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1 Introduction

Incretin peptides are secreted from the intestine after nutrient ingestion and enhance

glucose-stimulated insulin secretion (1). In healthy individuals glucagon-like peptide 1

(GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the primary incretin

factors (2, 3). However, GIP receptor (GIPR) activity is diminished in patients with type 2

diabetes (T2D), while GLP-1 receptor (GLP-1R) function remains intact (4). This finding,

along with the obesogenic physiologic role of GIP (5, 6), motivated the development of

GLP-1R agonists over GIPR agonists for the treatment of T2D (7–11). Long acting GLP-1

analogues were later approved for obesity based upon early observations that physiologic

and pharmacologic GLP-1R agonism reduces food intake in preclinical models (12) and

pioneering clinical trials of long acting GLP-1 analogues (13). Despite the substantial

improvements in body weight and glucose control elicited by GLP-1R agonists, patient

uptake and compliance are challenged by frequent gastrointestinal adverse events (GI AEs),

including nausea and vomiting, that necessitate careful dose titration regimens to achieve

efficacious exposure (14). Emerging preclinical and clinical evidence suggests that GIPR

agonism can play a role in reducing the GI AEs of GLP-1R agonism and enable greater

therapeutic potential.
2 Weight loss pharmacotherapies

2.1 GLP-1R and GIPR agonism reduce body weight in
patients with obesity

Early GLP-1R agonists were approved to treat T2D (13, 15, 16), but the potential weight

lowering efficacy for this class of molecules first seen in rodents was not confirmed in

humans until clinical trials with the first long-acting GLP-1 analogue, liraglutide (12). Over

56 weeks, liraglutide (3 mg daily) induced 6.0% weight loss in patients with obesity and
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T2D (17) and 8.0% weight loss in patients with obesity alone (unless

otherwise defined, weight loss is placebo controlled from baseline)

(18). Further optimization of GLP-1 analogues to permit once-

weekly time action led to the discovery of Fc protracted dulaglutide

and the fatty diacid acylated semaglutide. Dulaglutide (1.5 mg

weekly) produced middling weight reduction (3.1%) over 26

weeks in patients with obesity and T2D (13). However,

semaglutide (2.4 mg weekly) is said to have “broken the sound

barrier” (19), inducing 9.6% weight loss in patients with obesity and

T2D (20) and 14.9% weight loss in patients with obesity alone (21)

over 68 weeks of treatment. In fact, liraglutide (1.8 mg daily) and

semaglutide (0.5 mg weekly) both significantly outperformed

dulaglutide (1.5 mg weekly) for weight loss in head-to-head trials

at doses that induce comparable HbA1c lowering (13, 22).

The mechanism underlying the impressive weight loss potential

of GLP-1R agonists is primarily, if not exclusively, mediated by a

reduction in energy intake. For instance, native GLP-1 infusion

acutely reduced food intake in individuals without (23) or with T2D

(24), and the short acting GLP-1R agonist exenatide exerted the

same effect in patients with obesity (25). A similar effect was seen

with chronic dosing of optimized, long acting GLP-1 analogues

liraglutide and semaglutide in patients with obesity (26, 27) or T2D

(28, 29). Clinical and preclinical data indicate that GLP-1R agonism

does not impact energy expenditure or nutrient absorption/

accretion over extended treatment (30). In fact, there is a well-

documented counter-regulatory reduction in metabolic rate in both

humans (31, 32) and rodents (30, 33) treated with GLP-1R agonists

for extended periods due to the reduction food intake. Thus, all

current evidence points to the suppression of energy intake being

the underlying mechanism responsible for the beneficial effects of

GLP-1R agonists on body weight in patients with obesity and/

or T2D.

While GLP-1R agonism effectively reduces body weight in

patients, there is a persistent need for greater efficacy of weight

loss and comorbidity resolution. Unimolecular, multi-receptor

agonists have emerged to meet this growing need. While

numerous proof-of-concept candidate molecules have been

disclosed (34–43), the only approved example of multi-receptor

agonism for obesity and T2D is the dual GLP-1R/GIPR co-agonist

tirzepatide (marketed as Mounjaro® and Zepbound®) (34, 44).

