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Background: Differentiated thyroid cancer (DTC) incidence is rapidly rising

worldwide. While most cases have a favorable prognosis, a subset of patients

develop aggressive disease with distant metastases, particularly to the bone and

lung, which significantly worsens outcomes. Current prediction models are

limited in accuracy, often relying on basic clinical factors. This study aims to

develop a machine learning model to improve prediction of bone and lung

metastasis in DTC, enhancing risk stratification and early intervention.

Methods: Using the SEER database, we developed several machine learning

models—including XGBoost, Random Forest, Gradient Boosting Machine,

Logistic Regression, Naive Bayes, and Classification and Regression Trees

(CART)—to predict bone and lung metastasis risk in DTC patients. LASSO

regression was applied to select key predictive variables, and SMOTE was used

to address data imbalance. The model’s generalizability was evaluated using an

external validation cohort from China.

Results: The XGBoost model demonstrated the highest performance, achieving

an AUC of 0.988. Key predictive variables identified and included in the model

were tumor size, radiation therapy, surgical interventions, histologic types, T and

N stages, laterality, race, and household income. SHAP analysis confirmed the

importance of these variables, with tumor size, radiation, and surgery emerging

as primary predictors. In the external validation cohort, the model achieved an

AUC of 0.866, indicating reliable predictive capability across clinical settings.

Conclusion: This model accurately predicts bone and lung metastasis risk in

DTC, offering valuable clinical utility for risk stratification and supporting early

intervention strategies to improve outcomes in high-risk patients.
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1 Induction
Thyroid cancer (TC) is one of the most rapidly increasing

malignancies globally, with a notable rise in incidence over the past

few decades (1, 2).Differentiated thyroid cancer (DTC) is the most

common type of malignant thyroid tumor, originating from the

follicular epithelial cells of the thyroid. It accounts for a significant

portion of endocrine cancers, and although the prognosis for most

patients is generally favorable, a subset presents with aggressive

disease characterized by distant metastasis (3). Specifically, bone

and lung metastases are among the most common sites,

contributing substantially to morbidity and mortality among DTC

patients. The presence of distant metastases at diagnosis or during

follow-up dramatically worsens the prognosis and reduces overall

survival, underscoring the importance of early and accurate

identification of patients at risk.

Despite advances in diagnostic and therapeutic approaches,

current strategies for predicting metastasis in DTC remain

suboptimal. Most existing prediction models rely on a

combination of clinical factors, such as tumor size, age, and

histologic features, but these approaches often fail to

comprehensively capture the complex, multifactorial nature of

metastasis development (4, 5). Additionally, traditional risk

stratification relies heavily on subjective clinician judgment and

limited clinical data, leading to challenges in generalizability and

accuracy. Consequently, there is a clear unmet need for robust,

reproducible models that incorporate diverse clinical features to

improve the identification of high-risk individuals who may benefit

from more intensive surveillance or early intervention.

Recent advancements in machine learning have offered

promising avenues for improving prediction models in oncology.

Machine learning techniques allow for the simultaneous evaluation

of numerous variables and can uncover non-linear relationships

within high-dimensional datasets, providing a more nuanced

assessment than conventional statistical models (6–8). However,

the application of machine learning to predict metastatic risk in

DTC is still in its nascent stages, and few studies have leveraged the

power of ensemble learning and external validation to enhance

model reliability. Additionally, the inherent imbalance in datasets,

where metastatic cases are significantly fewer compared to non-

metastatic cases, poses a challenge to many predictive models, often

resulting in suboptimal sensitivity and false-negative results.

