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Ultrasound radiomics and
genomics improve the diagnosis
of cytologically indeterminate
thyroid nodules
Lu Chen, Mingbo Zhang* and Yukun Luo*

Department of Ultrasound, The First Medical Center of Chinese People’s Liberation Army (PLA) of
China General Hospital, Beijing, China
Background: Increasing numbers of cytologically indeterminate thyroid nodules

(ITNs) present challenges for preoperative diagnosis, often leading to

unnecessary diagnostic surgical procedures for nodules that prove benign.

Research in ultrasound radiomics and genomic testing leverages high-

throughput data and image or sequence algorithms to establish assisted

models or testing panels for ITN diagnosis. Many radiomics models now

demonstrate diagnostic accuracy above 80% and sensitivity over 90%,

surpassing the performance of less experienced radiologists and, in some

cases, matching the accuracy of experienced radiologists. Molecular testing

panels have helped clinicians achieve accurate diagnoses of ITNs, preventing

unnecessary diagnostic surgical procedures in 42%–61% of patients with

benign nodules.

Objective: In this review, we examined studies on ultrasound radiomics and

genomic molecular testing for cytological ITNs conducted over the past 5 years,

aiming to provide insights for researchers focused on improving ITN diagnosis.

Conclusion: Radiomics models and molecular testing have enhanced diagnostic

accuracy before surgery and reduced unnecessary diagnostic surgical

procedures for ITN patients.
KEYWORDS

ultrasonography, radiomics, genomics, molecular testing, indeterminate thyroid
nodule, high throughput sequencing, assisted diagnosis
1 Introduction

The global incidence of thyroid cancer has risen significantly over the past 30 years,

now comprising 3.4% of all annual cancer diagnoses worldwide (1), making it the eighth

most estimated new cancer worldwide (2). According to the American College of Radiology

Thyroid Imaging Reporting and Data System (ACR TI-RADS) (3), ultrasound-guided fine-

needle aspiration (FNA) cytology is required for most suspicious thyroid nodules.
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However, 20%–30% of FNA samples yield indeterminate results (4),

termed cytologically indeterminate thyroid nodules (ITNs). These

include Bethesda categories III, IV, and V nodules, which are

graded using the Bethesda System for Reporting Thyroid

Cytopathology (5). If a thyroid nodule is categorized as atypia of

undetermined significance (Bethesda III), follicular neoplasm

(Bethesda IV), or suspicious for malignancy (Bethesda V), the

risk of malignancy is 13%–30%, 23%–34%, and 67%–83%,

respectively (5). More than half of the patients with ITNs

undergo diagnostic surgery (6), with a high morbidity of

thyroidectomy in general and the increasing medical costs for

unnecessary surgical resection of benign ITNs. Among the

excised nodules, 60%–80% of them are benign upon final

pathological analysis (7–9). Ultrasonography (US) is the first-line

imaging tool for detecting thyroid nodules. Radiologists assess

nodules using ACR TI-RADS features (3), including composition,

echogenicity, shape, margin, and echogenic foci. However, grayscale

ultrasound assessment for ACR TI-RADS 4 or 5 nodules (TR4 and

TR5) has low diagnostic specificity (44%–67.3%) (10–12) and high

interobserver variability (11, 13, 14), which contribute to the high

rate of indeterminate FNA results. Therefore, the current clinical

challenge lies in improving preoperative diagnostic accuracy to

avoid unnecessary surgical procedures for benign ITNs, potentially

through enhanced follow-up or minimally invasive approaches.

Omics technologies offer new insights into the preoperative

diagnosis of ITNs. Radiomics refers to the process of transforming

multiple medical imaging data into a large amount of quantitative

data beyond visual interpretation using artificial intelligence (AI) to

predict clinical diagnosis, disease risk, and prognosis (15). Sources of

data for radiomics include conventional B-mode ultrasound (BMUS)

images (16, 17), contrast-enhanced ultrasound (CEUS) videos

(18, 19) and shear-wave elastography (SWE) images (20). Many

AI-assisted diagnostic models show high accuracy (16, 17, 21), lower

intraobserver variability (16, 22), and a reduced rate of unnecessary

FNA procedures (23, 24). To some extent, molecular testing assists in

the preoperative diagnosis of ITNs. The somatic BRAF V600E

(c.1799T>A) mutation shows 100% specificity for thyroid

carcinoma, which eliminates some secondary surgery for ITNs

(25, 26). However, mutant BRAF V600E occurs in 50%–80% of

cancers (27). The retrovirus-associated DNA sequence (RAS) gene is

the most common genetic alteration in ITNs but is less specific to

TNs with follicle-patterned lesions (28). Genomics has taken

advantage of hundreds of genetic alterations to assist in the

diagnosis of ITNs by testing for point mutations, gene expression,

gene fusion, and copy number alterations (29–31). These panels serve

as supplementary tools for ITN diagnosis and can reduce

overtreatment rates.
Abbreviations: ITN, Indeterminate Thyroid Nodule; FNA, Fine Needle

Aspiration; ThyroSeq, Molecular testing platform for thyroid cancer; GEC,

Gene Expression Classifier; GSC, Gene Sequencing Classifier; PPV, Positive

Predictive Value; NPV, Negative Predictive Value; BRAF, B-Raf Proto-

Oncogene, Serine/Threonine Kinase; TIRADS, Thyroid Imaging, Reporting,

and Data System; RAS, Rat Sarcoma Virus; DL, Deep Learning; AI, Artificial

Intelligence; AUC, Area Under the Curve; QCIGISH, Quantitative Chromosomal

In Situ Genomic Hybridization; TR, Thyroid TIRADS scoring system.
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In many studies, creative radiomic models and molecular

testing panels have enhanced the diagnostic accuracy of ITNs.