Tirzepatide (15 mg weekly) drives 15.7% weight loss over 72 weeks

in patients with obesity and T2D (45) and 22.5% weight loss in

patients with obesity alone (46). Receptor occupancy analysis

demonstrates that 5 mg weekly tirzepatide engages the GLP-1R to

a similar degree as 1 mg weekly semaglutide (47); at this dose,

tirzeaptide drives ~8.3% weight loss compared to 6.6% for

semaglutide over 40 weeks in the head-to-head SURPASS-2 trial

in patients with obesity and T2D. Thus, tirzepatide appears to

outperform semaglutide at doses that comparably engage the GLP-

1R. This phenomenon has been widely attributed to two hypotheses

that are not mutually exclusive. The first is that tirzepatide is a

partial, biased GLP-1R agonist, a profile that confers superior

glucose and weight lowering in preclinical models (47–51).

Second, tirzepatide is a full, potent GIPR agonist. GIPR

monoagonism drives weight loss and food intake reduction on its
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own in both humans (52) and rodents (53–55). Tirzepatide

stimulates insulin secretion through the GIPR in human islets

from healthy donors, supporting a role for GIPR agonism in its

pharmacology (56). In further support of this ex vivo finding, the

GIPR monoagonist LY3537021 reduced body weight by ~4.1% over

8 weeks in patients with T2D (n = 18) (57). It should be noted that

GIPR antagonism paradoxically produces additive weight loss when

paired to GLP-1R agonism in preclinical studies (58–60) and that this

mechanism appears relevant in patients with obesity (61). This

phenomenon has been discussed in detail elsewhere (62). While

dual receptor co-agonism offers enhanced weight loss and metabolic

benefits, it also appears to offer upside in mitigating GI AEs.
2.2 GIPR agonism serves to reduce GLP-1R
mediated GI AEs in the clinic

Treatment with GLP-1R agonists can drive nausea, diarrhea,

vomiting, and constipation, which often results in discontinuation

of treatment (6-10% of patients) or reduction in dose (~15% of

patients) (63). The most pronounced effects occur acutely upon

treatment initiation and wane over the course of the first 90 days of

exposure. This phenomenon is clearly observed in the STEP 2 trial

of semaglutide (2.4 mg weekly), where a cumulative 33.7% of

patients with obesity and T2D reported nausea throughout the

duration of the trial (20). An elegant data analysis of the STEP-2

protocol shows the temporal dynamic of this effect, where the

incidence of nausea grew from ~5% at the beginning of the dose

escalation period (week 1; 0.25 mg weekly) to ~15% by the end of

the dose escalation (week 13; 2.4 mg weekly). Over the next 56

weeks, patients reporting nausea steadily decreased to ~8% by the

end of the trial. We will treat nausea as a proxy for GI AEs because

similar patterns were reported for diarrhea, vomiting, and

constipation across trials.

It has been hypothesized that the deleterious, nauseating effects

of GLP-1R agonists and the beneficial, food-intake reducing effects

are inextricably linked. However, this hypothesis is losing traction

in light of emerging clinical data. In the SURPASS-2 trial, patients

with obesity and T2D who received tirzeapatide (5 mg weekly)

achieved greater HbA1c and body weight reductions than those

receiving semaglutide (1 mg weekly) during the 40 week study (64)

despite comparable putative GLP-1R occupancy at these doses (47).

Interestingly, patients receiving tirzepatide report reduced overall

GI AEs (40%), nausea (17.4%), diarrhea (13.2%) and vomiting

(5.7%) compared to patients on semaglutide (43%, 19.2%, 13.7%,

and 8.1% respectively). This is suggestive but not demonstrative

that GIPR agonism reduces the GI AE incidence associated with

GLP-1R agonism. Seminal studies by Knop et al. demonstrate that

the addition of a long-acting GIPR agonist (LY3537021)

significantly reduced the total number of GI AEs induced with

liraglutide treatment by 16% and numerically reduced nausea by

15% and vomiting by 3%, but not diarrhea (65). It should be noted

that, while the tolerability and efficacy profile of the GLP-1R

agonist/GIPR antagonizing antibody maridebart cafraglutide

warrants enthusiasm, it has not yet been directly compared to
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GLP-1R agonism or dual GLP-1R/GIPR agonism in the clinical

setting. Collectively, these data demonstrate GIPR agonism can

improve the tolerability profile of GLP-1R agonists in humans.

