
TYPE Review 
PUBLISHED 25 July 2025 
DOI 10.3389/fendo.2025.1530578 

OPEN ACCESS 

EDITED BY 

Rongzhang Dou, 
University of Texas MD Anderson Cancer 
Center, United States 

REVIEWED BY 

Sergei Tevosian,
 
University of Florida, United States
 
Pradeep Mk Nair,
 
Mirakle Integrated Health Centre, India
 
Qin Xie,
 
Wuhan University, China
 

*CORRESPONDENCE 

Yaru Gao 

13842650106@163.com 

Xiaorui Li 

xiaorui_0513@163.com 

Guangzhen Wu 

wuguangzhen@firsthosp-dmu.com 

†These authors have contributed 
equally to this work 

RECEIVED 19 November 2024 
ACCEPTED 02 July 2025 
PUBLISHED 25 July 2025 

CITATION 

Zhang X, Liu D, Yin S, Gao Y, Li X 
and Wu G (2025) Metabolism and epigenetics 
in cancer: toward personalized treatment. 
Front. Endocrinol. 16:1530578. 
doi: 10.3389/fendo.2025.1530578 

COPYRIGHT 

© 2025 Zhang, Liu, Yin, Gao, Li and Wu. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Frontiers in Endocrinology 
Metabolism and epigenetics 
in cancer: toward 
personalized treatment 
Xiaoman Zhang1†, Dequan Liu1†, Sulan Yin2, Yaru Gao3*, 
Xiaorui Li4* and Guangzhen Wu1* 

1Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China, 
2Department of Laboratory Medicine, The Faculty of Medicine and Pharmaceutical Sciences, Hainan 
Vocational University of Science and Technology, Haikou, China, 3Department of Nursing, The 
Second Affiliated Hospital of Dalian Medical University, Dalian, China, 4Department of Oncology, 
Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, 
Liaoning Cancer Hospital and Institute, Shenyang, China 
Epigenetic changes, such as DNA methylation, chromatin remodeling, and 
histone modifications, regulate gene expression without altering the DNA 
sequence. This review systematically analyzed over 500 studies including 
human cell line experiments (n>200), animal models (n>50), clinical cohort 
studies (n>100), and bioinformatics analyses retrieved from PubMed, Web of 
Science, and TCGA (The Cancer Genome Atlas). Studies increasingly show that 
genes involved in glucose and lipid metabolism, energy production, and 
modulation of metabolic hormones are regulated through epigenetic 
mechanisms. On the other hand, various metabolites participate in epigenetic 
modifications as coenzymes or substrates. Therefore, a greater understanding of 
the crosstalk between metabolism and epigenetics in cancer-related pathways 
could lead to the identification of key signaling molecules for targeted therapies, 
and raise the possibility of using dietary interventions to modulate epigenetic 
markers for individualized treatment. In this review, we have summarized the 
metabolic and epigenetic regulatory networks in cancer development, including 
glycolipid metabolic reprograming, the role of metabolites produced by the glut 
flora and tumor microenvironment, and key epigenetic drivers such as non-
coding RNAs (ncRNAs). Data were curated from peer-reviewed articles, 
grounded in mechanistic studies using cell lines (SW480, MCF7 (Michigan 
cancer foundation-7)) and animal models (APC-mutant mice), with a focus on 
mechanistic studies, omics analyses, and translational research. Furthermore, we 
have discussed the potential of therapeutically targeting these pathways, along 
with the current challenges and future research directions, and a new strategy for 
reversing therapeutic drug resistance based on metabolism and epigenetic 
interaction was systematically explored. 
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1 Introduction 

The occurrence and development of tumors are complex 
processes driven by multiple levels and dynamic molecular 
networks (1).With the in-depth study of epigenetic mechanisms, 
its central role in maintaining tumor cell identity, plasticity, and 
shaping intratumor heterogeneity has been revealed (2, 3). At the 
same time, the unique metabolic reprogramming characteristics of 
tumor cells, such as enhanced glycolysis, accelerated lipid synthesis 
and abnormal amino acid metabolism, have also had a profound 
impact on tumor biology on the premise of meeting the energy and 
biosynthetic requirements required for rapid tumor proliferation 
(4). These altered metabolic pathways produce a variety of specific 
metabolic intermediates and key substrates or cofactors that 
participate in and regulate epigenetic processes, such as histone 
modification and DNA methylation (5–7). The remodeling effect of 
metabolites on the epigenetic landscape plays a key connecting role 
in the cellular metabolic state and gene expression program (8, 9). 

More critically, the interaction between metabolism and 
epigenetics is closely linked to the tumor microenvironment (TME) 
and immune regulation (10). On one hand, epigenetic modifiers 
regulate the expression of immune-related genes and influence the 
metabolic phenotype of tumor cells and the activity of immune cells 
(11). On the other hand, metabolites resulting from metabolic 
reprogramming in tumor cells, such as lactate and fatty acids, 
directly suppress the function of anti-tumor immune cells through 
epigenetic mechanisms, promote the activation of immune-

suppressive cells, and facilitate tumor immune escape (12, 13). The 
gut microbiota, as an external driver, can promote tumor progression 
by regulating metabolites and immune responses when dysregulated. 
The interplay between metabolism, epigenetics, and immune 
regulation plays a key role in driving tumor progression (14). Our 
analysis integrated basic research (cell lines and animal models), 
clinical data (prospective cohorts), and omics datasets (TCGA, GEO 
(Gene Expression Omnibus)), including 387 cell line studies, 112 
animal model investigations, and 45 clinical trials. 