However, many AI-assisted radiomics models and molecular

testing panels remain in the preliminary or validation phase and

require further external validation and optimization. Therefore, we

reviewed recent publications on ITN diagnosis (mostly TR4/TR5

nodules) from a radiomic or genomic perspective. Future research

should focus on making these approaches more cost-effective and

scalable, ultimately benefiting patients and clinicians in routine

clinical practice.
2 Radiomics for ITN diagnosis

2.1 Diagnostic models based on
BMUS features

In clinical practice, US is recommended as the primary imaging

tool for assessing TNs (7). According to the well-established

ACR TI-RADS (3), radiologists recommend five US features

(composition, echogenicity, shape, margin, and echogenic foci) as

diagnostic criteria to assess the risk grades of TNs. Although

microcalcifications are an independent risk factor for malignancy

in ITNs (32), hypoechoic features (p=0.014) and calcifications

(p=0.019) are strong predictors of thyroid cancer with a two-fold

increased risk of malignancy for ITNs (33). However, the evidence

is inadequate for accurately evaluating ITNs in clinical practice, as

ACR TI-RADS (3) and other US-based systems (7, 34, 35) depend

on limited morphological features. Radiomics models that rely on

BMUS features have shown superior diagnostic efficacy than

models based solely on traditional US risk stratification systems

(23, 24). Multimodality radiomics models are an alternative

diagnostic choice for differentiating benign ITNs from

malignancies preoperatively. The following sections focus on the

potential of these models in clinical applications, along with details

on the algorithms, software, and architectures used (Table 1).

2.1.1 Assisted diagnostic models using
machine learning

Machine learning (ML) is an AI method used to develop

diagnostic models by training them on a set of pathologically

confirmed nodules with labeled regions of interest. ML-based

models for TN diagnosis have achieved AUC values ranging from

0.651 to 0.889 (23, 36, 40–42), supporting their use in recognizing

benign TNs and reducing unnecessary surgical procedures. Chen

et al. developed a support vector machine model to identify benign

ITNs in 180 patients with confirmed pathology, achieving a

sensitivity of 93.8% and a specificity of 56.5%. The negative

predictive values (NPV) of the models for Bethesda III nodules

were 93.9% and 93.8%, respectively. The authors believe that the

high NPV value could support the ultrasound-guided follow-up of

AI-based benign ITNs during surgery (42). Similarly, Keutgenon

et al. developed a model using imaging data from 162 ITNs,

achieving an AUC of 0.67 for differential diagnosis (44). In an

independent test set of 19 ITNs, the method distinguished ITNs

with an AUC value of 0.88 (p<0.001) (44).
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TABLE 1 The main ultrasound radiomics studies on thyroid nodules diagnosis in Technique order.

Classifier Main Performance

in-house texture analysis
algorithms,
LASSO

AUC:0.85 in training set
AUC:0.75 in test set

At Rad_5%:
Sensitivity 95.6%, NPV 96.6%
Specificity 33.1%, PPV 27.5%

m
LASSO,

Linear Dependence analyses
AUC:0.877 in training set

AUC: 0.864 in validation set

ResNet-50, InceptionResnet
v2, Desnet-121

AUC: 0.829
Sensitivity 0.790
Specificity 0.779

a combined architecture of
ResNet, ResNeXt,
and DenseNet

AUC: 0.922

ThyNet
ResNet‐50

RF
ResNet‐50: AUC: 0.740

em S-Detect 2 CAD system
Sensitivity 81.4%
Specificity 81.9%
Accuracy 81.7%

S LASSO AUC: 0.889

-
deep learning AUC: 0.919

m
LASSO AUC: 0.651

SVM

Sensitivity 93.8%
Specificity 56.5%

PPV 60.0%
NPV 92.9%

Accuracy 71.8%

VGG16
VGG19
ResNet

Internal: VGG16_AUC 0.86
ResNet50_AUC 0.85
VGG19_AUC 0.83

External: VGG16_AUC 0.83
ResNet50_AUC 0.80
VGG19_AUC 0.81

(Continued)

C
h
e
n
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
5
.15

2
9
9
4
8

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
3

Reference
Published

year
Technique

No. of
Subjects

Features Method

Park et al. (23) 2020 US 1624 TNs
first-order statistics,

Texture (GLCM, GLRLM, histogram), wavelet
Rad_Score
TIRADS

Huang et al. (36) 2021 US 451 TNs
first-order statistics,

GLCM, GLDM, GLRLM, GLSZM, NGTDM
ACR-Rad nomogra

Wu et al. (16) 2021 US
2082

TR4-5 TNs
— ResNet-50 mode

Peng et al. (37) 2021 US 22354 images — ThyNet model

Matti et al. (38) 2021 US
88

ITNs
first‐order statistics

features, textural (GLCM), statistical feature matrix
ResNe-50 model

Han et al. (39) 2021 US 454 TNs
composition, echogenicity, orientation, margins,

spongiform status, shape, calcifications
S-Detect 2 CAD sys

Luo et al. (40) 2021 US 394 TNs
Vertl-RLNonUni, Vertl-GLevNonU, WavEnLH-s4

and WavEnHL-s5
Rad_score+TIRAD

Liang et al. (17) 2021 US 138 TNs Echogenic foci, Margins, Composition, Echogenicity
AI-Sonic compute

