=1; weights=distance 0.940 0.900 0.915 0.899 0.907

LR Penalty= l2; C = 1; max_iter:50; solver=liblinear 0.932 0.913 0.932 0.905 0.918

SVM C=1; gamma=0.01; kernel=linear 0.932 0.948 0.932 0.976 0.953

RF
max_depth=10; min_samples_split=1, min_samples_leaf=1;
n_estimators=200; max_features=log2

0.947 0.945 0.931 0.970 0.950

XGBoost
learning_rate = 0.1, n_estimators = 200, max_depth = 2,
subsample = 0.8, colsample_bytree = 0.8, gamma = 0.1, objective
= ‘binary: logistic’

0.930 0.935 0.957 0.922 0.939
AUC, area under the receiver operating characteristic curve; KNN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme
gradient boosting.
FIGURE 4

ROC curve and DCA comparison of the 5 models in the internal validation set. (A) ROC curves of five ML models for predicting amputation in DFU
patients. (B) DCA for the 5 models in the internal validation set. AUC, area under the receiver operating characteristic curve; KNN, k-nearest
neighbors; LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting.
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external validation cohorts. Furthermore, it maintained a high recall

rate in the external validation set, thereby demonstrating the

model’s ability to accurately identify patients at risk of

amputation among those suffering from DFUs. Consequently,

subsequent analysis was conducted via the XGBoost model.
Model interpretability analysis

The SHAP algorithm was used to assess the importance of each

predictive feature in relation to the amputation results, thereby

providing further insight into the prediction mechanism used by the

XGBoost model. Using SHAP, we assessed the global importance of

all 17 features across the entire dataset of training cohorts to

elucidate their overall impacts. The results of this analysis are

depicted in a summary plot in Figure 6. In the SHAP summary

plot, positive Shapley values for each feature signify an elevated risk

of amputation, whereas negative values denote a diminished risk of
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amputation. Correspondingly, the colors depicted in the figure

represent the magnitude of feature values, with red indicating

high feature values and blue denoting low feature values. For

example, patients with poor nutritional status (characterized by

decreased levels of ALB, LDL, GLB, and TGs) during treatment are

more likely to require amputation than those with elevated levels of

these biomarkers. Additionally, patients with elevated white blood

cell counts or decreased lymphocyte and Hb levels during treatment

have a greater risk of amputation than do those without these

hematological abnormalities.

In Figure 7, we demonstrate the application of the SHAPmethod

in elucidating individual model predictions, providing an intuitive

framework for guiding clinicians’ decision-making processes and

deepening their understanding of the model’s predictive

mechanisms. The force plots begin with the average of all

predictions as their base value. Each predictor, along with its

corresponding Shapley value, is depicted by an arrow that either

increases (indicated in red) or decreases (indicated in blue) the
FIGURE 5

ROC curve and DCA comparison of the 5 models in the external validation set. (A) ROC curves of 5 ML models for predicting amputation in DFU
patients within the external validation set. (B) DCA for the 5 models in the external validation set. AUC, area under the receiver operating
characteristic curve; KNN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme
gradient boosting.
TABLE 3 Comparison of the performance of the five machine learning models within the external validation cohort.

ML model AUC Accuracy Precision Recall F1 score

KNN 0.777 0.713 0.766 0.715 0.740

LR 0.800 0.568 0.620 0.930 0.744

SVM 0.813 0.774 0.836 0.751 0.791

RF 0.827 0.768 0.794 0.799 0.796

XGBoost 0.843 0.781 0.933 0.662 0.775
AUC, area under the receiver operating characteristic curve; KNN, k-nearest neighbors; LR, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme
gradient boosting.
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model’s predicted value. The feature values are listed at the top of the

plot. Finally, the convergence points of the red and blue arrows

represent the predicted output values of the model. In Figure 7A, the

patient was diagnosed with a Wagner stage-III DFU. The patient’s

lymphocyte count (1.63×109/L), WBC count (4.78×109/L), BUN

level (3.4 mmol/L), GLB level (40.6 g/L), and fasting blood glucose

level (9.7 mmol/L) were critical parameters for accurately predicting
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the likelihood of avoiding amputation. However, the patient’s ALB

level of 21.6 g/L andWagner grade were inversely correlated with the

prediction of amputation. On the basis of the prediction model, the

outcome depicted in Figure 7A, where f(x) = −4.33, suggests a high

probability of nonamputation. In contrast, the outcomes presented

in Figures 7B, C, with f(x) values of 3.69 and 0.518, respectively,

indicate a relatively high likelihood of amputation.
FIGURE 6

SHAP summary plot of the 17 features of the XGBoost model. For each patient, a dot is generated corresponding to the attribution value of each
feature in the model, resulting in one dot per feature per patient on the line. Each line represents a feature, and the abscissa is the SHAP value. The
higher the SHAP value of a feature is, the greater the probability of an amputation event. The dots are colored according to the patient’s feature
values and are accumulated vertically to describe the density. Green represents a high feature value (in this case, death), whereas blue represents a
low feature value. WBC, white blood cell; BUN, blood urea nitrogen; PLT, platelet; TG, triglyceride; Pct, procalcitonin; LDL, low-density lipoprotein;
UA, uric acid; HGB, hemoglobin; ALB, albumin; GLB, globulin; LYM, lymphocyte.
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Discussion

The aim of this study was to develop and validate five ML

models for prognostic prediction in patients with DFUs undergoing

amputation, thereby providing clinicians with reliable diagnostic

information and treatment options. Ultimately, the XGBoost model

was used as the baseline model for the study. The model exhibited

exceptional predictive performance across both the internal and the

external validation datasets, achieving AUC values of 0.93 and 0.84,

respectively. Moreover, with the use of SHAP values and

corresponding visualizations, we elucidated the influence of each

clinical feature on the performance of the overall XGBoost model.