Metabolism and epigenetics and immune regulation play a key 
role in tumorigenesis, progression and treatment resistance (15, 16), 
the bidirectional regulatory mechanism between metabolism and 
epigenetics was verified in cell lines (SETD2 knockdown renal 
cancer cells) and mouse models (Kras mutated pancreatic cancer 
mice), which enabled us to have a more comprehensive 
understanding of their complex interactions and regulatory 
Abbreviations: APC, Adenomatous polyposis coli; AS, Alternative splicing; 

ATP6V0d2, V-ATPase V0 subunit d2; BCAT1, Branched-Chain Amino Acid 

Transaminase 1; BRCA, Breast cancer; CRC, Colorectal cancer; FOXO, Forkhead 

box O transcription factors; HDAC, Histone deacetylase; KDM, Histone lysine 

demethylase; m6A, N6-methyladenosine; MCF7, Michigan cancer foundation – 

7; METTL3, Methyltransferase-like 3; mRNA, Messenger RNA; NAA40, N-alpha 

acetyltransferase 40; ncRNA, Non-coding RNA; PARPi, PARP inhibitor; PCa, 

Prostate cancer; PD-L1, Programmed death-ligand 1; PTMS, Post-translational 

modifications; SETD2, SET domain-containing protein 2; Sig-1R, Sigma-1 

receptor; TCGA, The cancer Genome Atlas; TME, Tumor microenvironment; 

YTHDF2, YTH domain family protein 2. 
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networks. In this review, we clarify the complex bidirectional 
regulatory relationship between metabolic reprogramming and 
epigenetic modification in tumors (17), how metabolites play the 
key role of regulatory factors in epigenetics, and how this 
interaction jointly promotes the progression of malignant tumors 
by influencing the immune microenvironment and non-metabolic 
pathways (18). We also explored targeted metabolic enzymes and 
epigenetic modification factors as key factors for developing new 
therapeutic directions, and proposed new insights for reversing 
treatment resistance and developing more precise anti-cancer 
therapies (19, 20) (Figure 1). 
2 The modern era of epigenetic 
research 

The study of whole-genome chromatin maps ushered in the era 
of modern epigenetic research (21). Epigenetics refers to inheritable 
changes in gene expression and cell phenotypes without altering the 
DNA sequence (Table 1). 
3 Metabolic reprogramming features 

Metabolic reprogramming is a phenomenon wherein cancer 
cells adjust their metabolic pathways to adapt to the TME and 
higher energy needs (Table 2). 
4 Regulation of gene expression by 
epigenetic modifying enzymes 

4.1 The central role of SETD2-mediated 
H3K36me3 modification in tumor 
suppression and immune regulation 

Trimethylation of histone H3 lysine at position 36 (H3K36me3) 
is an epigenetic modification that regulates gene transcription and 
messenger RNA (mRNA) splicing. Histone methyltransferase SET 
domain containing protein 2 (SETD2), the key enzyme catalyzing this 
modification, has been identified as a tumor suppressor and immune 
modulator. For example, in terms of immune regulation, SETD2’s 
regulation of regulatory T cells (Tregs) affects tumor control and 
antiviral response (30, 31). In addition, SETD2 can enhance the 
expression/function of GATA binding protein 3 (GATA3) in 
intestinal derived thymic regulatory T cells (tTreg cells), thereby 
promoting the expression of ST2 (interleukin-1 receptor like 1, 
IL1RL1) (32). The absence of SETD2 in prostate cancer (PCa) cells 
promotes excessive activation of enhancer-binding protein 2 (EZH2), 
leading to an increase in whole genome H3K27me3 and chromatin 
repression, which in turn inhibits expression of tumor suppressor 
genes and promotes metastasis (33). Furthermore, the 
SETD2-knockout polycystic kidney disease-clear cell renal cell 
carcinoma (PKD-ccRCC) mouse model exhibits increased 
tumorigenesis and poor survival (34). This phenomenon may be 
frontiersin.org 
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partly attributed to the impaired heme synthesis and accumulated 
ferroptosis-related factors, which collectively create a pro-TME 
conducive to malignant progression (35). In addition to renal 
cancer, in pancreatic cancer cells, the deletion of SETD2 will 
promote the reorganization of acinar to ductal metaplasia (ADM) 
of pancreatic acinar cells driven by the oncogene KRAS, which is 
mainly mediated by F-box and WD repeat domain protein 7 (Fbxw7) 
(36). In the SGC-7901 human gastric cancer cells, restoration of 
forkhead box O transcription factors (FOXO) signaling pathway 
agonist or S IRT1 expression reverses the increase in proliferation and 
migration caused by SETD2 deletion (37). Smad7 is a negative 
feedback regulator of the TGF-b/Smad signaling pathway, and 
SETD2 deficiency leads to Smad7 down-regulation, which 
promotes  TGF-b/Smad  hyperactivation  and  the  trans  
differentiation of myofibroblasts (38). In addition, SETD2 deletion 
can promote renal fibrosis by activating the TGF-b/Smad signaling 
pathway, even in the absence of Von Hippel-Lindau (VHL) protein 
(39). Thus, histone methyltransferases have an important role in 
tumorigenesis and cancer progression. 
4.2 The synergistic regulation of m6A 
modification and histone demethylation 
drives tumorigenesis and drug resistance 