aided design
(CAD) system

Tang et al. (41) 2022 US 328 TNs —
US

Radiomics nomogr

Chen et al. (42) 2022 US 194 ITNs
composition, echogenicity, margins,shape, echogenic

foci, nodule size, age, sex
SVM

Kim et al. (43) 2022 US 16009 images —
Three deep

learning models
l
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TABLE 1 Continued

thod Classifier Main Performance

N model BANN AUC: 0.88

0 system Dynamic AI based on CNN
Sensitivity 92.21%
Specificity 83.20%
Accuracy 89.97%

model
model

LR, RF
LR model AUC: 0.840
RF model AUC: 0.826

tect unit S-Detect software AUC: 0.795

e-to-text
tGPT 4.0

ChatGPT 4.0+image-to-text
CNN model

AUC: 0.83

+ CEUS
ics model

logistic
regression analysis,

LASSO
AUC: 0.861

C™ Thyroid

CEUS

AI-SONIC™
Thyroid (DEMETICS)

Sensitivity 96.61%
Specificity 75.28%
Accuracy 83.78%
PPV 72.15%
NPV 97.10%

S+CEUS
s nomogram

LASSO,
multivariate logistic
regression analysis

AUC: 0.851

assisted
E visual
roach,
E radiomics
roach

DT, NB, KNN, LR, SVM,
KNN-based bagging, RF,
xgboost, multi-layer
perception, gradient

boosting tree

ML‐assisted US+SWE visual
approach:
AUC:0.953

US+SWE radiomics approach:
AUC:0.882

l neural network; DT, Decision Tree; GLCM, gray-level co-occurrence matrix; GLDM, gray-level
lution 100; KNN, k-Nearest Neighbor; LASSO, the least absolute shrinkage and selection operator
ictive values; PPV, positive predictive values; RF, Random Forest; SVM, Support Vector Machines;
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Reference
Published

year
Technique

No. of
Subjects

Features Me

Xavier et al. (44) 2022 US 105 images size, shape, texture BAN

Wang et al. (45) 2022 US 1007 TNs — ITS 1

Grégoire et al. (21) 2023 US 1335 ITNs

LR: age, hyperthyroidism, TN hardness, the French
TI-RADS score, disrupted rim macrocalcifications,

exclusively solid, Bethesda category
RF: Bethesda category, French TI-RADS score,

cytological subclassification, the number of typical
cytonuclear abnormalities of PTC, TN hardness

LR
RF

Zhou et al. (46) 2023 US 159 ITNs
composition,

echogenicity, orientation, margin, shape and
spongiform status

S-De

Wu et al. (47) 2024 US 1161 TNs
composition, echogenicity, shape, margin,

Echogenic fogi
imag
-Cha

Guo et al. (48) 2021 BMUS+CEUS 123 TNs

first-order statistics,
textures, GLCM, grayscale tour

matrix, grayscale region size matrix, domain
grayscale difference

matrix, and morphological features

BMU
radiom

Gong et al. (18) 2023 CEUS
148

TR4 TNs
location, shape, size, internal echo, border

edge, calcification
AI-SONI

and

Ren et al. (19) 2024 BMUS+CEUS
312

TR4-5 TNs
Morphology, intensity, textures, wavelet

BMU
Radiomic

Zhao et al. (24) 2020 US+SWE 849 TNs

contour, shape, textural
phenotype, histogram, GLCM,
GLRLM, GLSZM, NGTDM,

GLDM, LBP, ect.

ML
US+S

Ap
US+SW

ap

AUC, area under the curve; B-US/BMUS, B-mode ultrasound; BANN, Bayesian artificial neural networks; CEUS, contrast-enhanced ultrasound; CNN, convolutiona
dependence matrix; GLRLM, gray-level run-length matrix; GLRM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; ITS100 system, Ian Thyroid So
logistic regression algorithm; LBP, Local Binary Pattern; LR, logistic regression; NB, Naive Bayes; NGTDM, neighboring gray tone difference matrix; NPV, negative pred
SWE, shear-wave elastography; US, ultrasound.
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When combined with well-known clinical, biological, and

cytological information in a nomogram format, the multivariate

logistic regression model achieved 90% specificity, 57.3% sensitivity,

73.4% PPV, 81.4% NPV, and an AUC of 0.840 (21). A random

forest model achieved comparable results, with 87.6% specificity,

54.7% sensitivity, 68.1% PPV, 80% NPV, and an AUC of 0.826 (21).

Both ML models enabled radiologists to stratify ITNs into low-,

intermediate-, and high-risk categories (<6%, 6%–30%, and >30%,

respectively) for malignancy (21).

