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The role of GIPR in food
intake control
Paula-Peace James-Okoro, Jo Edward Lewis,
Fiona Mary Gribble* and Frank Reimann*

Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit,
University of Cambridge, Cambridge, United Kingdom
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin

hormones playing key roles in the control of food intake, nutrient assimilation,

insulin secretion and whole-body metabolism. Recent pharmacological

advances and clinical trials show that unimolecular co-agonists that target the

receptors for the incretins – GIP and glucagon-like peptide 1 (GLP-1) – offer

more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D)

compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously

underappreciated roles of GIP in regulating food intake and body weight. The

mechanisms by which GIP regulates energy balance remain controversial as both

agonism and antagonism of the GIP receptor (GIPR) produce weight loss and

improve metabolic outcomes in preclinical models. Recent studies have shown

that GIPR signalling in the central nervous system (CNS), especially in regions of

the brain that regulate energy balance, is essential for its action on appetite

regulation. This finding has sparked interest in understanding the mechanisms by

which GIP engages brain circuits to reduce food intake and body weight. In this

review, we present key knowledge around the actions of GIP on food intake

regulation and the potential mechanisms by which GIPR and GIPR/GLP1R

agonists may regulate energy balance.
KEYWORDS

Glucose-dependent insulinotropic polypeptide (GIP)/GIP-receptor (GIPR), Glucagon-
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Introduction

Glucose-dependent insulinotropic polypeptide (previously known as gastric inhibitory

peptide, GIP) is a gut-derived hormone produced and secreted from enteroendocrine K

cells of the duodenum and upper jejunum upon meal ingestion (1). Along with glucagon-

like peptide-1 (GLP-1), GIP plays a key role in regulating postprandial blood sugar levels

through what is known as the incretin effect – where an estimated 50-70% of insulin release

in response to a meal is mediated by GIP and GLP-1 (1). As the insulinotropic effect of GIP

is diminished in patients with type 2 diabetes (T2D) (2), the therapeutic potential of the

GIP axis has been relatively underexplored, whilst structurally optimised agonists of GLP-1

receptors (GLP1R) have been developed and introduced for the treatment of T2D and

obesity. Focus is now turning to the therapeutic potential of targeting GIP receptors
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(GIPR), in light of the preclinical and clinical success of agents

combining a GLP1R agonist with either a GIPR agonist or

antagonist - strategies that deliver superior body weight reduction

compared with GLP1R agonists alone (3–8).

Although research into the effects of GIP on appetite regulation

is advancing, significant gaps remain in our understanding of the

specific mechanisms underlying its anorectic action, particularly

within the brain. Clarifying these central mechanisms is crucial, as

the brain plays a vital role in regulating energy balance, and

understanding how GIP affects central pathways to modulate

food intake will be invaluable for improving GIP-based therapies

for obesity and diabetes treatment. In this review, we present

current knowledge on the role of GIPR signalling in the control

of energy balance and examine emerging evidence regarding the

potential mechanisms by which GIP affects food intake.
The physiology of GIP

The mature form of GIP, GIP(1-42), is a 42-amino acid

hormone derived from posttranslational processing of the 153-

amino acid precursor, pre-pro-GIP, through prohormone

convertase (PC) 1/3-dependent cleavage after Arg-65 in the

proGIP sequence (9). GIP belongs to the secretin/glucagon family

of structurally related neuroregulatory peptides, which also includes

pituitary adenylate cyclase-activating peptide (PACAP) and growth

hormone-releasing hormone (GHRH). Its amino acid sequence is

highly conserved across species, showing over 90% sequence

identity across human, murine, porcine and bovine species (1).

GIP(1-42) is susceptible to rapid degradation and inactivation by

dipeptidyl peptidase 4 (DPP4), the same enzyme that inactivates

GLP-1, resulting in a short plasma half-life of 5-7 minutes (10).

GIP is primarily produced by enteroendocrine K cells in the

upper small intestinal epithelium (11, 12). A shorter form, GIP(1-

30), has been reported in a-cells of pancreatic islets by

immunohistochemistry, reverse-transcription polymerase chain

reaction (RT-PCR), and in situ hybridisation (ISH) (13). In

contrast, we were unable to detect GIP-peptides by mass

spectrometry in human or mouse islets, or Gip-mRNA in FACS-

purified islet cell types from mice raised in our facility (14, 15).
Expression of Gipr in peripheral
tissues and the brain

The Gipr gene, while primarily known for its expression in

pancreatic b-cells, is also found in other tissues, including adipose

tissue, stomach, bone, adrenal cortex, heart, pituitary, endothelial

cells, testis and several brain regions (1). Activation of GIPR thus

exerts pleiotropic biological effects including neuroprotection (16),

decreased bone resorption (17), and improved lipid metabolism and

storage (18).