N6-methyladenosine (m6A) is the most abundant RNA 
modification and plays a key role in transcriptional regulation (40). 
Frontiers in Endocrinology 03 
Methyltransferase-like 3 (METTL3) is central to the formation of 
m6A, which subsequently binds to specific RNA-binding proteins that 
influence metabolic processes (41). The combination of a DNA 
hypomethylating agent (HMA) with a PARPi showed potent anti­
tumor effects against SETD2-deficient RCC cells (42). In breast cancer 
cells (BRCA), METTL3 can stabilize and upregulate the PD-L1 
mRNA upon binding to m6A-modified IGF2BP3 (43). METTL3­

mediated m6A modification of uncapped mRNA2235 (DCP2) 
triggers its degradation, and promotes mitosis and chemoresistance 
in  small cell lung  cancer  (SCLC) cells  through the  PINK1/Parkin
pathway (44). Knockdown of METTL3 inhibited Pin1-induced clonal 
expansion of the breast cancer MCF7 cells, but promoted the growth 
of 4T1 tumors in vivo (45).  While METTL3 regulates  gene  expression  
at the post-transcriptional level, histone lysine demethylases (KDMs) 
determine the accessibility of gene transcription through chromatin 
remodeling (46). For example, KDM6A regulates chromatin structure 
and DNA accessibility by removing methyl groups from H3K27me3, 
and removal of this histone repressor mark activates gene 
transcription (47). METTL3-mediated m6A modification of the 
HOXA9 oncogene promoter, and oncogene silencing by H3K27me3 
in the absence of KDM6A have been shown to synergistically drive 
leukemogenesis (48). YTH domain family protein 2 (YTHDF2), a 
reading protein that recognizes m6A and promotes RNA degradation, 
promotes tumor growth by facilitating degradation of target mRNAs 
(49). The METTL3-YTHDF2 axis can accelerate colorectal 
carcinogenesis through epigenetic suppression of YPEL5 (50). 
Furthermore, the chromatin remains in the transcriptionally 
FIGURE 1 

Tumorigenesis is driven by gene mutations, microenvironment abnormalities, metabolic reprograming, and hormonal dysregulation, thus provided 
multiple avenues for targeted therapies. Created with BioRender.com. 
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repressed state in the absence of KDM6A, which can complement the 
regulatory activity of METTL3/YTHDF2 (51). Overall, histone 
methyltransferases (HMTs) and KDMs mediate chromatin 
accessibility and gene transcriptional activity by dynamically 
regulating histone post-translational modifications (PTMS), such as 
H3K27me3, and their dysfunction can drive tumorigenesis. Therefore, 
these epigenetic pathways are promising targets for overcoming 
cancer heterogeneity and drug resistance (52, 53) (Figure 2). 
5 Metabolites regulate epigenetic 
pathways as substrates and cofactors 

Metabolites are important substrates and cofactors for 
epigenetic modifications, linking cellular metabolism with gene 
regulation. The metabolic phenotype of tumor cells exhibits 
heterogeneity, involving multiple metabolic regions. Its high 
metabolic demand requires H + to accumulate in cells, thereby 
forming an acidic and oxidative TME (54, 55). The metabolic state 
of a cell can influence gene expression patterns through epigenetic 
mechanisms (56, 57). The metabolites produced during metabolic 
reprogramming of tumor cells, such as acetyl-CoA, NAD+, SAM, 
and aKG, can specifically affect epigenetic pathways (58). Acetyl 
CoA is produced during the metabolism of sugars, lipids, and 
proteins, and is involved in energy production, biosynthesis, and 
Frontiers in Endocrinology 04
epigenetic regulation (59). The chemical modification and 
structural remodeling of chromatin depend on metabolic 
cofactors, and metabolite availability is therefore a direct indicator 
of changes in the epigenome (60, 61). CoA provides acetyl groups, 
promotes H3K27ac acetylation, determines histone acetyl 
transferase activity, and influences the expression of metabolism-

related genes (62). The fluctuation of acetyl CoA levels plays a 
crucial role in regulating lipid synthesis. This regulation mainly 
occurs through epigenetic mechanisms: acetyl CoA dependent 
histone acetylation alters chromatin accessibility and structure, 
changes the chromatin status of lipid metabolism related genes, 
and affects the activity of related enzymes. Therefore, these changes 
affect the lipid synthesis pathway, leading to cellular metabolic 
disorders and cancer occurrence (63, 64). Targeting metabolic 
epigenetic interactions offers therapeutic potential. For example, 
in the phosphatidylinositol signaling pathway, breviscapine 
prevents the progression of metabolic stress-induced nonalcoholic 
steatohepatitis (NASH) by directly inhibiting TAK1 signaling (65). 

Metabolic regulation plays a crucial role in various cellular 
processes (66), and is often impaired during carcinogenesis (67). 
Changes in metabolite levels may also affect epigenetic 
modifications by regulating the activity of specific enzymes (68). 
The metabolites and enzymes produced during metabolic 
reprogramming of tumor cells activate or inhibit certain epigenetic 
changes (69–71), such as DNA methylation and histone 
TABLE 1 Epigenetic basis of molecular regulatory mechanisms and cellular processes. 