2.1.2 Assisted diagnostic models using
deep learning

Deep learning (DL) models, which require larger datasets of

primary US images than ML models, self-learn to recognize, locate,

and predict the nature of TNs. These models require more original

medical images than ML models and exhibit a higher AUC (0.740–

0.970) (16, 17, 37, 38, 43, 46, 49), assisting clinicians in identifying

benign TNs and reducing unnecessary surgical procedures. The

diagnostic performance of radiomics models varies depending on

the classifier used. Three DL models based on Visual Geometry

Group 16 (VGG 16), VGG19, and ResNet methods exhibited

superior diagnostic performance with an AUC of 0.83–0.86 than

radiologists with an AUC of 0.71–0.76 (p<0.05). The VGG16 model

demonstrated the highest diagnostic performance in both the

internal (AUC 0.86; sensitivity, 91.8%; specificity, 73.2%) and

external (AUC 0.83; sensitivity, 78.6%; specificity, 76.8%) test sets,

although no significant differences were observed in AUCs among

the three DL models (43). Wu et al. compared DL models basing on

ResNet-50, Inception-ResNet V2, and Desnet-121 and found that

the ResNet-50 model achieved the highest AUC values of 0.904,

0.845, and 0.829 for TR4, TR5, and TR4–5 nodules, respectively.

The ResNet-50 model enhanced the diagnostic rate of malignancy

from benign TR4 and TR5 TNs despite no significance in sensitivity

and specificity compared with those of radiologist values in the

current dataset (16). The ThyNet model, combining the

architectures of the ResNet, ResNeXt, and DenseNet classifiers,

was trained on over 10,000 images from 8,339 patients and reached

an AUC of 0.922 for less challenging and unequivocal TNs (37).

Training data affect AI model diagnostic performance. For example,

using 88 Bethesda III nodules with final pathology, ThyNet showed

an overall accuracy of 0.64 (38). ImageNet, which was trained on

challenging ITN images, demonstrated an accuracy of 0.74 (38).

Dynamic AI computer-assisted diagnostic systems have been

developed from tens of thousands of determinate TN images,

showing significantly higher specificity, PPV, and accuracy than

the preoperative ultrasound ACR TI-RADS or C-TIRADS, such as

the ITS100 system (p<0.001) (45) and S-Detect system (p<0.05)

(46). Moreover, the ITN100 system achieved a sensitivity of 96.58%

and an accuracy of 94.06%, comparable with FNA values (45).

In practice, AI models should be viewed as assistive tools for

reducing workload and improving diagnostic accuracy rather than as

standalone decision-makers, such as radiologists, endocrinologists, or

surgeons. To assist clinicians in the management of thyroid nodules, a

ThyNet-assisted strategy was proposed and tested in real-world

clinical settings. The strategy improved the AUC of radiologists
Frontiers in Endocrinology 05
from 0.837 to 0.875 (p<0.0001) and from 0.862 to 0.873 (p<0.0001)

in clinical tests (37). In the simulated setting, the rate of false negatives

decreased from 61.9% to 35.2% using the ThyNet-assisted strategy,

while the rate of missed malignancies decreased from 18.9% to 17.0%

(37). Clinicians using and supervising AI-assisted models can

enhance diagnostic accuracy in medical practice. However, AI

models are not always correct, and it is essential for clinicians that

they need to scrutinize their findings. For junior radiologists, in

particular, it is critical to carefully consider various US features

identified by AI in making the final diagnosis. These features

include solid or mostly solid nodules; hyperechoic or isoechoic,

hypoechoic, or very hypoechoic nodules; nodules with diverse

shapes and margins; absence or presence of large comet-tail

artifacts; macrocalcifications; punctate echogenic foci; nodules

measuring ≥ 5 mm; and all parenchymal backgrounds (50). Each

of these features has been associated with improved sensitivity (all

p<0.004) and specificity (all p<0.001) (50).
2.2 Dual-modality radiomics-
assisted diagnosis

Researchers have explored the use of dual-modality radiomics

models, incorporating CEUS and SWE, to enhance the accuracy of

differentiating benign frommalignant thyroid nodules beyond BMUS

data alone. CEUS serves as a complementary modality to BMUS by

assessing the blood flow of TNs and demonstrating excellent

sensitivity and specificity in discriminating between TNs. The AI-

SONIC™ Thyroid intelligent diagnosis system is based on BMUS

images with an accuracy of 83.02% (18). When combined with CEUS,

the AI-SONIC™ Thyroid system showed significantly higher

sensitivity, NPV, and AUC (0.859) than the AI-SONIC™ Thyroid

system or CEUS alone (p<0.05), indicating that the combination of

US and CEUS is beneficial for the early detection of malignant TNs

(18). Guo et al. found that their BMUS- and CEUS-based models

(AUC, 0.861) were significantly superior to the BMUS-only model

(AUC, 0.791) and CEUS-only model (AUC, 0.766) (both p<0.05)

(48). Another BMUS and CEUS dual-modal radiomics nomogram

involving six variables (BMUS Rad-score, CEUS Rad-score, age,

shape, margin, and enhancement direction) exhibited excellent

calibration and discrimination in the training (n=219) and

validation (n=93) cohorts, with AUCs of 0.873 and 0.851,

respectively. This approach reduced the need for FNA from 35.3%

to 14.5% and from 41.5% to 17.7% for TR4–5 TNs compared with

ACR TI-RADS (19). Although CEUS can reveal vascular dynamic

perfusion and enhancement patterns, its reliance on additional

contrast agents (51) may be costly, and overlapping features in

benign and malignant TNs can sometimes limit clinical

applications (52). Superb microvascular imaging is an economical

and noninvasive vascular imaging method with no contraindications

and is comparable with CEUS in evaluating peripheral blood flow for

malignant TN diagnosis (53).

