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There is a continuous increase in the incidence of thyroid cancer. A deeper

understanding of themolecular mechanisms of thyroid cancer could significantly

improve thyroid cancer management. Newly discovered type of programmed

cell death, ferroptosis, has been demonstrated to play a crucial role in many

cancers. Mounting evidence shows that there is a close association between

ferroptosis and thyroid cancer, which offer a promising therapeutic strategy for

thyroid cancer. Ferroptosis is expected to emerge as a novel therapeutic target.

Regrettably, the exact role of ferroptosis in thyroid cancer is not yet completely

understood. Further, there is currently no summary of ferroptosis in thyroid

cancer progression and treatment. Hence, in this review, we aim to revisit the

pathological process of thyroid cancer and reveal the role of ferroptosis in thyroid

cancer. In addition, we provide evidence that ferroptosis inducers could suppress

the growth of thyroid cancer cells. Lastly, we discuss the potential application of

ferroptosis inducers in thyroid cancer treatment, as well as possible impediments

and corresponding strategies. The relationship between ferroptosis and thyroid

cancer will be better understood through this review, which may offer a novel

insight into thyroid cancer therapy.
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1 Introduction

About 94.5% of endocrine tumors are thyroid cancers (1). According to the

GLOBOCAN 2020 database by the WHO International Agency for Research on Cancer,

the incidence of thyroid cancer is the ninth highest in the world (2, 3). The incidence of

thyroid cancer has increased by about 4% per year in recent years, making it one of the few

cancers with a rising incidence (4–6). Although certain therapeutic methods, including

surgery, radiotherapy and chemotherapy, have been developed for thyroid cancer

management, the recurrence rate remains high and the prognosis of some patients is
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poor (7, 8). Therefore, exploring new therapeutic targets and drugs

is an important research direction in thyroid cancer management.

Ferroptosis is a newly identified type of programmed cell

death and was proposed by Dixon et al. to describe the cell death

triggered by RAS-selective lethal compounds due to its unique

morphological, biochemical, and genetic features (9). Ferroptosis

inducers can cause selective lethality in tumor cells that harbor

RAS mutations (9). Approximately 40–50% of follicular thyroid

cancers (FTC), 20–40% of poorly differentiated thyroid cancers and

anaplastic thyroid cancers (ATC), and 10–20% of papillary thyroid

cancers (PTC) have RAS mutations (10). Previous research has

demonstrated that inducing ferroptosis can inhibit the proliferation

of thyroid cancer cells (11). There is currently no comprehensive

summary of the role of ferroptosis in thyroid cancer. Thus, in

this review, the roles of key ferroptosis regulators, including

iron, glutathione peroxidase 4 (GPX4), glutathione (GSH), and

dipeptidyl-peptidase-4 (DPP4), in thyroid cancer are discussed.

Furthermore, we summarize the agents related to ferroptosis that

are used for thyroid cancer treatment. Lastly, the potential

application of ferroptosis inducers in thyroid cancer treatment is

proposed, and possible impediments and corresponding strategies

are listed.
2 Ferroptosis and its core mechanisms

In 2012, Dixon et al. named ferroptosis as a new type of cell

death (9). Ferroptosis differs from other types of programmed cell

death, characterized by lipid peroxidation and iron overload (12).

The morphological features of ferroptosis include shrunken

mitochondria, reduced or diminished mitochondrial cristae,

condensed mitochondrial membrane densities, and ruptured

mitochondrial outer membranes (12, 13). The biochemical

characteristics of ferroptosis involve iron overload, reactive

oxygen species (ROS), and lipid peroxidation, which lead to

damage and disorganization of the cell membrane by producing

numerous alkyl oxygen radicals (14, 15).