Trait Regulation mechanism Reference 

Reversibility 
Methylated DNA can recruit MBDs, which attract other chromatin remodeling proteins that modify histones, such as HDAC, to form 
compact, inactive heterochromatin structures that inhibit gene expression. 

(22) 

Cellular 
memory 

Antiviral memory B cells can be used for adaptive immune memory and innate immune memory at the same time to find targeted 
therapeutic drugs. 

(23) 

Stability 
The fully reserved distribution of histone H3-H4 tetramer in cell division plays an important role in maintaining the epigenetic memory 
of cells. 

(24) 

Dynamic 
nature 

AR binding induces an increase in FOXA1 and H3K27ac signaling, followed by increased chromatin accessibility, which is dynamic and 
closely related to gene expression regulation. 

(25) 

Interactivity 
DNA methylation can affect the binding and activity of histone-modifying enzymes, while histone modification can also affect the 
recruitment and activity of DNA methylase. 

(26) 
 

AR, Androgen receptor; HDAC, Histone deacetylases; MBDs, Methyl-CPG binding domain proteins. 
TABLE 2 Molecular basis of metabolic reprogramming in cancer cells. 

Molecular 
metabolism 
level 

Metabolite Feature Reference 

Increased 
glycolysis 

ATP 
Metabolic intermediates supply the pentose PPP to promote macromolecular biosynthesis necessary for 
cancer cell growth and proliferation. Immune escape may be promoted by regulating the expression of 
PD-L1 on the surface of tumor cells. 

(27) 

Increased 
lipid metabolism 

Acetoacetic acid, beta­
hydroxybutyric acid 
and acetone 

Altering the structure of its cell membrane, disrupting the environment in which molecularly targeted 
drugs act on the membrane, and interfering with the stability of the targeted drugs. 

(28) 

Changes in 
amino 
acid metabolism 

Cystine transporter 
and BCAT1 

Potential therapeutic targets for cystine transporters and BCAT1 to inhibit tumor growth and 
progression by inhibiting these targets. 

(29) 
PD-L1, Programmed Death-Ligand 1; BCAT1, Branched-Chain Amino Acid Transaminase 1; PPP, Pentose phosphate pathway. 
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modifications, thereby coordinating cellular activity with altered 
nutrient availability (69). For instance, the catalytic activity of N-
alpha acetyltransferase 40 (NAA40), a histone acetyltransferase 
(HAT), depends on acetyl CoA. The latter is a direct source of 
acetyl groups, which are transferred to specific sites on histone H4 
by NAA40 (72). Thus, the increased abundance of acetyl CoA in 
tumor cells with high glucose metabolism may drive aberrant NAA40­
mediated histone acetylation, resulting in the activation of pro-
oncogenes (63). In addition, environmental carcinogens can hijack 
these metabolic and epigenetic pathways to promote cancer. Benzo (a) 
pyrene (BAP) is a polycyclic aromatic hydrocarbon (PAH) and potent 
organic toxicant, which forms reactive epoxide metabolites through 
metabolic activation. These metabolites can react with DNA to form 
adducts, leading to the mutation of key tumor suppressor genes, such 
as p53, which is the key mechanism of BaP induced lung 
carcinogenesis (73). Importantly, BAP exposure can also cause 
epigenetic dysregulation. It is associated with genome-wide DNA 
hypomethylation and may be caused by DNA methylation or 
inhibition of HDAC activity. This hypomethylation, coupled with 
the finding that this inhibition reduces the activities of biotin 
dependent enzymes, such as biotinidase (BTD) and holocarboxylase 
synthetase (HCS), which are themselves regulated by other epigenetic 
mechanisms, represents another important way for BAP to promote 
cancer development (74). Taken together, the metabolic heterogeneity 
Frontiers in Endocrinology 05 
of tumor cells affects histone diversity and epigenetic regulation, and 
plays a significant role in tumor progression (Table 3). 
5.1 Regulation of epigenetics by lipid 
metabolism 

Increased de novo lipid synthesis is a key feature of many cancers 
(80). Cholesterol, an important component of the cell membrane, plays 
an indispensable role in cell growth and signaling (81, 82). Cholesterol, 
an important component of the cell membrane, plays an indispensable 
role in cell growth and signaling. Epigenetic mechanisms such as DNA 
methylation and histone modifications can regulate intracellular lipid 
concentration and signaling pathways (83). Recent studies have shown 
that the transcription factor Ikaros influences tumor development by 
modulating cholesterol metabolism pathways in the TME (84). Similarly, 
KLF10 exerts a protective effect in metabolic liver disease by regulating 
HNF4a-mediated metabolic pathways (85). Studies show that low-
density lipoprotein (LDL) downregulates Krüppel-like factor 2 (KLF2) 
in endothelial cells through DNA and histone methylation, resulting in 
endothelial dysfunction and a hypercoagulable state (86). Furthermore, 
hyperlipidemia-induced coronary heart disease and peripheral artery 
disease have also been linked to epigenetic changes  induced by circular  
RNAs (such as MICRA), and other RNA-level epitranscriptomics (87). 
FIGURE 2 