With these points in mind, we undertook a broad assessment of

published clinical data, curating the body weight loss (% from

baseline), glycosylated hemoglobin levels (HbA1c), and nausea

responses (% patients reporting) from the SUSTAIN 3, SUSTAIN

7, SCALE Diabetes, SURPASS 2, and STEP 2 trials (17, 22, 64, 66,

67) (Figures 1A–C). We assessed the GLP-1R agonists (exenatide,

liraglutide, dulaglutide, semaglutide) and the dual GIPR/GLP-1R

co-agonist tirzepatide as separate classes. We selected these trials

due to their similarities in assessing patients with both obesity and

T2D, treatment duration, clinical development phase (phase 3), and

use of semaglutide as an active treatment arm. We also provide an

assessment of body weight loss and nausea induced by semaglutide

and tirzeapatide across patients with obesity and T2D in the STEP 2

and SURPASS 2 trials compared to those with obesity but not T2D

in the STEP 1 and SURMOUNT 1 trials (Figure 2). All drugs

followed a similar trend in which the calculated circulating

concentration of the drug at stead state (Css) exhibits significant

positive association with body weight loss (Figure 1D). This

relationship was not present for Css and HbA1c, potentially due

to a plateau in glycemic control for both drug classes (Figure 1E).

The GLP-1R monoagonists displayed a significant positive

correlation between Css and nausea, which is not observed for the

GIPR/GLP-1R dual-agonist (Figure 1F). Additionally, it is clear that

tirzeaptide induces less nausea per nmol in circulation compared to

the GLP-1R monoagonists despite the improvement in weight loss.

In contrast, co-treatment of semaglutide with the amylin receptor

agonist cagrilintide resulted in 29% of patients with obesity and

T2D reporting nausea compared to 13% for cagrilintide alone and

16% for semaglutide alone (68). This analysis supports the

hypothesis that nausea suppression by GIPR agonism (57, 65, 69)

contributes to the better tolerability profile of tirzepatide (15 mg) at

doses 6.25x higher than semaglutide (2.4 mg).
3 Mechanisms of action for GLP-1R
agonists to control food intake

GLP-1R agonists primarily act to reduce body weight by

suppressing energy intake. Preclinical studies show that both

short acting agonists (i.e. exenatide) (50) and long acting agonists

(i.e. liraglutide, semaglutide) (35, 37) acutely reduce food intake in

rodents. Depending on the molecular properties (33), these agonists

exert their effects by activating GLP-1R+ glutamatergic neuronal

populations (70, 71), but not GABAergic neurons (72). It has been

hypothesized that the effects of GLP-1R agonists to reduce energy

intake are at least partially driven by nausea and other GI AEs.

Under this model, GI AEs are an essential feature, not a bug, of the

pharmacology. However, key preclinical studies in mice indicate

otherwise. GLP-1R agonists reduce food intake by triggering both

aversive or emetic neural and satiety signals which are dissociable in
Frontiers in Endocrinology 03
rodents (73–76). This finding opens the door for the development

of weight lowering pharmacotherapies that suppress food intake

without triggering nausea by targeting specific subsets of GLP-1R+

neurons. Tailoring a molecule to this specific purpose requires a

substantial understanding of how the current class of GLP-1R

agonists access and interact with the satiating and aversive

neuronal receptor populations.

Acute treatment of diet-induced obese mice with labelled

semaglutide has been shown to allow the drug to access

circumventricular organs that lack a substantial blood brain barrier,

including the area postrema (AP), median eminence (ME), vascular

organ of the lamina terminalis (OV), and subfornical organ (SFO)

(33). In addition, labelled semaglutide can also cross the blood brain

barrier to the caudal lateral septal nucleus (LSc), septofimbrial

nucleus (SF), arcuate nucleus (ARC), median preoptic nucleus

(MnPO), dorsal vagal complex (DVC). At steady state, labelled

semaglutide also appeared in the choroid plexus (CHPL),

dorsomedial hypothalamic nucleus (DMH), medial mammillary

nucleus (MM), paraventricular hypothalamus (PVH), supraoptic

nucleus (SO), and tuberal nucleus (TU) (Figure 3). In rodents,

intracerebroventricular (ICV) administration of the GLP-1R

antagonist exendin-9 suppressed the effects of peripheral GLP-1R

agonist administration (liraglutide and exenatide) on food intake

reduction. Exendin-9 administered IP was unable to block this effect,

indicating a dominant role for CNS GLP-1R populations (77).