The illustration of feature importance contributes to a

comprehensive understanding of the models used for predicting

amputation in patients with DFUs.

In the era of big data, a growing array of ML algorithms has been

increasingly applied in research on disease risk and prognosis.

Previous studies have also conducted assessments of amputation

risk for DFU patients. In a prior investigation involving
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retrospective data from a cohort of 618 patients diagnosed with

DFUs, investigators used 37 clinical features to construct an ML

model designed to predict the likelihood of amputation in hospitalized

patients (18). The final model demonstrated high predictive

performance, with an AUC of 0.90. However, the initial dataset

used in that study comprised a relatively small sample size, with

only 117 amputee patients. Additionally, a considerable number of

features were incorporated into the model. These factors may have

contributed to overfitting of the model, potentially leading to

inaccurate results and undermining the generalizability of the

findings. Wang et al. used ML to predict the outcomes of minor

amputations in patients with severe wounds (Texas University grade 3

+), achieving an AUC of 0.881 (17). Owing to the limited number of

amputee cases in the initial dataset, they utilized the synthetic minority

oversampling technique (SMOTE) to perform oversampling. SMOTE

is used to mitigate data imbalance; however, its use carries the

potential risk of inducing model overfitting (30). In contrast to the

previously cited studies, our hospital serves as a tertiary referral center,

attracting patients with advanced-stage DFUs. This resulted in a more
FIGURE 7

Force plot of model prediction results suggested for three randomly selected samples via SHAP values. The f(x) value represents the output values.
The feature values are listed at the top of the plot with feature names. Each group of features was ranked from the center to both ends according to
the extent of their impact. The length of the bar for each feature reflects the weight of that feature in the prediction. Factors that increased the
predicted score are colored red, and those that decreased the predicted score are shown in blue. (A) A patient who did not undergo amputation;
(B) A patient who underwent amputation; (C) Presentation of a patient without amputation via the SHAP method. WBC, white blood cell; BUN, blood
urea nitrogen; PLT, platelet; FastingBG, fasting blood glucose; Pct, procalcitonin; LDL, low-density lipoprotein; UA, uric acid; HGB, hemoglobin; ALB,
albumin; GLB, globulin; LYM, lymphocyte.
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comprehensive and balanced dataset during the initial data collection

phase. As previously mentioned, the AUC for the XGBoost model

reached values of 0.93 in the internal validation cohorts and 0.83 in the

external validation cohorts, demonstrating the strong predictive ability

of the model. Nevertheless, the discrepancy in AUC between internal

and external validation indicates potential variations in data

distribution. The data presented in Table 1 and Supplementary

Table 1 demonstrate that patients within the training cohorts

present a greater prevalence of Wagner grades IV-V. Furthermore,

amputee patients in these cohorts are distinguished by advanced age,

increased white blood cell counts, and compromised nutritional status.

Collectively, these findings indicate a heightened severity of illness

among patients in the training cohorts. These differences impact

model performance in external validation cohorts and may reduce

accuracy for patients with milder symptoms. It is imperative to refine

and augment the model by utilizing a larger, multicenter dataset that

encompasses patients exhibiting varying severities of DFUs.

Moreover, a notable advantage of our research was the

incorporation of the XGBoost algorithm, which has garnered

significant attention in recent years owing to its rapid computational

efficiency, robust generalization properties, and superior predictive

performance (31–33). Furthermore, we used GridSearchCV for the

optimization of hyperparameters. In our analysis, the p value for the

difference in the AUC between XGBoost and the other models was not

statistically significant. Nonetheless, it is crucial to underscore that the

selection of an optimal model transcends mere statistical significance.

Unlike logistic regression (linear) or SVM (kernel-dependent),

XGBoost automatically captures complex feature interactions

through sequential tree-building., which is vital for patients with

DFUs (34). Each new tree corrects residuals from previous trees,

modeling intricate patterns that linear models or single decision trees

miss. XGBoost incorporates L1 and L2 regularization directly into its

objective function, penalizing overly complex trees. This reduces

overfitting, a critical weakness of KNN. Moreover, unlike RF (which

builds trees independently), XGBoost uses gradient boosting to

improve predictions iteratively. This error-correction mechanism

allows it to refine model performance more effectively. Parameters

such as max_depth, learning_rate, and subsample allow fine-grained

control over bias-variance tradeoffs. While RF requires the tuning of

fewer parameters, it lacks adaptability to the boosting framework.