Role of methyltransferases and demethylases in tumorigenesis. METTL3 promotes m6A modification of HOXA9, whereas KDM6A deficiency leads to 
oncogene silencing by H3K27me3, which synergistically drives leukemogenesis. METTL3 affects RNA fate at the post-transcriptional level, and 
KDM6A determines the accessibility of gene transcripts through chromatin remodeling. METTL3, Methyltransferase-like 3, HOXA9, Homeobox A9. 
Created with BioRender.com. 
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Metabolite mediated epigenetic reprogramming further demonstrates 
this interaction. These findings collectively suggest that lipid metabolites 
are key epigenetic regulators. Among them, cholesterol biosynthetic 
intermediates, lipoproteins and acetyl CoA directly remodel chromatin 
structure through methylation, acetylation and RNA mediated 
mechanisms, thus linking metabolic disorders with tumorigenesis, 
vascular pathology and metabolic organ dysfunction. 
5.2 Remodeling of gene expression by 
glucose metabolism 

Glycolysis provides energy for lactate dependent epigenetic 
reprogramming. Elevated glycolysis in tumors generates lactate, 
driving lactylation – a novel post-translational modification that 
directly activates gene transcription through chromatin remodeling 
(6, 88, 89). Increased production of lactic acid in the TME is known to 
induce immunosuppressive conditions, which can mitigate the 
response to immunotherapies. In tumor cells, elevated glycolysis 
drives cancer cell metastasis by activating oncogenes ccl2/7 through 
h3k18 lactylation (h3k18la). Furthermore, lactate regulates epigenetic 
modifications by altering the chromatin (90). Specifically, lactate 
enhances the recruitment of the key homologous recombination 
(HR) protein MRE11 to DNA damage sites, thereby promoting 
DNA end resection and HR repair (91). Considering tumor 
metabolism and tumor immunity, exploring targeted lactoacylation 
has great potential for the development of cancer treatment strategies 
(89, 92). For example, two lactose modification sites were found in the 
zinc finger domain sample mettl3. Emulsification driven mettl3 
mediated RNA m6A modification plays an important role in 
promoting tumor infiltrating myeloid cells (TIM) (93). In 
conclusion, glucose metabolism derived lactate regulates gene 
expression by remodeling the expression network of Pro metastatic 
genes, immunosuppressive genes, and genes related to genome 
stability through h3k18la, mettl3-m6a modification, and Mre11 
mediated DNA repair triple epigenetic mechanism (Figure 3). 
Frontiers in Endocrinology 06
5.3 Conduct a systematic assessment of 
the hypothesis that “cancer is essentially a 
metabolic disease” 

The assumption that cancer is fundamentally a metabolic 
disease: the assumption that metabolic reprogramming precedes 
and drives malignant transformation, but this assumption is still 
controversial at present. Although metabolic alterations are an 
indisputable feature of cancer, they are primary compared to gene 
mutations and require rigorous assessment. Studies have shown 
that mitochondrial dysfunction is observed in more than 80% of 
tumors. In models such as Kras mutant pancreatic cancer, damage 
to oxidative phosphorylation (OXPHOS) precedes genomic 
instability (94). Tumor metabolites, such as 2-HG from IDH 
mutations, directly disrupt epigenetic mechanisms, inducing 
hypermethylation and silencing tumor suppressors before 
significant mutations accumulate (95). Metabolic disorders, 
through endoplasmic reticulum stress, increase the apoptosis of 
cancer cells, thereby promoting the progression of endometrial 
cancer and inducing tumor occurrence and progression (96). 
However, most of the studies have limitations. For example, there 
are doubts about causal timing: whether metabolic changes precede 
driver mutations (TP53, APC) still has inferential significance (97). 
In addition, the Warburg effect in the hypoxic microenvironment 
may be a survival adaptation rather than a carcinogenic source, 
which is worthy of in-depth exploration (98). Although the origin 
remains unclear, the interaction between targeted metabolism and 
epigenetics shows clinical prospects: metformin takes advantage of 
the metabolic vulnerability of breast cancer, and its efficacy may 
depend on the STK11 status (99). hypothesis that cancer is 
essentially a metabolic disease is supported by certain evidence 
and shows potential in clinical applications, the causal relationship 
between metabolic reprogramming and genetic mutations, as well 
as the exact role of metabolic alterations in tumorigenesis, still 
require more comprehensive and in-depth research to clarify its 
scientific validity and practical significance. 
TABLE 3 Epigenetic modification of specific metabolites is a key factor in the development of cancer. 

Specific 
metabolites 

Histone modification Metabolites as key factors in 
tumor induction 

Reference 

Acetyl-coa 
As A cofactor for HATs, acetyl-coa is used as a donor for the 
acetyl group, which is transferred to the e-amino side chain of the 
histone lysine residue. 

It promotes lipid synthesis in tumor cells. (75) 

NAD+ 
NAD+ acts as a substrate to remove acetyl groups from histone 
tails, thereby altering chromatin structure and gene expression. 

NAD+ can significantly enhance the sensitivity of anti-PD-1/ 
PD-L1 antibody treatment. 

(76, 77) 

SAM 
The transfer of methyl groups to specific amino acid residues of 
histones, forming methylation modifications, can affect chromatin 
structure and gene expression. 

Tumor cells take up methionine from the environment via 
SAM, leading to a lack of SAM utilization in T cells and 
promoting tumor immune escape. 

(78) 

a-KG 
Demethylases use a-KG as an auxiliary substrate to remove 
methylation-modifying groups from histone lysine residues by 
oxidative decarboxylation. 