The regulatory mechanism of ferroptosis is very complex,

involving multiple metabolic pathways. The initiation and

execution of ferroptosis are mainly related to the metabolism of

amino acids, lipids, and iron.
2.1 Amino acid metabolism

The regulation of ferroptosis is closely associated with amino

acid metabolism (Figure 1). The cystine/glutamate antiporter

system Xc
− allows cystine to be taken up via 1:1 exchange with

intracellular glutamate (16). Cystine enters into the cell and is

converted to cysteine (15). Glutamate-cysteine ligase and

glutathione synthetase (GSS) catalyze the synthesis of GSH from

cysteine, glutamate, and glycine in two steps (17). As an

antioxidant, GSH can specifically scavenge ROS. Cysteine, the

least abundant of the three amino acids essential for GSH
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synthesis, serves as the rate-limiting factor in this biosynthetic

process (18). As the availability of cysteine restricts GSH

synthesis, certain cells synthesize cysteine from methionine via

the transsulfuration pathway, thereby bypassing the need for

cystine import through the system Xc
− (17). Therefore, system

Xc
− inhibitors cannot induce ferroptosis in these cells. The

biological activity of GPX4 is dependent on GSH. Two molecules

of GSH are converted into oxidized GSH (GSSG) by GPX4 and

phospholipid hydroperoxides are reduced to nontoxic phospholipid

alcohols by GPX4 simultaneously, which prevents the accumulation

of toxic lipid peroxides (19, 20). Therefore, inhibiting GSH and

GPX4 activity results in the accumulation of lipid peroxidation and,

eventually, ferroptosis (21).

Ferroptosis is also regulated by glutamine and glutamate (22).

System Xc
− activity can be inhibited by high extracellular

concentrations of glutamate, consequently inducing ferroptosis.

This may explain why a high concentration of glutamate in the

nervous system may lead to toxic effects (9, 23). Glutaminolysis is

involved in ferroptosis. However, not all pathways of glutaminolysis

lead to ferroptosis. The initial step in glutaminolysis process

involves the conversion of glutamine into glutamate. Glutaminase

1 (GLS1) and GLS2 catalyze glutamate production. Despite the

structural and enzymatic similarity between GLS1 and GLS2, only

GLS2 contributes to ferroptosis (22). Glutamate is converted to a-
ketoglutarate (aKG) by glutamic oxaloacetic transaminase 1-

mediated transamination. Finally, aKG induces ferroptosis by

generating lipids or ROS (22, 24). Therefore, glutaminolysis-

targeted therapy may provide a new idea to treat organ injury

mediated by ferroptosis. In fact, research have suggested that

inhibiting glutaminolysis could improve brain hemorrhage and

kidney injury in experimental models (25, 26).
2.2 Lipid metabolism

Lipid peroxidation is regarded as the key driving factor of

ferroptosis (27) (Figure 2). Polyunsaturated fatty acids (PUFA),

particularly adrenic acid and arachidonic acid, are prone to lipid

peroxidation and play a crucial role in the execution of ferroptosis

(28–30). Acyl-CoA synthetase long-chain family member 4

(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3)

are associated with the biosynthesis and remodeling of PUFAs in

cellular membranes and are important drivers of ferroptosis. ACSL4

catalyzes the linking of coenzyme A to long-chain PUFAs, and these

products are esterified to phospholipids by LPCATs (31). Four

LPCAT isoforms are known to date, among which LPCAT3 is able

to preferentially catalyze the reversible exchange of fatty acids

between the sn-2 position of lysophosphatidylcholine and the

acyl-CoA pool, thereby increasing long-chain PUFAs to engage in

the synthesis of membrane phospholipids (32). Thus, ACSL4 and

LPCAT3 may regulate ferroptosis by regulating lipid metabolism.

Studies have shown that inhibiting ACSL4 expression can prevent

lipid peroxide accumulation and enhance cellular resistance to

ferroptosis (29, 33). On the contrary, upregulating the expression
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of ACSL4 or increasing its activity can induce ferroptosis (34, 35).

Similarly, supplementation with arachidonic acid or other PUFAs

can increase cellular sensitivity to ferroptosis (17).