In this study, we aimed to address these gaps by developing a

comprehensive machine learning model to predict bone and/or

lung metastasis in patients diagnosed with thyroid cancer. Utilizing

the SEER database, we constructed a retrospective cohort to identify

clinical predictors associated with metastatic risk. Our study also

included an independent external validation cohort from a clinical

population in China to evaluate the generalizability of the model

across different settings. The objective of our research is not only to

improve the prediction accuracy of metastatic risk in DTC but also

to provide an accessible tool that integrates seamlessly into clinical

workflows. By leveraging machine learning techniques, our study

aims to fill the existing gaps in metastasis prediction, improve
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patient stratification, and ultimately contribute to enhanced clinical

decision-making in the management of thyroid cancer.
2 Method

2.1 Data sources and study population

This retrospective study utilized data from the SEER database to

identify patients diagnosed with DTC between 2018 and 2021. The

SEER database offers extensive, nationwide clinical and

demographic information, serving as a valuable resource for

population-based epidemiological studies. The initial cohort

comprised 15,432 DTC patients. However, 2,136 patients were

excluded due to missing critical information, specifically

including unknown race (N = 375), unknown marital status (N =

888), and unknown data on bone or lung metastasis (N = 286), as

illustrated in Figure 1.

An external validation cohort of 255 DTC patients diagnosed at the

First Affiliated Hospital of Nanchang University and the First Hospital

of Putian during the same period (2018–2021) was incorporated to

assess the model’s generalizability and performance. All patients in the

external validation cohort had confirmedDTC diagnoses and complete

clinical data for the variables included in the model.
2.2 Risk factor screening and model
construction

We employed the Least Absolute Shrinkage and Selection Operator

(LASSO) regression technique to identify critical clinical predictors for

bone and lung metastases. LASSO applies an L1 penalty to the

regression coefficients, effectively zeroing some while highlighting

others that are most influential in predicting the outcome. This

method is particularly advantageous for high-dimensional datasets as

it helps reduce multicollinearity and enhances the clarity of the model.

Our analysis incorporated an array of clinical variables, including

patient age, race, year of diagnosis, sex, laterality, histologic types, T

and N stages, radiation treatment, surgical interventions,

chemotherapy status, tumor size, marital status, and household

income. We optimized the regularization parameter l using 10-fold

cross-validation to minimize prediction error and prevent overfitting.

The most significant features identified for subsequent model

development included radiation treatment, surgical interventions,

tumor size, histologic types, N stage, laterality, T stage, race, and

household income.
2.3 Model construction and model
performance evaluation

To predict bone and/or lung metastasis in differentiated thyroid

carcinoma (DTC) patients, we constructed and compared six

supervised machine learning algorithms: Logistic Regression (LR),

Random Forest (RF), Gradient Boosting Machine (GBM), Extreme
frontiersin.org
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Gradient Boosting (XGBoost), Naive Bayes (NB), and Classification

and Regression Trees (CART). All models were implemented in

Python 3.9 using scikit-learn 1.2.2 and XGBoost 1.7.3 packages.

The SEER dataset was randomly split into a training set (70%)

and test set (30%), stratified by metastasis outcome to preserve class

distribution. Categorical variables were one-hot encoded, and

continuous variables were standardized (z-score normalization).

Patients with missing values in any included variable were

excluded from the analysis. Due to the low prevalence of distant

metastases, we applied SMOTE (Synthetic Minority Over-sampling

Technique) to the training data only to avoid data leakage. This

technique generated synthetic minority samples by interpolating

between k-nearest neighbors (k=5), ensuring a balanced class

distribution for model training.

Each model underwent 5-fold cross-validation on the training set

for hyperparameter tuning via grid search. The optimal

hyperparameters for each algorithm were:Random Forest:

n_estimators=200, max_depth=10, min_samples_split=4;XGBoost:

learning_rate=0.1, n_estimators=300, max_depth=6, subsample=0.8,

colsample_bytree=0.8;GBM: learning_rate=0.05, n_estimators=250,

max_depth=4;Logistic Regression: penalty=‘l2’, solver=‘liblinear’, C =

1.0;CART: max_depth=5, min_samples_split=10;Naive Bayes: default

scikit-learn implementation (GaussianNB).Model training was

conducted using the full training set with these optimized

parameters. Each trained model was evaluated on the internal test set

using the following metrics:Accuracy,Sensitivity (Recall),Specificity,F1

Score,Area Under the ROC Curve (AUC),Precision-Recall Curves,

Calibration Curves. We further tested model generalizability using an

external validation cohort of DTC patients from the First Affiliated

Hospital of Nanchang University and the First Hospital of Putian,

applying the same preprocessing and model configuration. Evaluation
Frontiers in Endocrinology 03
metrics were re-computed to assess performance in a real-world setting