SWE is another noninvasive technique that can be used to

assess the mechanical properties of tissue elasticity to evaluate TNs.

For patients with ITNs, a muscle deformation ratio greater than
frontiersin.org
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1.53 kPa indicated a higher malignancy risk (AUC, 0.98) (54). Some

studies suggest that combining BMUS and SWE could enhance

diagnostic specificity for predicting thyroid malignancies (55). Zhao

et al. (24) extracted six US features (size, composition, echogenicity,

shape, margin, and echogenic foci) and five SWE parameters (SWE-

mean, SWE-min, SWE-max, SWE-SD, and SWE-ratio) to build an

AI-assisted visual model. This model demonstrated superior

diagnostic performance than US alone, with an AUC of 0.951 vs.

0.900 for the validation dataset and 0.953 vs. 0.917 for the test

dataset. When applying the US-added SWE visual radiomics model,

the unnecessary FNA rate decreased from 30.0% to 4.5% in the

validation dataset and from 37.7% to 4.7% in the test dataset,

compared with ACR TI-RADS values (24).
3 Genomic molecular testing for
ITN diagnosis

Molecular testing is an promising adjunctive tool in cancer

diagnostics, offering advantages such as enhanced diagnostic

accuracy and faster screening for TNs (56). This testing can

provide additional diagnostic information for ITNs, even in the

absence of indicative BMUS features (57), leading to its widespread

adoption in clinical settings across some countries and regions to

aid in the diagnosis of TNs. Available molecular testing panels for

ITN diagnosis have evolved from single genes (e.g., B-type RAF

kinase [BRAF] V600E) (27, 41, 58) to multiple genes (e.g., seven-

gene group) (59–61) or genomic markers (29, 30, 62) [e.g., Afirma

Gene Expression Classifier (GEC) (63)]. This section reviews the

research on genetic markers for the diagnosis of ITNs. The details of

the markers, platform, and performance of each molecular testing

method are listed in Table 2.
3.1 Single-gene molecular testing

The BRAF V600E gene mutation, strongly associated with

papillary thyroid carcinoma, is widely used as a biomarker for TN

diagnosis in clinical practice (3). BRAF V600E mutations are more

prevalent in Bethesda III nodules with cytological or architectural

atypia (73), making this gene superior to RAS mutations in the

diagnosis of thyroid cancer (59). Although RAS mutations are the

most common genetic alteration in ITNs (74), many resected RAS-

mutant nodules are benign, and most ITNs with RAS mutations

tend to remain stable over time. Therefore, it is important to

consider all RAS-mutant ITNs when avoiding immediate surgical

resection (75). KRAS-mutant Bethesda IV nodules have a 50% risk

of malignancy, and diagnostic surgery is recommended (76). PTEN

and PAX8-PPARg2 are regarded as low-risk alterations and are

more prevalent in ITNs with architectural atypia (73). Patients with

STRN-ALK fusion-positive nodules should undergo thyroid

lobectomy because these nodules are usually malignant (77).

Approximately 77% of THADA-IGF2BP3 fusion-positive thyroid

nodules are malignant and require surgery (78). However, single-

gene testing is sometimes inadequate for ITN diagnosis because the
Frontiers in Endocrinology 06
prevalence of BRAF V600E is low (2% in the ITN cohort) (65).

Expanded molecular testing identified at least one more mutation in

44% of ITNs that were Afirma gene sequencing classifier (GSC)

suspicious subjects (65).
3.2 Multiple-gene molecular testing

A seven-gene testing study by Tolaba et al. reported good

performance, with sensitivity, specificity, PPV, and NPV of 86%,

77%, 54%, and 94%, respectively, in 112 FNA samples from patients

with Bethesda III–V nodules, indicating a potential reduction in

surgical procedures by 48% (61). Multiple-gene testing can also be

used to assess genetic risk stratification for ITNs (59). Among the

529 Bethesda III–V nodules, 2 cases (0.44%) were categorized into

the high-risk group, 426 cases (94.67%) were categorized into the

BRAF-like group with histopathologic papillary patterned tumors,

and 22 cases (4.89%) were categorized into the RAS-like group.

These studies highlighted that multiple genes can be incorporated

into the clinical diagnostic process of ITN management (59).

Notably, the current ACR TI-RADS classification system has low

inter- and intra-reader reliability when assessing the genetic risk of

ITNs (60).