GIP was not historically considered to have any direct action on

the brain, but intracerebroventricular (ICV) injection of high

concentrations of GIP affected the secretion of anterior pituitary
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hormones including follicle-stimulating hormone (FSH) and

growth hormone (GH), leading to the hypothesis that GIP could

act on its receptors in hypothalamic regions near the third ventricle

(19), and marking the first indication that GIP could have a

regulatory role in the central nervous system (CNS).

Subsequently, GIP receptors were identified in a rat cerebral

cortex cDNA library and found to be similar to the receptors for

glucagon and GLP-1, placing GIPR in the vasoactive intestinal

polypeptide (VIP)/glucagon/secretin receptor superfamily (class

B1) of seven transmembrane-domain G-protein coupled receptors

(GPCRs) (20). GIP receptors primarily signal through Gas/adenylyl
cyclase activation, which increases intracellular cAMP levels; in

pancreatic b-cells, this activates protein kinase A (PKA) and

exchange protein activated by cAMP2 (EPAC2), resulting in a

downstream increase in intracellular calcium levels and exocytosis

of insulin (21–23).

Initial exploration of Gipr mRNA expression in the rat brain

employing ISH and RT-qPCR revealed its wide distribution across

many areas including the olfactory bulb, cerebral cortex,

hippocampus, mammillary bodies, anterior and lateral septum,

cortical amygdala, substantia nigra, thalamic nuclei, rostral raphe

nuclei, choroid plexus, cuneate nucleus, cerebellum and brainstem

(21, 24). In a study by Kaplan et al., autoradiographic localisation of

saturable (25) GIP radioligand binding identified GIP binding sites

in discrete areas of the rat brain, including the cortex, subiculum,

anterior olfactory nucleus, inferior colliculus, lateral septal nucleus

and the inferior olive (26). More recently, Adriaenssens et al.

employed a Gipr-Cre knock-in mouse model, in which Gipr-

expressing cells exhibit expression of a fluorescent EYFP reporter,

to map Gipr expression in the mouse CNS (27). Immunostaining

for EYFP highlighted Gipr expression in regions such as the medial

preoptic area, subfornical organ, anterodorsal thalamic nucleus,

magnocellular preoptic nucleus, suprachiasmatic nucleus and the

interfascicular nucleus – alongside areas already identified in

previous studies. Results from Cre-reporter lines must be

interpreted with caution, as they can report cells expressing only

very low levels of the receptor message, and might aberrantly report

lineage tracing of cells that transiently expressed Cre-recombinase

during development. Knock-in of Cre-recombinase into the native

Gipr-locus, as in this model, should however reduce the risk of

aberrant expression. Notably, Gipr mRNA expression was

confirmed by qPCR in mouse hypothalamus and by ISH

(RNAscope) specifically in the arcuate nucleus (ARH) and

dorsomedial nucleus (DMH) of the hypothalamus of mice and

several nuclei of the hypothalamus of humans (27). ISH

(RNAscope) also confirmed expression of Gipr in the area

postrema (AP) and nucleus tractus solitarius (NTS) of the

brainstem in mice (28, 29) and Cynomolgus monkey (29). In the

hindbrain, the signal in the AP was more pronounced compared to

the NTS, suggesting that this area might be a particularly critical

brain region for the regulation of energy balance and/or food intake

regulation in response to GIPR-agonists.

Transcriptomic profiling using single-cell RNA sequencing of

fluorescent cells isolated from Gipr-Cre mice further revealed

heterogeneous expression of Gipr across neuronal and non-
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neuronal cell types in the hypothalamus. Based on the expression of

cell-type-specific marker genes, Gipr was identified in mural cells,

ependymocytes, pericytes, vascular and leptomeningeal cells

(VLMCs), smooth muscle cells (SMCs), endothelial cells (ECs),

oligodendrocytes (OLs), and neurons (27, 30). Analysis of the

neuronal cluster showed Gipr expression in both glutamatergic

and GABAergic neurons, along with co-expression of

neurohormones involved in energy balance, including Sst, Avp,

Pthlh, and fewer neurons expressing Cartpt and Tac1 (27). More

recently active GIPR expression in mouse and human

hypothalamus was confirmed by single-nucleus (sn) RNA

sequencing and spatial transcriptomics (31). Gipr neurons

expressed receptors for key gut peptides known to regulate energy

homeostasis such as ghrelin and cholecystokinin (CCK), and

calcium imaging analysis demonstrated that stimulating these

receptors excites Gipr cells, suggesting that Gipr neurons can

respond to food-related signals from the periphery.