outside the SEER registry To enhance interpretability, we applied

SHapley Additive exPlanations (SHAP) to the XGBoost and RF

models. SHAP values quantify the contribution of each input

variable to model predictions, enabling both global importance

ranking and individual-level interpretability.
3 Results

A total of 13296 DTC patients from the SEER database were

included in this study, of whom 263(1.98%) presented with bone

and/or lung metastasis, while 13033(98.02%) had no evidence of

metastasis. The external validation cohort consisted of 255 patients

diagnosed with DTC at the First Affiliated Hospital of Nanchang

University and the First Hospital of Putian between 2018 and 2021,

32(12.55%) of whom had bone and/or lung metastasis. Detailed

cohort information is presented in Table 1. Table 2 summarizes the

baseline characteristics of DTC patients with and without bone and/

or lung metastasis. Significant differences were observed between

the groups in several key areas.

The analysis ultimately narrowed down to nine key variables for

inclusion in the final predictive model. These variables were selected

based on their stability across the regularization path and their

significant contribution to minimizing the cross-validation error,

reflecting their strong predictive power regarding metastasis

occurrence in DTC patients (Figures 2A, B). These selected features

likely include some of the most prominent factors shown in the

feature importance plot (Figure 2C), such as radiation, surgery, age,

and tumor size, which are known to be critical in the prognosis and

progression of DTC.
FIGURE 1

Study cohort selection flowchart.
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We conducted a comprehensive analysis of seven machine

learning algorithms, comparing their performance based on

accuracy, precision, recall, F1 score, and AUC. In line with

previous research, models trained using oversampling techniques

consistently outperformed those trained with undersampling. The

detailed performance metrics for each machine learning model are

presented in Table 3. Across all oversampled models, the AUC

exceeded 0.800, with XGBoost achieving the highest performance,

showing an AUC of 0.988 (95% CI: 0.986-0.991) on the training set

(Figure 3A). A comparison of AUC values between XGBoost and

traditional logistic regression demonstrated that XGBoost provided
TABLE 1 Baseline characteristics of thyroid cancer patients from SEER
database and external validation cohort.

Categories
Training set
(N = 13296)

Validation
set (N = 255)

P-value

Age (years)

mean (SD) 50.64 ± 16.32 51.38 ± 16.28 0.22

Sex 0.533

Female 9697 (72.93%) 181 (70.98%)

Male 3599 (27.07%) 74 (29.02%)

Marital status 0.552

Divorced 930 (6.99%) 17 (6.67%)

Separated 101 (0.76%) 4 (1.57%)

Unmarried 159 (1.2%) 1 (0.39%)

Widowed 562 (4.23%) 11 (4.31%)

Married 8353 (62.82%) 156 (61.18%)

Single 3191 (24%) 66 (25.88%)

Household
income

0.368

<$60000 1748 (13.15%) 27 (10.59%)

$60000 - $79,999 2780 (20.91%) 47 (18.43%)

$80000 - $119,999 8110 (61%) 169 (66.27%)

$120,000+ 658 (4.95%) 12 (4.71%)

Year
of diagnosis

0.731

2018 3428 (25.78%) 65 (25.49%)

2019 3476 (26.14%) 60 (23.53%)

2020 2979 (22.41%) 63 (24.71%)

2021 3413 (25.67%) 67 (26.27%)

Laterality 0.543

Bilateral 155 (1.17%) 2 (0.78%)

Left 384 (2.89%) 11 (4.31%)

Right 12251 (92.14%) 232 (90.98%)

Not a paired site 506 (3.81%) 10 (3.92%)

Histology
recode

0.71

Follicular
carcinoma

566 (4.26%) 13 (5.1%)