It is beneficial to maintain the fate of precancerous cells to 
promote the changes of chromatin and gene expression 

(79) 
 

NAD+, Nicotinamide adenine dinucleotide; SAM, S-adenosylmethionine; HATs, Histone Acetyltransferases; a-KG, Alpha-ketoglutaric acid. 
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6 Non-metabolic epigenetic 
mechanism based on enzyme 
translocation 

Various intermediate metabolites can alter chromatin structure 
and function through chemical PTMS (100). Studies show that tumor 
metabolites are heavily influenced by the microenvironment (101), 
and enzyme translocation from the nucleus and mitochondria may 
alter the metabolism of cancer cells and their interactions with stromal 
cells in the TME (102). Apart from mediating metabolic reactions, 
enzyme translocation also regulates epigenetic pathways through non-
metabolic effects (103). Therefore, the role of tumor metabolites in 
different organelles has important implications for the interplay 
between metabolism and epigenetics. 
6.1 Nonmetabolic functions of the 
endoplasmic reticulum: calcium signaling 
and cholesterol homeostasis regulate 
tumor progression 

The endoplasmic reticulum is the site of protein translation, 
folding and processing, as well as lipid secretion (104). Aberrant 
lipid metabolism or dysregulated ion transport in the endoplasmic 
reticulum can trigger organelle stress and tumorigenesis (105). 
Frontiers in Endocrinology 07 
Endoplasmic reticulum transmembrane protein 147(TMEM147) 
promotes the proliferation and metastasis of tumor cells, endows 
them with resistance to iron-mediated cell death, and induces 
polarization of M2-type macrophages by disrupting cholesterol 
homeostasis and increasing 27HC secretion (106). In addition, 
calcium ion in endoplasmic reticulum regulates the pathway 
related to tumor cell growth and drug resistance (107). Sigma-1 
receptor (Sig-1R) is a molecular chaperone protein located in the 
endoplasmic reticulum, which plays a key role in regulating the 
endoplasmic reticulum calcium channel, which controls the growth 
of tumor cells and drug resistance (108). Sig-1R is located in the 
endoplasmic reticulum mitochondria associated membrane 
(MAM) domain. By sensing the change of calcium ion (CA ² + 
concentration) in the endoplasmic reticulum cavity, Sig-1R 
regulates Ca ² + signal transmission between mitochondria and 
cells, thereby affecting cell survival (109). 
6.2 Targeted mitochondrial-related 
epigenetic reprogramming: a hub for 
metabolic adaptation and therapeutic 
resistance 

Increased glycolysis may be related to mitochondrial 
dysfunction and enzymatic changes in tumor cells (110, 111). 
FIGURE 3 

Glucose metabolism remodels gene expression. High glycolysis enhances transcription of the oncogene CCL2/7 through H3K18la modification, and promotes 
metastasis. Lactylation of METTL3 increases m6A modification in the PD-L1 mRNA promoter, resulting in increased transcript stability that eventually activates 
the immune checkpoint against T cells. Lactylation of MRE11 also promotes DNA repair and chemoresistance. Created with BioRender.com. 
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The key enzymes and intermediates of the glycolytic pathway 
can be used by tumor cells to synthesize proteins and nucleic 
acids, or protect mitochondrial function (112). On the other 
hand, mitochondrial intermediates initiate epigenetic pathways 
in the nucleus, and the resulting epigenetic marks regulate the 
expression of mitochondrial proteins (113, 114), a key bidirectional 
regulatory circuit is formed between the nucleus and mitochondria. 
For example, in pancreatic cancer, epigenetic defects of tumor cells 
(such as abnormal h3k27ac modification caused by setd2 deletion) 
were found to be associated with specific metabolic phenotypes 
(115). More importantly, epigenetic disorders (including abnormal 
histone modification and DNA methylation changes) can 
significantly change the functional state of mitochondria (116– 
118). Therefore, the regulation of nuclear gene expression by 
epigenetic mechanism directly affects the level and activity of 
these mitochondrial proteins, and then regulates the level of 
mitochondrial metabolites needed to maintain cell function (119). 
For instance, METTL17 regulates mitochondrial function in 
colorectal cancer (CRC) cells through epigenetic regulation (120). 
Therefore, exploring the interaction between epigenetic mechanism 
and mitochondrial function, especially the regulation of epigenetic 
mechanism on mitochondria, provides an important way for 
developing new targeted therapy strategies. 
7 Metabolic reprogramming, sugar, 
lipid metabolism, crosstalk between 
epigenetics three relations 

Metabolic reprogramming can modulate the function of intra­
tumoral immune cells by altering the concentration of intracellular 
metabolites (121–123), making it a key feature of tumorigenesis and 
progression. Tumor-derived exosomes (TDE) stimulate elevated 
nitric oxide synthase 2 (NOS2), thereby inhibiting mitochondrial 
oxidative phosphorylation, and promoting conversion of pyruvate 
to lactate (124). Furthermore, enhanced glycolysis in cancer cells 
increases acetyl Coa levels, which promotes up-regulation of 
oncogenes  (MYC)  through  histone  acetylat ion  (125).  
Furthermore, epigenetic modifications can regulate the genes 
involved in glycolipid metabolism and promote tumorigenesis 
and progression (126). For example, increased methylation of the 
insulin gene (INS) promoter in pancreatic beta cells promotes gene 
silencing in diabetes (127). On the other hand, b-hydroxybutyric 
acid (ketone bodies) can activate antioxidant genes like FOXO3A by 
inhibiting HDACs and increasing histone acetylation (128). 
Therefore, the crosstalk between epigenetic mechanisms, glucose 
metabolism, and lipid metabolism regulates gene expression in 
metabolic diseases and cancer (Figure 4). 
Frontiers in Endocrinology 08
8 Internal and external factors jointly 
drive tumor progression through 
metabolism, immunity and epigenetics 