Lipoxygenases (ALOX) are non-heme iron-containing

oxygenases that can directly oxidize PUFAs in cellular

membranes to produce lipid peroxides, suggesting that ALOXs

may mediate the occurrence of ferroptosis (36). Silencing ALOXs

gene makes cells resistant to erastin-induced ferroptosis (28), and

ALOXs inhibitors such as baicalein can effectively inhibit RSL3-

induced ferroptosis (37). Research indicates that the universally

expressed enzyme cytochrome P450 oxidoreductase (POR) is

associated with the initiation of lipid peroxidation (38). Upon

receiving electrons from POR, with NADPH serving as the

electron donor, downstream electron acceptors such as

cytochrome b5 type A and cytochrome P450 undergo reduction,

which could subsequently induce lipid peroxidation through

reducing ferric iron or removing methylene hydrogen from

PUFAs (38, 39). The degree of ferroptosis can be evaluated by

measuring the end products of lipid peroxidation, such as

malondialdehyde and 4-hydroxynonenal (40).
Frontiers in Endocrinology 03
The distribution and content of PUFAs influence the level of

lipid peroxidation within the cell, thereby affecting the extent of

ferroptosis. These findings represent an additional regulatory

mechanism for ferroptosis, suggesting that prospective research

could modulate ferroptosis by regulating the enzymes responsible

for synthesizing membrane phospholipids containing PUFA.
2.3 Iron metabolism

Iron homeostasis is maintained by meticulously regulating the

processes of iron metabolism, encompassing iron intake, storage,

export, and utilization. Any imbalance in these processes may result

in iron overload and subsequent ferroptosis (18) (Figure 2). In plasma,

Fe3+ binds to transferrin (TF), and the iron-laden TF is subsequently

endocytosed into the cell through the transferrin receptor (TFRC)

located on the cell membrane, ultimately becoming localized within

the endosome (41). The six-transmembrane epithelial antigen of the

prostate 3 (STEAP3) catalyzes the reduction of Fe3+ to Fe2+ within the

endosome. Subsequently, Fe2+ is translocated into the cytoplasm by
FIGURE 1

Amino acid metabolism in ferroptosis. The cystine/glutamate transporter allows the uptake of cystine via exchange with intracellular glutamate
across the cell membrane in a 1: 1 ratio. Cystine enters into the cell and is converted to cysteine. Certain cells synthesize cysteine from methionine
via the transsulfuration pathway. Cysteine is used to synthesize GSH in two steps under the catalysis of cytosolic enzymes GCL and GSS. GPX4
converts two molecules of GSH to GSSG and simultaneously reduce PLOOHs to nontoxic PLOHs in the membrane. a-ketoglutarate, a product of
glutaminolysis, is a metabolic intermediate for promoting ferroptosis by producting ROS or lipid.
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the divalent metal transporter 1 (DMT1) (42, 43). Ferroportin 1

(FPN1) is the sole identified mammalian iron-exporting protein

responsible for exporting excess Fe2+ from the cytoplasm to the

outside (44). The majority of intracellular iron is stored as Fe3+ in

ferritin, a protein complex that consists of ferritin light chain (FTL)

and ferritin heavy chain 1 (FTH1). A minor proportion of iron is

present as free iron ions within the cytoplasm, referred to as the labile

iron pool (LIP). Iron released from the LIP promotes the

accumulation of ROS via the Fenton reaction, ultimately leading to

ferroptosis (45). In addition, the metabolic enzymes related to lipid

peroxidation, ALOXs and POR, also need iron for catalysis (31).

Therefore, iron metabolism-related proteins are closely related to

the regulation of ferroptosis. Research has demonstrated that increased

expression of TFRC leads to iron overload and then induce ferroptosis

(46). Silencing TFRC inhibits erastin-induced ferroptosis (22), whereas

a reduction in FPN1 expression enhances cellular susceptibility to

ferroptosis (47, 48). Depletion of ferritin results in the release of iron

into the LIP, thereby increasing cellular susceptibility to ferroptosis.

Conversely, more ferritin leads to increased stored iron and less iron in

the LIP, thus enhancing cellular resistance against ferroptosis (49).

Nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor,
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delivers ferritin to lysosomes and releases ferritin-bound iron into LIP,

which maintains iron homeostasis by regulating the autophagy of

ferritin (50). Inhibiting the expression of NCOA4 may reduce the

degradation of FTH1 and resist erastin-induced ferroptosis.

Conversely, the overexpression of NCOA4 may reduce the levels of

FTH1 and induce ferroptosis (51). In summary, regulation of iron

metabolism and ferritinophagy are other potential targets for

regulating ferroptosis.
3 Ferroptosis-related gene in thyroid
cancer

Most ferroptosis-related genes exhibited differential expression

between normal thyroid tissues and thyroid cancer tissues (52).

Several researchers have investigated the prognostic significance of

ferroptosis-related genes as potential biomarkers in patients with

thyroid cancer. At present, dozens of differentially expressed genes

have been identified as independent prognostic factors in patients

with thyroid cancer (Table 1). We will discuss the roles of key

ferroptosis modulators in thyroid cancer in the following sections.
FIGURE 2

Lipid and iron metabolism in ferroptosis. ACSL4 and LPCAT3 promote the incorporation of PUFAs into phospholipids to form PUFA–PLs, which are
vulnerable to oxidation mediated by ALOXs and POR. Several proteins, including TF, TFRC, STEAP3, DMT1, FPN1, FTH1, FTL and NCOA4 control
ferroptosis through the regulation of iron metabolism. The iron released from LIP promote ROS accumulation through the Fenton reaction. ALOXs
and POR also require iron for catalysis.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1527693
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1527693
3.1 Iron

Excess iron promotes the generation of ROS and induces

ferroptosis. Meanwhile, iron is also essential trace element for

thyroid hormone synthesis and metabolism (53). However, no

studies have compared iron levels between thyroid cancer and

normal thyroid tissues. Several recent studies have reported

changes in the expression of iron metabolism-related proteins in

thyroid cancer (52, 54–56). Iron in plasma is captured by TF and the

iron-bearing TF is transported into the cell via TFRC. Research

indicated that the expression of TFRC was increased in thyroid

cancer tissues compared with normal tissues (54, 55). However,

Yang et al. showed that TFRC was downregulated in PTC tissues

(52). Shi et al. found that the expression of TFRC in PTC tissues and

normal tissues was not significantly different (56). Therefore, the

level of TFRC expression in thyroid cancer remains controversial.

Could the differences in TFRC expression across various studies be

related to tumor stage or subtypes of thyroid cancer? Currently, no

studies have reported the effect of regulating the TFRC expression

on thyroid cancer development. Consequently, additional research

is required to investigate the function of TFRC in thyroid cancer. In

addition to iron transport, storage mechanisms also modulate

ferroptosis in thyroid cancer. NCOA4 releases ferritin-bound iron

into LIP and increases the iron level by ferritinophagy. The research

demonstrated that the overexpression of SIRT6 resulted in an

upregulation of NCOA4 expression, an increase in intracellular

Fe2+ levels, and suppression of the growth of ATC (57). We can

infer that NCOA4 releases iron into the LIP and exhibits a negative

correlation with the progression of thyroid cancer. The role of iron

in thyroid cancer is not yet fully understood and requires further

investigation in future studies.
Frontiers in Endocrinology 05
3.2 GPX4

The GPX4 protein is capable of preventing the accumulation of

toxic lipid peroxides, thereby suppressing ferroptosis. Studies

showed that the expression of GPX4 was higher in thyroid cancer

tissues than in normal tissues (11, 55). Furthermore, Zhang et al.

suggested that the upregulated GPX4 expression in thyroid cancer

tissues might be related to epigenetic regulation (58). In addition,

another study found a correlation between GPX4 overexpression

and thyroid cancer progression. Thus, GPX4 can be regarded as a

risk factor for the overall survival (OS) of patients with thyroid

cancer. Further investigation demonstrated that GPX4 knockdown

triggered ferroptosis and inhibited the proliferation of thyroid

cancer cells (11). These findings indicate that GPX4 may promote

tumorigenesis by inhibiting ferroptosis in thyroid cancer.