Oxyphilic
adenocarcinoma

572 (4.3%) 12 (4.71%)

Papillary
adenocarcinoma

11895 (89.46%) 223 (87.45%)

others 263 (1.98%) 7 (2.75%)

(Continued)
TABLE 1 Continued

Categories
Training set
(N = 13296)

Validation
set (N = 255)

P-value

T stage <0.001

T0 22 (0.17%) 1 (0.39%)

T1 7931 (59.65%) 136 (53.33%)

T2 2795 (21.02%) 45 (17.65%)

T3 1940 (14.59%) 34 (13.33%)

T4 468 (3.52%) 36 (14.12%)

TX 140 (1.05%) 3 (1.18%)

N stage 0.42

N0 8726 (65.63%) 168 (65.88%)

N1 3863 (29.05%) 78 (30.59%)

NX 707 (5.32%) 9 (3.53%)

Radiation
recode

0.34

None/Unknown 8954 (67.34%) 164 (64.31%)

Yes 4342 (32.66%) 91 (35.69%)

Chemotherapy
recode

0.589

No/Unknown 13112 (98.62%) 253 (99.22%)

Yes 184 (1.38%) 2 (0.78%)

Surgery 0.802

None 483 (3.63%) 8 (3.14%)

Yes 12813 (96.37%) 247 (96.86%)

Tumor Size 0.033

<2 7789 (58.58%) 132 (51.76%)

≥2cm 5507 (41.42%) 123 (48.24%)

Bone and/or
lung metastasis

<0.001

No 13033 (98.02%) 223 (87.45%)

Yes 263 (1.98%) 32 (12.55%)
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significantly higher diagnostic accuracy and predictive power.

Moreover, the precision-recall curve for the XGBoost model

exhibited an AUC of 0.927, underscoring its superior

performance in managing the imbalanced dataset, where

metastatic cases are underrepresented (Figure 3B). Figure 3C

illustrates the calibration curve of the XGBoost model, indicating

excellent agreement between predicted probabilities and observed
TABLE 2 Baseline characteristics of thyroid cancer patients with and
without bone and/or lung metastasis in SEER database.

Categories

Without bone
and/or lung
metastasis
(N = 13033)

With bone
and/or lung
metastasis
(N = 263)

P-value

Age (years) 50.36 ± 16.18 64.39 ± 17.16 <0.001

Race <0.001

Black 761 (5.84%) 25 (9.51%)

Other 2129 (16.34%) 65 (24.71%)

White 10143 (77.82%) 173 (65.78%)

Sex <0.001

Female 9555 (73.31%) 142 (53.99%)

Male 3478 (26.69%) 121 (46.01%)

Marital status <0.001

Divorced 909 (6.97%) 21 (7.98%)

Separated 98 (0.75%) 3 (1.14%)

Unmarried 157 (1.2%) 2 (0.76%)

Widowed 524 (4.02%) 38 (14.45%)

Married 8212 (63.01%) 141 (53.61%)

Single 3133 (24.04%) 58 (22.05%)

Household
income

<0.001

<$60000 650 (4.99%) 8 (3.04%)

$60000 - $79,999 2731 (20.95%) 49 (18.63%)

$80000
- $119,999

7965 (61.11%) 145 (55.13%)

$120,000+ 1687 (12.94%) 61 (23.19%)

Year of
diagnosis

0.684

2018 3366 (25.83%) 62 (23.57%)

2019 3406 (26.13%) 70 (26.62%)

2020 2913 (22.35%) 66 (25.1%)

2021 3348 (25.69%) 65 (24.71%)

Laterality 0.325

Bilateral 154 (1.18%) 1 (0.38%)

Left 379 (2.91%) 5 (1.9%)

Right 500 (3.84%) 6 (2.28%)

Not a paired site 12000 (92.07%) 251 (95.44%)

Histology
recode

<0.001

Follicular
carcinoma

534 (4.1%) 32 (12.17%)