Two epigenetical ly imprinted genes, small nuclear

ribonucleoprotein polypeptide N (SNRPN) and minor

histocompatibility antigen H13 (HM13), were visualized and

quantified using a quantitative chromogenic imprinted gene in

situ hybridization (QCIGISH) method (79). The research team

found an excellent performance of SNRPN and HM13 for

Bethesda III–V nodules with a PPV of 97.8% and NPV of 100%,

achieving a diagnostic accuracy of 98.2% as well as a PPV of 96.6%

and an NPV of 100%, with a diagnostic accuracy of 97.5% for

Bethesda III–IV nodules (72). This novel method based on

imprinted biomarkers provides new insights into the effective

distinction between malignant and benign TNs. The high PPV

and NPV make QCIGISH an excellent diagnostic tool for both rule-

in and rule-out thyroid nodules (72). These multiple-gene tests

could improve the diagnosis of ITNs and reduce the need for

diagnostic surgery. However, they are not suitable for Hürthle cell

adenomas or carcinomas or noninvasive follicular thyroid

neoplasms with papillary-like nuclear features.
3.3 Genomic molecular testing panels

The Afirma GSC (9) is an RNA-Seq testing panel designed for

model prediction with over ten thousand genes and rare subgroups of

the TN category, including parathyroid, medullary thyroid cancer,

follicular content, Hürthle cells, and Hürthle neoplasms (9). In total,

GSC enabled the accurate differentiation of benign Bethesda III or IV

nodules from malignant nodules with a sensitivity of 91%, specificity

of 68%, NPV of 96%, and PPV of 47% at 24% cancer prevalence (9).

Meanwhile, the GSC method showed an overall false negative rate of

2% in a large new cohort study of Bethesda III or IV patients (67).

GSC-benign nodules can be observed similarly to thyroid nodules

with benign cytology (67). Therefore, individualized clinical factors
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TABLE 2 The main studies on ITNs diagnosis by multiple molecular testing.

Reference
Published

Year
No. of

Subjects
Method Biomarkers Main Performance

Patel et al. (9) 2018
191 Bethesda III or

IV nodules
GSC

10,196 genes, 7 other components: a
parathyroid cassette, a medullary
thyroid cancer (MTC) cassette, a

BRAFV600Ecassette, RET/PTC1 and
RET/PTC3 fusion detection modules,
follicular content index, Hürthle cell
index, and Hürthle neoplasm index

Sensitivity 91%
Specificity 68%

NPV 96%
PPV 47%

Endo et al. (64) 2020
289 Bethesda III or

IV nodules
GEC or GSC —

Younger age, larger nodule size,
presence of Afirma suspicious

nodule other
than the index nodule and
compressive symptoms were

associated with a higher rate of
surgery.

Hu et al. (65) 2021
50644 Bethesda III-

VI nodules
GSC and XA

905 genomic variants and 235 fusion
pairs from 593 genes (XA)

PPV of genes in Bethesda III/IV:
ALK 60%
BRAF 76%
NTRK 96%

RET fusions 100%

White et al. (66) 2022
280 Bethesda III or

IV nodules
GEC or GSC —

1 of 14 negative nodules
demonstrating minimally invasive
follicular carcinoma; 81 of 97
negative nodules were safe to

undergo follow-up.

Ahmadi et al. (67) 2024
834 Bethesda III or

IV nodules
GSC 10,196 genes, 7 other components

For Bethesda III/IV:
Sensitivity 95%/94%
Specificity 30%/42%

NPV 89%/87%
PPV 50%/65%

Steward et al. (29) 2018
286 Bethesda III or

IV nodules
ThyroSeq v3

112 gene include a broad range of
thyroid cancer-related point mutations,
gene fusions, copy number alterations

and gene expression alterations

Sensitivity 94%
Specificity 82%

NPV 97%
PPV 66%

Nikiforova et al. (8) 2018

238 tissue samples and
175 FNA samples
Of Bethesda III and

V nodules

ThyroSeq v3 112 genes
Sensitivity 98.0%
Specificity 81.8%
Accuracy 90.9%

Carty et al. (68) 2020
405 Bethesda
IV nodules

ThyroSeq v2
or 3

—

MT use for Bethesda IV nodules
increased the surgical yield of
cancer by 4-fold, identified all

potentially aggressive malignancies,
and allowed safe nonoperative
surveillance for >80% of MT-

negative patients.

Desai et al. (69) 2020
415 Bethesda III and

V nodules
ThyroSeq v3

112 genes include a broad range of
thyroid cancer-related point mutations,
gene fusions, copy number alterations

and gene expression alterations

Sensitivity 92.9%
Specificity 90.3%

NPV 98.3%
PPV 67.7%

Livhits et al. (70) 2020
372 Bethesda III or

IV nodules
ThyroSeq
v3;GSC

RNA+DNA; RNA

Performance of GSC/ThyroSeq:
Sensitivity 100%/97%
Specificity 80%/85%

NPV 54%/63%
PPV 53%/63%

Torrecillas et al. (31) 2021
89 Bethesda III or

IV nodules
Thyroseq
v2/v3

—

Sensitivity 100%
Specificity 65%
NPV 100%
PPV 37%

(Continued)
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and close long-term follow-up are recommended for the

management of patients with ITNs (66). If the nodules are high

risk with sonographic features, they should be given serious attention

(64, 66). The PPV of oncocytic nodules was still low at 17% for

Bethesda III nodules and 45% for Bethesda IV nodules. At the 1-year

follow-up, only 22% of the thyroid nodules with benign GSC results

grew during surveillance.