Consequently, the inhibition of GPX4 may be a promising

therapeutic strategy for thyroid cancer.
3.3 GSH

GSH exhibits strong antioxidative function. Any changes in the

synthesis of GSH may affect ferroptosis. Solute carrier family 7

member 11 (SLC7A11) is an essential component of system Xc
−.

Suppressing SLC7A11 leads to a reduction in GSH levels, thereby

inducing ferroptosis (9, 24). The level of SLC7A11 mRNA is

dramatically higher in PTC tissues than in noncancerous tissues.

Experiments demonstrated that the overexpression of SLC7A11

promoted the migration and invasion of PTC cells, whereas the

knockdown of SLC7A11 had the opposite effect (59). Moreover, the

research showed that the overexpression of fat mass and obesity-
TABLE 1 Ferroptosis-related genes as prognostic biomarkers for thyroid cancer.

Gene name
Data
source

Diagnostic value
Prognostic
indicator

Ref.

DPP4, GPX4, GSS, ISCU, MIOX, PGD, TF, and TFRC TCGA
database

The AUCs at 1, 2, and 3 years were 0.947, 0.907, and
0.886, respectively.

OS (52)

AKR1C3 GEO
database

The AUCs at 1, 2, and 5 years were 0.941, 0.945, and
0.795, respectively.

OS (103)

HSPA5, AURKA, and TSC22D3 TCGA
database

The AUCs at 1, 2, and 3 years were 0.780, 0.784, and
0.676, respectively.

PFS (104)

DPP4, TYRO3, TIMP1, CDKN2A, SNCA, NR4A1, IL-6,
and FABP4

TCGA
database

The AUCs at 1, 3, and 5 years were 0.869, 0.755, and
0.844, respectively.

OS (105)

DPP4, GSS, HMGCR, PGD, and TFRC TCGA
database

The AUCs at 1, 2, and 3 years were 0.621, 0.728, and
0.875, respectively.

OS (54)

Ac008063.2, APOE, BCL3, ACAP3, ALOX5AP, ATXN2L,
and B2M

TCGA
database

The AUC of the ROC curve was 0.748. / (106)

ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF,
TFRC, and TXNRD1

TCGA
database

The AUCs at 1, 3, and 5 years were 0.949, 0.900, and
0.859, respectively.

OS (56)

AKR1C1, DPP4, GPX4, GSS, HMGCR, TFRC, SQLE,
and PGD

TCGA
database

The AUCs at 1, 2, and 3 years were 0.887, 0.890, and
0.842, respectively.

OS (55)
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associated protein (FTO) suppressed PTC development by

downregulating SLC7A11 expression via inducing ferroptosis

(59). The other study found that E26 transformation-specific

variant 4 (ETV4), a transcription factor, was highly expressed in

PTC cells and tissues. The data suggested that knocking down

ETV4 inhibited PTC growth in vivo by downregulating SLC7A11.

Conversely, overexpressing ETV4 resulted in the upregulation of

SLC7A11 expression, increased GSH levels and promoted the

growth of PTC xenografts in mice (60). GSS is the second

enzyme involved in the biosynthesis of GSH (17). Increased GSS

expression further enhances GSH synthesis (61). Studies showed

that thyroid cancer tissues exhibited higher GSS expression

compared with normal tissues (54, 55). Similarly, breast cancer

tissues exhibited higher GSH levels compared with normal tissues,

which was associated with an increased risk of breast cancer (62).