(Continued)
TABLE 2 Continued

Categories

Without bone
and/or lung
metastasis
(N = 13033)

With bone
and/or lung
metastasis
(N = 263)

P-value

Histology
recode

<0.001

Oxyphilic
adenocarcinoma

259 (1.99%) 4 (1.52%)

Papillary
adenocarcinoma

11782 (90.4%) 113 (42.97%)

others 458 (3.51%) 114 (43.35%)

T stage <0.001

T0 16 (0.13%) 6 (2.28%)

T1 7905 (60.65%) 26 (9.89%)

T2 2770 (21.25%) 25 (9.51%)

T3 1854 (14.23%) 86 (32.7%)

T4 368 (2.82%) 100 (38.02%)

TX 120 (0.92%) 20 (7.6%)

N stage <0.001

N0 8641 (66.3%) 85 (32.32%)

N1 3704 (28.42%) 159 (60.46%)

NX 688 (5.28%) 19 (7.22%)

Radiation
recode

<0.001

None/Unknown 8851 (67.91%) 103 (39.16%)

Yes 4182 (32.09%) 160 (60.84%)

Chemotherapy
recode

<0.001

No/Unknown 12923 (99.16%) 189 (71.86%)

Yes 110 (0.84%) 74 (28.14%)

Surgery <0.001

None 368 (2.82%) 115 (43.73%)

Yes 12665 (97.18%) 148 (56.27%)

Tumor Size <0.001

<2cm 7746 (59.43%) 43 (16.35%)

≥2cm 5287 (40.57%) 220 (83.65%)
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outcomes, suggesting robust calibration. Figure 3D presents the

confusion matrix for the XGBoost model. The model accurately

identified 328 metastatic cases (true positives) and 13,032 non-

metastatic cases (true negatives), though it misclassified only 1

metastatic patient as non-metastatic (false negatives). This
Frontiers in Endocrinology 06
confusion matrix underscores the model’s strong overall

classification accuracy in distinguishing between metastatic and

non-metastatic patients. The SHAP summary plot displayed here

provides insights into the contribution of different features to the

predictive model powered by XGBoost for bone and/or lung
FIGURE 2

(A) LASSO regression coefficients shrinkage path; (B) Stability of features in LASSO regression,(C) Feature importance in predictive model in
LASSO model.
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metastasis in DTC patients (Figure 4). Tumors size≥2cm is the most

impactful feature, where larger values (indicated by the rightward

extension of the blue dots) significantly increase the model’s

prediction towards a higher likelihood of metastasis. Smaller

tumor sizes (Tumor size<2cm) have less impact and are mostly

associated with a lower risk prediction.

In the external validation set, XGBoost demonstrated similarly

strong performance, achieving an AUC of 0.866 (95% CI: 0.863–

0.869) (Figure 5). The other indicators indicate that the XGBoost

model shows a balanced performance, with relatively high

sensitivity, making it effective in identifying positive cases of

metastasis. However, specificity is moderate, suggesting that some

negative cases may be incorrectly classified as positive. Overall, the
Frontiers in Endocrinology 07
model performs well, with a high F1 score (0. 91)and AUC,

highlighting its effectiveness on the validation data.

Lastly, this study developed an online network calculator for

evaluating the risk of bone and/or lung metastasis in DTC

patients, which can be applied to clinical patients (Figure 6).

(http://127.0.0.1:3384).
4 Discussion

This study presents a machine learning-based model developed

to predict bone and/or lung metastasis in DTC patients, leveraging

data from the SEER database and validated with an independent
TABLE 3 Performance metrics of machine learning models for predicting bone and/or lung metastasis in DTC patients.