Indeed, CNS glutamatergic neuron receptor populations, but not

GABAergic neurons, are necessary for liraglutide-induced food

intake and body weight reduction (71, 72). Furthermore, studies

using a peripherally administered exenatide analogue conjugated to

vitamin B12, which is sterically hindered from accessing regions

protected by the blood brain barrier, improves glucose control in

comparable fashion to unmodified exenatide, presumably at the level

of the b-cell, but does not induce emesis in the house musk shrew

(Suncus murinus) or rats (78, 79). It should be noted that physiologic

GLP-1R agonism in the periphery mediates food intake reduction via

vagal afferent signaling as rats with a surgical subdiaphragmatic vagal

deafferentation (SDA) exhibit a more mild food intake suppression in

response to acute administration of GLP-1 analogues than sham

operated animals (80, 81). Collectively, this indicates a role for CNS

GLP-1R populations to mediate food intake suppression by

pharmacologic, and to a lesser degree physiologic, GLP-1R agonism.

The specific effects of GLP-1R agonism on food avoidance, food

aversion and emetic behaviors have been delineated more clearly in

recent years. While mice and rats do not vomit, GLP-1R agonism

induces emesis in the musk shrew and is associated with an increase

in cFOS staining in the AP, nucleus of the solitary tract (NTS),

DMH, VMH, lateral hypothalamus (LH), and PVH that is blocked

by GLP-1R antagonism (77). Interestingly, daily peripheral

exenatide administration induced a transient reduction in food

intake, which regresses to baseline over time. This differs from the

pattern of liraglutide, which induced an initial reduction in food

intake with a transient increase in kaolin intake that both undergo

partial tachyphylaxis over time (82). This comports with the human
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FIGURE 1

Tirzepatide exhits lower nausea compared to GLP-1R monoagonists across clinical trials. (A) Body weight loss, (B) HbA1c reduction, and (C) nausea
reported across clinical trials as outlined. (D) Body weight loss, (E) HbA1c reduction, and (F) nausea as a function of the calculated circulating drug
exposure (Concentration at steady state; Css).
FIGURE 2

The effects of tirzeaptide and semaglutide are reduced in patients with obesity and diabetes compared to patients with obesity alone. (A) Body
weight loss and (B) nausea reported across clinical trials as outlined. Groups in blue were treated with semaglutide while groups in red were treated
with tirzepatide. Patients with obesity and T2D are shown in solid bars, while patients with obesity but not T2D are shown in the hatched bars.
FIGURE 3

Summary of the primary brain depots for semaglutide as reported by Gabery et al. (33) and neuronal populations reported to mediate GLP-1R
agonist-induced satiety (green) and food aversive, avoidant or nauseating behavior (red). Neuronal populations indicated by black arrows receive
projections from pre-proglucagon positive (ProG+) neurons.
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data showing that different GLP-1 analogues can have different food

intake suppression and nausea profiles (82).

Location of the GLP-1R population plays an essential role in

satiating versus aversive effects of GLP-1R agonists (Figure 3).

Hypothalamic ARC or nodose ganglion (NG) GLP-1Rs are not

necessary for the food intake reducing effects of GLP-1R

agonists, while the hindbrain DVC is essential for this function

(76). GLP-1R + neurons in the DVC, including the AP, are

predominately (40-65%) responsive to aversive signals (LiCl,

cinacalcet). Additionally, GLP-1R + neurons in the hindbrain

locus coeruleus (LC) (83) partially mediate food avoidance

behaviors of direct exenatide injection and peripherally

injected semaglutide assessed by kaolin intake (84). These LC

neurons receive projections from pre-proglucagon expressing

neurons, indicating a possible role in the physiologic control of

food intake by the endogenous GLP-1 system. It should be noted

that the GLP-1R+ DVC/AP neurons project to the lateral

parabrachial nucleus (PBN), which is in close proximity to the

LC; thus, the PBN may serve an integrating function in the food

aversive and avoidant effects of GLP-1R agonism (Figure 3).

On the other hand, GLP-1R+ neurons in the nucleus of the

solitary tract (NTS) predominantly (~60-70%) respond to satiety

signals and project to the PVH. Additionally, the forebrain lateral

septum (LS) appears to mediate the non-avoidant food intake

reducing effects of GLP-1Rs in that direct exenatide injection into

the rat LS suppresses chow intake but does not enhance kaolin intake

(85). Additionally, blockade of GLP-1Rs in the LS with exendin-9

alone enhanced sucrose and oil intake indicating a physiologic role

for these neurons to suppress food intake. Interestingly, exenatide in

the LS does not impair anxiety-like behaviors or operant responding,

which are key functions for cells within this region that indicate a fine

tuning of GLP-1R action in this region.
Frontiers in Endocrinology 05
Finally, very few DVC neurons (~6-12%) are responsive to both

aversive and satiating cells, indicating that there are indeed separate

nausea and satiety effects by GLP-1R agonism. In further support of

this notion, GLP-1R agonists can still reduce food intake when the

aversive pathways of the AP are inhibited; ablation of the nausea-

mediating AP, but not NTS, GLP-1R + neurons eliminates the

conditioned taste avoidance response to semaglutide in rodents (70,

74). This finding is not unique to mice, as a similar response has

been reported in musk shrews treated with direct injections of

exenatide with and without exendin-9 into the AP and NTS (86).