The synthesis of GSH plays an important role in ferroptosis. We can

infer that over-activation of GSH synthesis may inhibit ferroptosis

in thyroid cancer and be related to thyroid cancer progression.
3.4 DPP4

DPP4, also termed CD26, is a glycoprotein predominantly

located on the plasma membrane and can cleave and degrade

numerous biologically active peptides (63). Research has

confirmed that DPP4 can limit GSH levels, elevate lipid ROS, and

ultimately lead to ferroptosis (64–66). The research revealed that

the tumor suppressor p53 limited ferroptosis by suppressing the

activity of DPP4. DPP4-NOX binding is essential for lipid

peroxidation in ferroptosis (67). Studies showed that PTC tissues

exhibited higher DPP4 expression compared to noncancerous

tissues. Increased DPP4 levels were associated with higher risks of

metastasis and poorer survival in PTC (68, 69). However, the

observation remains controversial because DPP4 has been shown

to activate ferroptosis. Thus, the impact of DPP4 on thyroid cancer

still requires additional investigation.
4 Ferroptosis−related noncoding RNA
in thyroid cancer

Noncoding RNA is RNA in the transcriptome that is not

translated into proteins. Long non-coding RNA (LncRNA)

contains more than 200 nucleotides. Increasing evidence has

revealed the importance of lncRNAs for promoting or

suppressing tumors (70). Recent studies have revealed that

dysregulation of specific lncRNAs is closely related to the

ferroptosis of malignant tumors (71). In addition, some findings

have shown that lncRNAs are involved in the development of

thyroid cancer (72). lncRNAs exhibit markedly differential

expression profiles in patients with thyroid cancer compared to

normal controls. Therefore, their differential expression and high

specificity make them potential diagnostic and prognostic

biomarkers for thyroid cancer. Qin et al. explored the prognostic

significance of ferroptosis-related lncRNAs (FRL) in thyroid cancer
Frontiers in Endocrinology 06
patients. The FRLs (LINC00900, LINC02454, AC012038.2, DPP4-

DT, and AC055720.2) were used to group patients into low-risk and

high-risk groups. The results showed that patients classified as high-

risk exhibited a worse prognosis compared to those in the low-risk

group. Further analysis indicated that low-risk thyroid cancer

patients exhibited significant activation of immune-related

pathways against cancer (73). Researchers found that eleven

lncRNAs (LINC02861, DPP4-DT, LINC02345, AC034213.1,

RNF213-AS1, AC108449.2, AL033397.2, AL133367.1, SMIM25,

AC079848.1, and BX322562.1) play a pivotal role in the prognosis

of thyroid cancer. Meanwhile, they found a strong association

between tumor immune microenvironment and FRL prognostic

model (74). It can be concluded that FRLs may have potential

functions in modulating tumor immune microenvironment,

thereby further influencing thyroid cancer progression. lncRNA

CERS6-AS1 has been found as a tumor promoting gene in breast,

pancreatic, and liver cancer (75–77). The study found that LncRNA

CERS6-AS1 facilitated oncogenesis and restrained ferroptosis in

PTC. Additionally, downregulation of CERS6-AS1 reduced cell

viability and amplified ferroptosis by regulating the miR-497-5p/

LASP1 axis in PTC (78). In sum, targeting lncRNAs to modulate

ferroptosis is a novel idea for thyroid cancer therapy.

Circular RNAs (circRNAs), a class of non-coding RNA,

play crucial roles in modulating multiple biological processes

involved in tumor progression. Chen et al. demonstrated that

circKIF4A expression was upregulated in PTC, while circKIF4A

downregulation resulted in reduced growth and migration of PTC.

Further, it was determined that circKIF4A can directly sponge

miR-1231 and facilitate the progression of PTC by upregulating

the expression of GPX4 (79). Another study indicated that

circ_0067934 suppressed ferroptosis in human FTC and PTC

cell lines through miR-545-3p/SLC7A11 signaling pathway.

Additionally, the silencing of circ_0067934 inhibited thyroid

cancer cell proliferation (80). The findings indicate that

ferroptosis−related noncoding RNAs may serve as potential

therapeutic targets by modulating ferroptosis, which provides

novel insights into the treatment of thyroid cancer.
5 Ferroptosis in thyroid cancer
therapy

Lots of research has shown that ferroptosis-related genes and

non-coding RNAs play pivotal roles in thyroid cancer progression.