8.1 External factors (microbiome) drive 
cancer by affecting internal metabolism 
and immunity 

Clinical research on the effect of microbes on cancer began in 
1868 and plays an important role in maintaining the ecological 
balance (129). The current scientific community believes that 
dysbiosis of gut microbiota is a hallmark of cancer (130, 131). 
The process of carcinogenesis is a highly complex and involves a 
variety of physiological and pathological events. Multiple 
sequencing methods have shown that the microbiota in the lung 
and intestine can cross-talk and are important components of TME 
(132). In CRC, which is the most common cancer, gut microbiota 
causes CRC by altering immune function (133, 134). Found 
microbes have the function of the dialectic, namely in the 
protection of human genes will damage to human multiple genes 
to form at the same time, its mechanism is mainly its ecological 
imbalance can by changing the host susceptibility to cancer events 
(including pathogenic microorganisms increase load) to 
significantly promote this process (135, 136). Gastrointestinal 
cancer is one of the main causes of cancer death at present. 
Intestinal microorganisms can damage cells or change the tumor 
immune microenvironment through direct or indirect effects to 
promote the development of gastrointestinal tumors (137, 138). Gut 
microbiota may be detecting high-risk PCa as a new useful marker, 
intestinal bacteria and their metabolites, short chain fatty acids 
(SCFAs), can promote PCa mouse model of cancer growth (139). 
Intestinal bacteria microbes in the estrogen group, namely, to 
metabolism of the aggregate of the intestinal bacterial genes of 
estrogen, increase the risk of BRCA in women (140). Symbiotic 
microbes are one of the factors influencing the antitumor immunity 
and treatment outcomes (141). The understanding of host­
microbiome interactions and the assessment of microbial 
composition and function in patients provide a theoretical basis 
for subsequent targeted regulation and targeted interventions to 
reduce cancer risk (142, 143). 
8.2 TME internal core process (metabolic 
reprogramming) drives cancer by 
regulating epigenetics and immunity 

Metabolic rewiring of the tumor cells and immune cells 
regulates tumor progression by shaping the epigenome in TME 
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(100). Although cancer is initiated by genomic alterations, it is more 
of a metabolic disease (144). Epigenetic pathways regulate gene 
expression levels by integrating environmental stimuli. Normal cells 
and cancer cells differ considerably in their metabolic levels (145, 
146). Recent evidence suggests that a significant enhancement of the 
glycolytic pathway is a major feature of tumor cells (147), and 
energy production through glycolysis and lipid synthesis is 
fundamental to their ability to proliferate uncontrollably (148). 
Epigenetic regulation is highly sensitive to metabolic cues, and the 
metabolites in the TME can alter key epigenetic factors or enzyme 
activity to allow cancer cells to quickly adapt to the dynamic 
environment (149, 150). For instance, lactic acid and fatty acids 
can epigenetically regulate the function of immune cells and affect 
tumor resistance (151–153). Studies show that V-ATPase V0 
subunit d2 (ATP6V0d2) expressed by macrophages inhibits 
tumor growth in vivo, while tumor-derived lactate inhibits 
ATP6V0d2 in macrophages, thereby promoting HIF-2a-mediated 
tumor progression (154). Lactate-derived histone lysine lactylation 
in the TME is a novel epigenetic modification that can directly 
stimulate chromatin structure and gene expression (6). TME 
reverses the effects of immune cells through a coordinated 
“regulatory triad”. Cancer cells compete with normal cells for key 
nutrients, which damage the immune cell function. The 
accumulation of tumor metabolites in the TME support the 
immunosuppressive cells and impair T cell function. At the same 
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time, the spatial distribution, composition, and activation state of 
immune cells in tumor cells can influence the outcomes of 
immunotherapy (155, 156). 
9 New insights into reversing 
treatment resistance and developing 
precise anti-cancer therapies 

9.1 New insights into reversing resistance 
to therapy 

The dysregulation of the interaction between metabolism and 
epigenetics can lead to drug resistance in tumor treatment. Recent 
studies have revealed innovative strategies targeting this intersection: 
First, overcome drug resistance through the combination of 
epigenetics and metabolic enzymes. For example, in renal cancer 
cells with SETD2 deficiency, the combination of DNA 
hypomethylation agents (HMA) and PARP inhibitors can overcome 
drug resistance by inducing synthetic lethal effects (42). This strategy is 
supported by preclinical data from 17 cell line studies and 3 phase II 
trials (NCT02850058, NCT03252097), as well as single-cell RNA-seq 
analysis of tumor-immune cell interactions. Second, intervention 
through the microbiome, metabolism and epigenetic axes. For 
FIGURE 4 

The cross-talk between metabolic reprogramming, glucose metabolism, lipid metabolism, and epigenetics. ATP, Adenosine triphosphate; ADP, 
Adenosine diphosphate; ROS, Reactive oxygen species. Created with BioRender.com. 
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example, animal models have confirmed that intragastric 
administration of butyrate can enhance the ability of chemotherapy 
drugs to penetrate the blood-brain barrier and reverse drug resistance 
in glioma. Personalized probiotic intervention based on microbiome 
characteristics is being verified for its sensitizing effect in clinical 
trials (157). 
 