Additionally, assessing metrics such as recall, accuracy, and the F1

score further substantiates the robust predictive performance of the

XGBoost model.

An additional strength of our study is the application of SHAP

for the interpretation of the XGBoost model, which helped with the

identification of important variables linked to amputation risk. In

the final model, the WBC count and lymphocyte count were the

most significant features for model selection, given that these

parameters are frequently associated with systemic inflammatory

responses and the severity of infection in patients (35). A series of

infection markers (such as the WBC count, CRP level and

erythrocyte sedimentation rate) have long been regarded as

predictive indicators for LEA in patients with DFUs (36, 37). This

observation is consistent with clinical experience, indicating that a

pronounced inflammatory response exacerbates tissue damage,
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impedes reparative mechanisms, and significantly elevates the risk

of amputation. Moreover, nutritional status is also a predictor of

amputation. In our study, nonamputee patients presented elevated

levels of serum ALB, GLB, and Hb, which serve as indicators of

patients’ nutritional status. In alignment with these findings, a study

of 3,654 DFU patients revealed that lower Hb and plasma ALB

levels independently increase the risk of amputation (38).

Interestingly, although an adverse lipid profile or dyslipidemia is

a significant risk factor for various diabetic complications (39–41),

our study indicates that reduced lipid levels in DFU patients often

signify a poor prognosis. Therefore, clinicians should pay close

attention to the nutritional status of DFU patients and promptly

address issues related to anemia and malnutrition to improve the

overall condition of these patients and promote wound healing.

In the present study, predictors of amputation in patients with

DFUs were examined and found to align with previous research.

Specifically, our findings corroborate earlier studies indicating that

elevated BUN levels are positively correlated with higher rates of

amputation (42). BUN serves as a biomarker indicative of renal

function in patients. Increased BUN levels are frequently correlated

with compromised kidney function (43). Compromised renal

function can result in edema and metabolic disturbances in

patients, hindering the healing process of DFU and culminating

in amputation. Moreover, elevated fasting blood glucose levels,

stenosis of below-the-knee arteries, and increased uric acid levels

are significantly correlated with poor prognosis in DFU patients

(44–46). The incorporation of a diverse range of features has

enabled our model to achieve favorable predictive performance,

resulting in strong efficacy and generalizability across both internal

and external validation cohorts.

In the future, the implementation of our XGBoost model in

clinical settings offers transformative potential for developing precise

management strategies for patients with DFUs. It possesses the ability

to perform real-time analysis of patient data as they are collected,

providing clinicians with immediate risk stratification and predictive

insights. For example, during patient admissions, the model can

evaluate risk factors for conditions of DFUs, thereby facilitating

timely interventions. In the future, the integration of our XGBoost

models as plugins or via APIs into electronic health record (EHR)

systems is anticipated. This integration will facilitate clinicians’ access

to predictive analytics at the commencement of treatment. This could

allow for better population-based strategies to identify amputations

and more precisely target prevention or treatment resources to

patients who would benefit the most.

Nevertheless, our study is subject to certain limitations. The

development of the predictive model is restricted primarily by the

features used during its training. There may be additional features

that serve as useful predictive factors for DF amputation risk that

were not identified in this study. For instance, the lack of assessment

to classify patients’ DFUs into neuropathic, ischemic, and neuro-

ischemic categories upon admission has resulted in insufficient data

on the types of DFUs. The omission of these factors could introduce

potential bias. Second, the retrospective design of this study

inherently leads to instances of missing data, constituting another

limitation of our research. Further validation through prospective
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studies is warranted. Third, the features utilized for modeling in this

study were exclusively gathered from patients during admission.

Should these features be collected at multiple time points and across

various care settings, the resulting dataset would be more

comprehensive. Fourth, our hospital is designated as a tertiary

care facility in Guangdong Province, which frequently results in

the referral of patients with severe DFUs through multiple channels.

As a result, the patients managed at our institution typically present

with more advanced conditions and an increased likelihood of

requiring amputation. These differences may affect the accuracy of

models when they are applied to patients exhibiting milder

symptoms. It is essential to incorporate a larger multicenter

dataset. Fifth, due to the limited number of major amputation

cases, we did not assess the risks of major and minor amputations in

patients with diabetic foot ulcers separately. In the future, it is

crucial to gather more patient data to analyze the disparate risk

factors for major and minor amputations comprehensively. This

will facilitate enhanced risk prediction for both types of amputation.
Conclusion

In conclusion, ML models have emerged as reliable tools for

amputation prediction in patients with DFUs. The adoption of

explainable modeling techniques, such as SHAP, offers insights into

the significance of individual features in contributing to the model’s

output, thereby enhancing the transparency and feasibility of model

deployment. Therefore, the model can serve as a valuable reference for

clinicians in tailoring precise management strategies for patients with

DFUs. With additional prospective validation and refinement, this

model has the potential to identify patients at high risk for amputation,

thereby contributing to a reduction in the overall amputation rate in

DFU patients. Future research could incorporate additional novel

biomarkers and prospective data to refine and enhance the prediction

model, rendering it more comprehensive and holistic.
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