Some agents that induce ferroptosis have exhibited significant

potential in thyroid cancer therapy (Figure 3).

Ferroptosis inducers have been proven to have therapeutic

effects in various tumors. The study showed that RSL3, a direct

inhibitor of GPX4, significantly activated ferroptosis, enhanced

DNA damage, impaired DNA repair mechanisms, and suppressed

thyroid cancer cell survival (81). In addition, researchers showed

that GPX4 inhibitors (ML-162, ML-210, and RSL-3) induced

ferroptosis and inhibited proliferation in RAS or BRAF-mutant

PTC cells with TERT promoter and PIK3CA co-mutations (82).

Pamarthy et al. found that diaryl ether derivative 16, a new small
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molecule, may trigger ferroptosis. The results showed that the diaryl

ether derivative 16 reduced thyroid cancer cell proliferation and

induced ferroptosis by suppressing GPX4 expression (83).

Therefore, ferroptosis inducers may constitute an attractive

strategy for thyroid cancer treatment. Further investigation is

required to evaluate the efficacy and potential side effects of

ferroptosis inducers in various subtypes of thyroid cancer.

Vitamin C, a scavenger of free radicals, can protect healthy cells

from oxidative damage in humans (84). However, vitamin C at

pharmacological concentrations is able to promote the production

of hydroxyl radicals through the Fenton reaction (85). Therefore, it

may induce ferroptosis in cancer cells. Increasing evidence has

demonstrated that vitamin C has antineoplastic activity (86). The

recent research indicated that vitamin C could effectively suppress

the growth and long-term proliferation of ATC cells by activating

ferroptosis. The main mechanisms were that vitamin C treatment

induced GPX4 inactivation as well as the positive feedback,

including ferritinophagy activation, iron accumulation, and ROS

generation (87). In pancreatic cancer cells, pharmacological vitamin

C could significantly enhance sensitivity to erastin-induced

ferroptosis involving ferrous iron accumulation and GSH

reduction, while inhibiting the cytotoxicity in normal cells (88).

These studies suggest that vitamin C may play an anticancer role by

inducing ferroptosis. The ability of vitamin C to induce ferroptosis

in cancer cells is closely related to its concentration. More
Frontiers in Endocrinology 07
investigations are needed to explore the optimal concentration of

vitamin C in thyroid cancer treatment.

Some herbal extracts can suppress the growth of tumors via

regulating ferroptosis. Neferine, a predominant bisbenzylisoquinoline

alkaloid derived from the seed embryos of lotus, exhibits various

pharmacological properties, including antioxidant, anti-inflammatory,

and anti-tumor effects (89). Research has demonstrated that neferine

exhibits therapeutic effects on prostate cancer, lung cancer and cervical

cancer (90–92). Li et al. found that neferine exhibited both ferroptosis-

inducing and anti-tumor effects on human PTC and ATC cell lines via

suppressing the Nrf2/HO-1/NQO1 signaling pathway (93). Curcumin

extracted from the roots of Curcuma longa has exhibited anticancer,

anti-inflammatory, antioxidant, and hypoglycemic effects (94). Recent

research has demonstrated that curcumin can suppress breast cancer

cells and non-small cell lung cancer by inducing ferroptosis (95, 96).

The recent study showed that curcumin suppressed the growth of FTC

through HO-1-induced activation of ferroptosis. Further studies

indicated that HO-1 induced ferroptosis by inhibiting GPX4

expression (97). Similarly, treatment with curcumin resulted in a

significant upregulation of HO-1 and a downregulation of GPX4 in

breast cancer cells. According to the Comparative Toxicogenomics

Database, curcumin may directly target the HO-1 gene (95). HO-1

plays a bifunctional role in the regulation of ferroptosis. Generally,

Nrf2-derived HO-1 inhibits ferroptosis and exerts a cytoprotective

effect by neutralizing ROS when HO-1 is activated moderately.
FIGURE 3

Targeting ferroptosis in thyroid cancer therapy. Regulated targets of ferroptosis-related agents in thyroid cancer therapy are shown. The positive
regulators for targets are included in yellow boxes, and the negatives regulators are in purple boxes.
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However, HO-1 overactivation induces ferroptosis due to the excessive

accumulation of labile Fe2+ (98). Neferine and curcumin possess

various pharmacological activities. Additional research is required to

investigate the translational potential of neferine and curcumin in

targeting ferroptosis, thereby providing more clinical evidence for

thyroid cancer treatment.