Model Accuracy Sensitivity Specificity F1_Score AUC

Training set

Logistic 0.95 0.99 0.451 0.974 0.941

Random forest 0.83 0.817 0.991 0.899 0.963

Gbm 0.973 0.995 0.702 0.986 0.979

Xgboost 0.977 1 0.688 0.988 0.988

Naive bayes 0.95 1 0.335 0.974 0.961

Cart 0.948 0.99 0.429 0.972 0.711

Validation set

Xgboost 0.779 0.796 0.65 0. 91 0.866
FIGURE 3

(A) ROC curve for machine learning model on SEER training data;(B)Precision-recall curve for XGBoost model on SEER training data;(C) Calibration
curve of the XGBoost model;confusion matrix for XGBoost model on SEER training data.
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cohort from China. Among the various algorithms explored, the

XGBoost model demonstrated the most robust predictive power,

particularly after using the SMOT to address the class imbalance

inherent in metastasis data. This adjustment enhanced the model’s

sensitivity and overall accuracy, positioning it as a powerful tool for

identifying metastatic risk. Additionally, SHAP analysis identified
Frontiers in Endocrinology 08
tumor size, radiation therapy, and surgical interventions as primary

factors influencing metastatic risk, highlighting the importance of

these clinical variables in model interpretability.

In-depth analysis of the model’s key variables underscores its

predictive capability (9). Tumor size emerged as the most influential

factor, with larger tumors strongly linked to an increased risk of
FIGURE 4

SHAP summary plot for feature influence in XGBoost model.
FIGURE 5

Precision-recall curve for XGBoost model in external validation.
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metastasis. This finding aligns with clinical evidence that associates

greater tumor burden with more aggressive disease and poorer

outcomes. This correlation between tumor size and metastatic risk

could be due to the biological behavior of larger tumors, which may

exhibit greater vascular and lymphatic involvement, thereby

facilitating the spread of cancer cells. Radiation therapy and

surgical interventions also proved to be significant predictors,

likely due to the complex interplay between treatment modalities

and disease progression (10–12). Notably, patients who underwent

specific surgical procedures or received radiation showed different

metastatic risk profiles, suggesting that tailored treatment

approaches based on individual patient characteristics may be

essential in optimizing outcomes. Additionally, tumor staging

variables, such as T and N stages, were identified as critical

factors, reflecting their well-established role in cancer staging and

prognosis. Insights from SHAP values not only improve model

transparency but also enhance the alignment of our findings with

known clinical determinants of metastasis, thus reinforcing the

reliability and relevance of our approach in a clinical setting.

Our study builds on and extends previous research in several

key aspects. For instance, Mourad et al. applied machine learning to

SEER data using feature selection algorithms to predict DTC

prognosis, achieving an accuracy of 94.5% with a multilayer

perceptron model (13). While Mourad et al. focused on overall
Frontiers in Endocrinology 09
survival, our study directly targets metastatic risk and applies a

broader set of machine learning models, leveraging ensemble

methods like XGBoost, which demonstrated enhanced predictive

performance for metastasis. Furthermore, our use of SHAP values

substantially improves model interpretability, offering a more

nuanced understanding of feature importance—an aspect less

emphasized in Mourad et al.’s work. In another study, Liu et al.

developed models using SEER data to predict lung metastasis in

DTC, with the RF model performing best, achieving an accuracy

and area under the curve (AUC) of 0.99 (14). However, their study

focused solely on lung metastasis, whereas our model provides a

comprehensive assessment by predicting both bone and lung

metastasis risk. Moreover, we conducted an external validation

with a clinical cohort from China, which adds robustness and

supports the generalizability of our findings—a validation step

absent in Liu et al.’s study. Qiao et al. also explored multiple

machine learning algorithms, including RF and XGBoost, to

predict distant metastasis in DTC, with RF demonstrating strong

performance (AUC of 0.960) (15). Our study aligns with these

findings but goes further by employing SMOTE to address class

imbalance and utilizing SHAP values for feature importance

analysis, providing a more in-depth understanding of model

behavior. Compared to these studies, our approach includes a

broader range of clinical variables and employs LASSO-based
FIGURE 6

Online calculator for bone and/or lung metastasis prediction.
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feature selection, enhancing the model’s ability to capture the

multifactorial nature of metastatic development in DTC.