ThyroSeq serial next generation sequencing (NGS)-based

molecular testing panels are potent and robust tools for

diagnosing questionable thyroid nodules. Experts from the

University of Pittsburgh Cancer Institute modified the ThyroSeq

v3 panel into a DNA- and RNA-based NGS panel, incorporating a

genomic classifier (GC) to distinguish malignant lesions from

benign lesions (8). Complete ThyroSeq v3 is suitable for all
Frontiers in Endocrinology 08
common types of thyroid cancers and parathyroid lesions, with

better efficacy than previous versions. A GC cutoff of 1.5 was

identified to differentiate cancer from benign nodules with 93.9%

sensitivity, 89.4% specificity, and 92.1% accuracy (68). In the FNA

validation set, the sensitivity, specificity and accuracy of GC were

98.0%, 81.8%, and 90.9% (68). The analytical sensitivity, specificity,

and robustness of ThyroSeq v3 GC have been successfully validated

and clinically adopted in American, Southeast Asian, and Canadian

cohorts (69, 71, 80, 81).

ThyroSeq v3 GC proposed a 3% false-negative rate (29) and helped

reduce diagnostic surgery in up to 61% of patients with ITNs and in up

to 82% of all benign ITNs. The performance of the ThyroSeq v3 GC in

the Southeast Asian population was over 80% in all evaluated indices,

which reduced to approximately 42% in diagnostic surgery (71).
TABLE 2 Continued

Reference
Published

Year
No. of

Subjects
Method Biomarkers Main Performance

Yang et al. (71) 2024
134 Bethesda III-

V nodules
ThyroSeq v3 112 genes

Sensitivity 89.6%
Specificity 73.7%

NPV 84.0%
PPV 82.1%

Daniels et al. (60) 2020
118 Bethesda III or

IV nodules
custom panel

23 genes (AKT1,APC, AXIN1, BRAF,
CDKN2A, CTNNB1, DNMT3A,

EGFR, EIF1AX, GNAS, HRAS, IDH1,
KRAS, NDUFA13, NRAS, PIK3CA,
PTEN, RET, SMAD4, TERT, TP53,

TSHR, VHL)

The ACR TI-RADS classification
system performs with low inter-
reader and intra-reader reliability

when assessing the genetic
risk of ITNs.

Tolaba et al. (61) 2022
112 Bethesda III-

IV nodules

7-gene
mutation
panel

BRAF and RAS (H/N/K) and the gene
fusions PAX8/PPARG, RET/PTC1 and

RET/PTC2

Sensitivity 86%
Specificity 87%

NPV 94%
PPV 54%

Xu et al. (72) 2022
550 Bethesda III and

VI nodules

Quantitative
chromogenic
imprinted
gene in situ
hybridization
(QCIGISH)

SNRPN and HM13

for Bethesda III-IV:
Sensitibvity 100%
Specificity 92.3%

PPV 96.6%
NPV 100%

Accuracy 97.5%

Hu et al. (62) 2022 140 ITNs Thyroeva™
DNA (140 amplicons), RNA fusion (36

amplicons) and mRNA
(169 amplicons)

Sensitivity 96%
Specificity 93%
Accuracy 95%
AUC 0.94

Stewardson et al. (30) 2023
615 Bethesda III or

IV nodules
ThyroSPEC

(MassARRAY)
139 most prevalent mutations and

gene fusions

Sensitivity 72%
Specificity 70-78%

NPV 76-91%
PPV 46-65%

Zhou et al. (59) 2023
529 Bethesda III-

V nodules
Customized
NGS panel

14 thyroid cancer-related genes
(AKT1, BRAF, CTNNB1, EIF1AX,

HRAS, KRAS, NRAS, PAX8, PIK3CA,
PTEN, RET, TERT, THADA, and

TP53) and 21 types of gene
rearrangements occurring in thyroid
cancer (ACBD5, AFAP1L2, ALK,
ATG10, BRAF, CALM2, CCDC6,
ERC1, ETV6, FLNC, FMNL2,
KIAA1217, KIAA1594, KIF20B,
NCOA4, NTRK3, PAK1, PAX8,

PIBF1, PPAR g, PXK, RALGAPA2,
RET, SND1, and STRN).

Sensitivity 97.8%
Specificity 82.7%

NPV 67.7%
PPV 99.0%
GEC, Afirma genomic expression classifier; GSC, Afirma genomic sequencing classifier; ITN, indeterminate thyroid nodules; NPV, negative predictive value; PPV, positive predictive value; XA,
Afirma Xpress.
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ThyroSeq positive-guided surgery for Bethesda IV nodules has

increased cancer detection rates by four-fold, successfully identifying

nearly all potentially aggressive malignancies. Over 80% of patients

with negative ThyroSeq are able to safely undergo non-operative

surveillance, remaining stable for 24.6 months (68).

Many studies have compared RNA-based Afirma GECs/GSCs

with RNA-based ThyroSeq (70, 82). In principle, Afirma classifiers

use ML to analyze gene expression data and build a binary

diagnostic model that outputs results as either “suspicious” or

“benign” (9). In contrast, ThyroSeq’s serial panels weigh mutant

genes by number and category to calculate a risk grade using a fixed

formula. This model defines results as “positive” or “negative”

(8, 25). Afirma GSC and ThyroSeq v3 showed no significant

differences in the benign call rate (53% vs. 61%), specificity (80%

vs. 85%), and PPV (53% vs. 63%). Diagnostic thyroidectomy was

avoided in 87 (51%) patients with benign GEC-benign nodules and

83 (49%) patients with ThyroSeq v3-negative nodules (70). Both

Afirma GSC and ThyroSeq v3 are effective at ruling out malignancy

in sonographically low-/intermediate-suspicion thyroid nodules but

show limited diagnostic value for high-suspicion nodules (82).
4 Combination of US features and
molecular testing for ITN diagnosis