Thus, it appears possible to divorce nausea from satiation in mice

treated with GLP-1R agonists by discovery of GLP-1R agonists that

preferentially access and activate the NTS but not the AP.

In summary, long-acting GLP-1R agonists primarily reach the

circumventricular organs of the hindbrain and food-intake

controlling centers of the hypothalamus. In the hindbrain these

agonists act to reduce food intake through both satiating and

aversive actions. While it has been postulated that these two

actions are inextricably linked more recent data shows they can

indeed be divorced which opens the opportunity for tailored

pharmacology that provide food intake reduction without the

adverse events typically associated with GLP-1R agonism.
4 GI AEs associated with
GIPR modulation

Because the food aversive and avoidant effects of GLP-1R

agonism appear to be dissociable from satiety, it is theoretically

possible to leverage this finding in a next generation, tailored

pharmacology. Indeed, GIPR agonism can blunt the nauseating

effects of GLP-1R agonists in humans (52). In preclinical models,
FIGURE 4

Proposed model for the suppression of GLP-1R agonist-induced nausea and emesis by GIPR agonism in the AP.
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GIPR agonism reduces food intake and body weight via CNS

GABAergic neurons (53–55); this effect is additive with GLP-1R

agonism and mediated by the same CNS GABAergic GIPR+

population (34, 54). In preclinical studies, GIPR/GLP-1R co-

agonism produces less nauseating effects compared to GLP-1R

agonism alone as measured by kaolin intake in mice and rats and

emetic events in musk shrews (69). Critically, the reduction in

nauseating or emetic responses induced by GIPR agonism does not

limit the short term (72h) weight loss in any preclinical model (69).

This supports the conclusions of Huang et al., that satiety (and by

extension efficacy) and adverse events can be dissociated (76) and the

clinical data outlined above. The precise mechanisms for this effect

are unclear; however, intriguing hypotheses emerge from single cell

RNA sequencing data in rodents. First, GIPR+ neurons in the rat

hindbrain are located primarily in both inhibitory and excitatory

neurons in addition to some expression in oligodendrocytes (69, 87,

88), while GLP-1R is primarily expressed in excitatory neurons.

There is limited co-expression of GIPR and GLP-1R (88). It has

also been demonstrated that inhibitory GABAergic CNS GIPR +

neurons are necessary for the food intake reducing effects of GIPR

agonists and dual incretin co-agonists (54, 55), while excitatory

glutamatergic CNS GLP-1R + neurons are necessary for the food

intake reducing effects of GLP-1R agonists (71). This suggests an

inhibitory GABAergic signal from the GIPR agonists dampens GLP-

1R-mediated aversive, avoidant, or emetic signals, which may be

accomplished by unique projections of GIPR neurons to GLP-1R +

neurons in the AP (Figure 4). Therefore, this circuit could curb

nausea caused by GLP-1R agonism but not interfere with GLP-1

signaling in the NTS, which induces satiety. This model is also

satisfying from an evolutionary biology perspective in which GLP-1

and GIP do not have redundant functions in the brain, but rather fit

into complimentary niches. It is noteworthy that GIPR agonism can

also attenuate PYY mediated nausea in preclinical models (89),

suggesting optimism for either dual or triagonist analogues of PYY,

GLP-1, and GIP.
5 Conclusions

Incretin receptor agonists including GLP-1R agonists and dual

GLP-1R/GIPR co-agonists reduce food intake and drive weight loss in

patients with obesity. These therapeutic interventions also drive a

variety of GI AEs. Emerging data in clinical and preclinical studies

suggests the adverse and efficacious effects of these pharmacotherapies

can be dissociated, and that GIPR agonism improves the GI AE profile

of GLP-1R and dual incretin receptor agonists. The preclinical data

suggests the hypothesis that inhibitory GIPR + neurons act specifically
Frontiers in Endocrinology 06
on GLP-1R+ neurons that drive nausea and food aversion or

avoidance to dampen GLP-1R mediated nausea without reducing

efficacy, potentially lifting the ceiling of GLP-1R agonist-induced

reductions in body weight.
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