Recent studies have demonstrated that certain traditional drugs

used in thyroid cancer treatment can induce ferroptosis. Anlotinib is

an antiangiogenic multikinase inhibitor that targets fibroblast growth

factor receptor 1, platelet-derived growth factor receptor, and vascular

endothelial growth factor receptor 2 (99). A Phase 1 clinical trial

demonstrated that anlotinib exhibited antitumor efficacy against

medullary thyroid cancer and non-small cell lung cancer (100). The

previous study showed that anlotinib suppressed the viability,

proliferation, and migration of ATC cells. Further, anlotinib

significantly reduced the expression of ferroptosis-related genes,

including GPX4, FTL, FTH1, HO-1, and TF. In addition, anlotinib

activated protective autophagy, while the blockade of autophagy

enhanced anlotinib-mediated ferroptosis and antitumor effects

(101). The study indicated that anlotinib may treat ATC by

inducing ferroptosis, and the autophagy-ferroptosis signaling

pathway may offer a synergistic combination treatment strategy.

Sorafenib is an FDA-approved medication used in thyroid cancer

treatment. The precise mechanisms through which sorafenib induces

ferroptosis have been thoroughly studied only in hepatocellular

carcinoma (102). Additional studies are required to explore whether

sorafenib induces ferroptosis in thyroid cancer. In summary,

triggering ferroptosis represents a viable and effective antitumor

strategy, providing novel insights into thyroid cancer therapy.
6 Conclusion and perspectives

This review outlines the core mechanisms of ferroptosis and

discusses the roles of ferroptosis-related modulators, including iron,

GPX4, GSH, and DPP4, in thyroid cancer. Furthermore, we

explored the association between ferroptosis and therapeutic

agents used for thyroid cancer. Although ferroptosis is considered

an important target for thyroid cancer therapy, there are still many

challenges to its clinical application.

Firstly, most of the current research focuses on the prognostic value

of ferroptosis-related genes as biomarkers in patients with thyroid

cancer. Limited research has been conducted on ferroptosis in thyroid

cancer to elucidate the comprehensive control mechanisms. The exact

relationship between ferroptosis and thyroid cancer needs to be further

studied. Second, the value of utilizing ferroptosis inducers alongside

conventional anti-thyroid cancer drugs remains uncertain. Given the

involvement of various cell death modalities, such as necroptosis,

autophagy, and apoptosis, in thyroid cancer treatment, it would be

highly beneficial to explore the effects of combination therapies that

target distinct cell death pathways. Finally, ferroptosis is also observed in

normal tissues. Consequently, inducing ferroptosis in thyroid cancer

treatment may lead to certain complications. It is important to study

new drug delivery systems for targeted delivery of ferroptosis inducers to

tumor cells. Additionally, further research should be conducted to
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identify more ferroptosis-related regulators, with the aim of

discovering markers that can effectively select suitable patients.

In conclusion, ferroptosis indisputably plays a significant role in

thyroid cancer therapy. The comprehensive molecular mechanisms

and the underlying signaling pathways of ferroptosis in thyroid

cancer need further investigation. These studies may offer new

insights into thyroid cancer therapy. To date, the therapeutic effects

of ferroptosis inducers in thyroid cancer have primarily been

demonstrated in animal experiments, and their clinical translation

remains challenging. Therefore, well-designed clinical studies are

essential to evaluate the potential of ferroptosis-based therapies in

thyroid cancer. Moreover, the combination of conventional anti-

tumor strategies with ferroptosis-inducing agents holds promise for

enhancing the efficacy of thyroid cancer treatment.
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