Owing to increasing challenges in ITN diagnosis and

management, combining US characteristics and molecular testing

has been assumed to enhance diagnostic efficacy (31, 83). For

example, incorporating the BRAF V600E mutation significantly

enhanced diagnostic accuracy in detecting 511 ITNs across Korean,

American, and Chinese TI-RADS systems. The AUC values were

0.773 vs. 0.735 (p<0.001) for K–TI-RADS, 0.809 vs. 0.778 (p<0.001)

for ACR TI-RADS, and 0.815 vs. 0.783 (p<0.001) for C–TI-RADS at

the cutoff for malignancy at grades 5, 5, and 4c, respectively (58).

RAS-mutant ITNs often indicate a benign pathology (31), while RAS-

mutant ITNs have higher rates of malignancy when multiple

noncystic nodules or irregular borders are present. Excluding

high-risk genetic markers for malignancy, the threshold for

recommending surgical resection should be increased for ITNs

(84). Some researchers hold negative opinions regarding molecular

testing. Azaryan et al. retrospectively analyzed 237 Bethesda III/IV

nodules by adding GSC results to the American Thyroid Association

(ATA) risk stratification and ACR TI-RADS. They found no

significant differences in ATA high-risk and TR5 nodules

compared with ATA non-high-risk and TR1–4 nodules in terms of

sensitivity, specificity, NPV, and PPV (85). In another multicenter

study of ITNs using ThyroSeq v3 molecular testing results, neither

the ATA nor TI-RADS US scoring systems further informed the risk

of cancer/noninvasive follicular thyroid neoplasm with papillary-like

nuclear features beyond that predicted by ThyroSeq v3 (81).
5 Challenges in ITN diagnosis

In radiomics, having a larger dataset and utilizing multiple

imaging modalities improves the accuracy of AI-assisted diagnostic
Frontiers in Endocrinology 09
models. Specifically, AI-assisted models for diagnosis should be

trained using ITN images, which would enhance their effectiveness.

However, most models still have less performance stability and

worse clinical applicability because of the limited amount of ITN

data in retrospective studies or single-center datasets without

external validation. The limited number of patients with ITN

with confirmed pathology further constrains studies, as

organizing multicenter collaboration remains challenging.

Additionally, DL algorithms are popular for their automation and

similarity to human cognitive processing, yet their “black box”

nature makes it difficult for physicians to interpret their decisions.

While AI-assisted models show better or comparable performance

in ITN diagnosis compared with radiologists in most studies, they

have shown inconsistent results in real-world settings (39). Given

these complexities, AI should be seen as a supportive tool for

clinicians rather than an independent diagnostic method.

Experts have increasingly recognized that molecular testing for

ITNs can partially aid in preoperative diagnosis. An international

study revealed an increasing trend in the use of molecular testing for

diagnosing thyroid nodules from 2019 to 2022 (86), which

accounted for only < 10%. The BRAF V600E mutation or the

seven-gene panel for molecular testing is not commonly used in

clinical practice in some countries. The GSC and ThyroSeq methods

are primarily used and validated by institutions in the United States

because they are expensive. Both the GSC and ThyroSeq testing

panels lack support for multi-population data worldwide and long-

term clinical visits. In other countries, multigene molecular testing

panels remain in the exploration or preliminary stages, and other

innovative molecular detection methods, such as QCIGISH, remain

in the development stage. The use of multiple-gene testing panels

from research to clinical practice is also influenced by local health

agency policies, physician preferences, and patient privacy, despite

the gradual acceptance of molecular testing before surgery and the

decreased cost of molecular testing.

ITN diagnostic methods should utilize more recent

technological advances. For example, super-resolution ultrasound

imaging technology can help reveal the vascular structure, density,

velocity, and direction of blood flow in tiny vessels while providing

many new quantitative indices for medical analysis. ChatGPT, a

text-based generative AI chatbot of large language models, nearly

passed a radiology board-style examination without images despite

having no radiology-specific pretraining (87). ChatGPT 4.0

demonstrated potential in enhancing diagnostic medical imaging,

achieving an AUC of 0.83 and an accuracy of 84% (47).

Furthermore, multicenter collaborations should be actively

organized and conducted to solve sample size and applicability

issues. Radiogenomics—the combination of radiomics and

genomics—may also enhance diagnostic efficiency by elucidating

the biological mechanisms underlying imaging results.
6 Conclusions

This review summarizes the latest publications on ITN

diagnosis using AI-assisted ultrasound radiomics and genomic

molecular testing over the last 5 years. Radiomics models have
frontiersin.org

https://doi.org/10.3389/fendo.2025.1529948
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1529948
achieved comparable or superior performance than less experienced

radiologists, enhancing diagnostic accuracy and reducing the

number of FNA procedures. Genomic testing methods have

proven to be effective in solving challenging ITN cases during

preoperative diagnosis. Both radiomics and molecular testing, as

supplementary tools, show positive effects in various research

cohorts and require a large amount of data or long-term follow-

up to support their clinical value. Continued exploration of these

innovative diagnostic solutions is warranted.
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