Furthermore, the use of an external validation cohort from a

different population underscores the generalizability of our model,

which is essential for clinical applicability. Unlike previous studies

that often rely on a single dataset, our approach ensures broader

applicability and reliability across diverse clinical settings, an

advancement critical for real-world implementation.

Despite the strengths of our approach, several limitations must

be acknowledged. First, as a retrospective study relying on SEER

data, there is an inherent risk of bias associated with data collection

and reporting. For instance, missing or incomplete records

necessitated the exclusion of some patients, which may impact

the overall representativeness of the sample and limit the

generalizability of our findings to other populations. Second, the

SEER database lacks detailed histopathological and molecular

information, making it impossible to accurately identify and

separately analyze subtypes such as high-grade differentiated

thyroid carcinoma (high-grade DTC) and poorly differentiated

thyroid carcinoma (PDTC). Given the biological and prognostic

differences between these subtypes and conventional DTC, the

inability to distinguish them represents a meaningful limitation.

Additionally, important pathological variables such as extra-nodal

extension (ENE)—a recognized risk factor for disease recurrence—

are not consistently recorded in the SEER dataset and were

therefore not included in our analysis. The absence of such

features may limit the model’s ability to fully capture tumor

aggressiveness and recurrence potential. Future studies

incorporating institutional or prospective databases that provide

access to detailed histological grading, mitotic index, tumor

necrosis, ENE status, and molecular markers are warranted to

refine model precision and enhance clinical applicability.

Additionally, while SMOTE was employed to balance class

distribution, synthetic data generation carries the risk of

introducing noise or even overfitting, particularly in highly

heterogeneous patient groups where subtle variations could affect

model stability. Our use of an external validation cohort from the

First Affiliated Hospital of Nanchang University and the First

Hospital of Putian certainly adds robustness to our findings, yet

the relatively small size of this cohort limits our ability to fully

evaluate model performance across a broader range of clinical

presentations. Finally, our model relies exclusively on clinical and

demographic variables without incorporating molecular or genetic

markers, which may limit its capacity to account for the biological

heterogeneity of DTC metastasis. Looking forward, future studies

could benefit from including larger and more diverse validation

cohorts, ideally incorporating multiple international datasets to

confirm the model’s robustness across a wider range of clinical

and demographic profiles. Expanding these cohorts would not only

enhance the statistical power of the analysis but also improve the

model’s generalizability, which is crucial for its potential integration

into clinical practice. Additionally, incorporating molecular

biomarkers—such as genetic mutations, protein expression
Frontiers in Endocrinology 10
profiles, and epigenetic changes—could significantly enhance the

predictive accuracy of machine learning models for metastatic risk

in DTC. Multi-omics approaches may help overcome some current

limitations by offering a more comprehensive view of disease

biology and enabling the model to capture subtle biological

patterns that purely clinical or demographic data may miss.

In practical terms, the development of a user-friendly online

tool based on our model could facilitate the integration of machine

learning into clinical workflows. Such a tool would allow clinicians

to assess metastatic risk quickly, enabling more personalized

treatment planning and potentially improving patient outcomes.

However, while our model shows promise, further prospective

validation in real-world clinical settings will be necessary to

confirm its clinical utility and effectiveness. Prospective studies

could evaluate how incorporating this tool into clinical decision-

making processes impacts treatment strategies, patient

management, and outcomes. Additionally, prospective testing

may reveal new insights into model performance under diverse,

dynamic clinical conditions, contributing to iterative improvements

and refinements.
5 Conclusion

In conclusion, our study represents a significant step forward in

leveraging machine learning to predict metastatic risk in DTC

patients. By integrating SHAP values for feature interpretability

and validating the model with an independent cohort, we have

developed a robust and transparent predictive tool with potential

clinical relevance. Addressing current limitations, such as

expanding external validation and incorporating molecular data,

could further enhance the model’s utility. As we continue to

advance in the era of precision medicine, models like ours lay the

groundwork for the next generation of predictive tools, supporting

clinicians in providing more targeted, personalized care for DTC

patients facing the risk of metastasis.
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