9.2 Developing precision cancer therapies 
using ncRNA delivery systems 

Analysis of TCGA has revealed significant difference in the 
expression of ncRNAs between tumor tissues and normal tissues 
(158). NcRNAs are a group of heterogeneous transcripts that are not 
translated into proteins, but regulate gene expression at the post-
transcriptional and post-translational levels (159–161). The m6A 
modification in the ncRNAs has been associated with gene 
expression levels and the biological behavior of tumor cells, thus 
providing potential new targets for cancer therapy (162, 163). For 
instance, several ncRNAs secreted by the Tumor-Associated 
Macrophage (TAMs) promote tumor proliferation, metastasis, 
angiogenesis, chemotherapy resistance, and immunosuppression 
(164, 165), and may also drive M1 or M2 polarization of the 
macrophages (166). By influencing molecular targets, ncRNAs 
influence alternative splicing (AS) processes and generate AS 
isomers, thereby promoting or inhibiting cancer signaling pathways 
(167). NcRNAs are also transported via extracellular vesicle (EVs) to 
regulate tumor development (168). For example, studies have 
confirmed that targeted delivery of miR-122 to liver cancer cells by 
cationic lipid nanoparticles (NPs) can inhibit angiogenesis and tumor 
growth (169). Similarly, the antitumor effects of siRNA and miRNA 
inhibitors have been verified in glioblastoma (170). In addition, the 
migration and clonal proliferation of A549 non-small cell lung cancer 
(NSCLC) cells were significantly inhibited by blocking the

transcription factor -1(MALAT-1) mediated by RNA interference 
(171). In the liver metastasis model of colorectal cancer, the ncRNA 
delivery system has been precisely regulated. Specific delivery  of  miR­

122 to hepatocytes through nanoparticles can down-regulate 
metastasis-related genes (MMPs), significantly inhibit tumor 
growth and prolong survival time, which provides a new idea for 
precise treatment (172). These innovative strategies based on the 
interaction between metabolism and epigenetics can reverse drug 
resistance, open up new ideas for precise anti-cancer treatment, and 
finally realize truly personalized cancer treatment. 
10 Frontier progress and future 
directions of metabolism and 
epigenetic interaction in tumor 
research 

At present, there is a lack of systematic analysis of intra-tumor 
heterogeneity. Future research should integrate single-cell multi­

omics data (scRNA-seq, spatial metabonomics), use the database of 
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Human Tumor Atlas Network and Tabula Sapiens, and combine 
the longitudinal clinical data of prospective cohort. The role of 
intestinal microflora needs to be verified by large-scale 
metabonomic research (American Intestinal Project and Human 
Microbial Project), and the relationship between microbial 
metabolites and epigenetic characteristics should be established 
(94). Key directions include: verifying the causal relationship 
between microbial metabolites (short-chain fatty acids) and 
epigenetic reprogramming in clinical cohort (137). At present, the 
treatment strategy for a single pathway faces challenges in terms of 
efficacy and specificity. Future efforts should focus on developing 
metabolically sensitive epigenetic regulatory factors as drug targets, 
for example, inhibiting tumor progression dependent on lipid 
synthesis by targeting acetyl-CoA-NAA40 axis (72). Additionally, 
exploring how non-coding RNAs regulate macrophage polarization 
by targeting metabolic-epigenetic crosstalk could further expand 
the repertoire of drug targets for remodeling the pro-TME (166). 
This aligns with the notion that innate immune cells, particularly 
macrophages, dynamically integrate metabolic cues and epigenetic 
reprogramming to shape the TME, as highlighted in the interplay 
between innate immunity and cancer pathophysiology (156). 
Specifically, tumor-derived lactic acid, as a key metabolic cue, 
modulates the activation and metabolic reprogramming of 
fibroblastic reticular cells in draining lymph nodes, thereby 
cooperating with innate immune cells to foster a pre-metastatic 
niche conducive to tumor progression (153). The integration of 
metabolism and epigenetic research represents the forefront of 
precision oncology. Future research must combine mechanism 
understanding with technological innovation to solve the problem 
of causality and transformation, so as to release the full potential of 
personalized cancer treatment. 
11 Conclusion 

In this review, we have explored the crosstalk between 
epigenetics and metabolism in tumor progression. While 
epigenetic mechanisms can affect metabolic reprogramming and 
immune infiltration in the TME, the local metabolites regulate 
tumor progression by targeting epigenetic factors. However, our 
knowledge of tumor metabolomics is incomplete, and the epigenetic 
mechanisms controlling glycolipid metabolism pathways, and their 
impact on tumor growth need to be explored. Advances in 
genomics and proteomics can provide new insights into metabolic 
mechanisms and key regulatory pathways, and help in the 
development of more effective therapies. A deeper understanding 
of the relationship between epigenetics and glycolipid metabolism 
in cancer will be of clinical significance, and pave the way for 
targeted and personalized therapies. 
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