Histological and snRNAseq have characterised Gipr expression

in the brainstem, revealing differential expression of Gipr within the

NTS and AP (27, 32–34). Gipr expression is abundant in inhibitory

GABAergic neurons within the AP, but less so in the NTS and the

nodose ganglia of the vagus nerve (28, 35). Projections from

inhibitory GABAergic neurons are mostly confined within the AP

itself with minimal projections to the proximal NTS (32). Some

studies additionally identified Gipr in a small population of

glutamatergic neurons in the dorsal vagal complex (DVC) of the

mouse brainstem (28), potentially reflecting the sparse Gipr-positive

cells in the NTS that were also identifiable by RNAscope. Both

GABAergic and glutamatergic Gipr-positive neurons were

identified in snRNAseq analyses of the combined AP and NTS

from rats and mice (36, 37). Non-neuronal cells, particularly OLs

and a few astrocytes express Gipr (33, 34, 37), revealing the

multifaceted nature of Gipr distribution in the brainstem, as in

hypothalamus, as outlined above.
Gip expression in the CNS

The expression of Gipr and identification of GIP binding sites in

the brain, particularly in regions protected by the blood-brain

barrier (BBB), suggests that GIP potentially plays a physiological

role in the CNS. This raises important questions about whether

central Gipr-expressing populations respond to circulating GIP

from the periphery or if there is a central population of GIP-

producing cells. Early studies, which attempted to detect GipmRNA

in the rat brain by northern blot hybridisation, ISH and RT-PCR

were unable to detect any Gip mRNA (21, 38, 39). Given this, GIP

was suggested to enter the brain through circumventricular organs

(CVO) such as the AP and act on other brain regions (21).

Alternatively, it was suggested that another ligand might activate

GIPR within the brain (21). Some studies, however, have reported

GIP mRNA and protein in rat retina (40), hippocampus (41),

olfactory bulb, cerebellar Purkinje cells, cerebral cortex, substantia

nigra (24, 42), and striatum (43), with moderate expression in the

amygdala, lateral septal nucleus, pretectal nuclei, thalamic reticular
Frontiers in Endocrinology 03
nucleus as well as in several nuclei in the thalamus, hypothalamus,

and brainstem (24, 42). In these studies, GIP immunoreactivity and

mRNA colocalised with the neuronal marker NeuN, but not the

glial marker GFAP (24, 42), suggesting that Gip-expressing cells

may be neuronal. However, efforts by our research group using a

Gip-Cre-reporter model that readily labels Gip-expressing cells in

the duodenum (44) have been unable to detect Gip expression in the

brain (45, 46). Given these findings, there is ongoing debate about

whether GIP is truly produced in the brain or if its central effects are

mediated by circulating GIP arriving from the periphery, or if an

alternative ligand engages central GIPRs. It is plausible that GIP

produced by the gut might affect brain function, as peripherally

injected GIP was detected in cerebrospinal fluid (CSF) collected

from mice cisterna magna (47). The questions of whether GIP is

produced centrally and the physiological role of GIPR located

behind the BBB continue to be subjects of active investigation.
Therapeutic GIPR agonism and
GLP1R/GIPR dual agonism

Hormones released from the gut postprandially play key roles in

regulating energy balance by modulating appetite and blood glucose

levels (48), making them viable targets for the treatment of obesity

and T2D. Among these, GLP-1 has gained significant attention for

its ability to decrease body weight by inhibiting food intake, regulate

glucose metabolism and improve renal and cardiovascular function

(49, 50). This led to the development of GLP-1-based

cardiometabolic medicines including liraglutide and semaglutide,

which have shown clinical success in treating obesity (51–53).

However, the use of GLP-1-based drugs comes with dose-

dependent adverse effects, with up to 60% of patients reporting

gastrointestinal (GI)-related issues. Furthermore, many patients

struggle to reach their glycaemic and weight loss targets (54).

This has spurred efforts to identify and develop agents that can

enhance and complement GLP1R agonism.

An innovative approach in recent drug development is the

design of unimolecular peptides that engage multiple receptors to

improve therapeutic efficacy. Combining GLP1R agonists with

activity against receptors for other hormones such as GIP,

glucagon and amylin has shown promising results (3, 4, 55, 56).

The approach stems from findings that co-treatment with GIPR and

GLP1R agonists enhanced weight loss in diet-induced obese (DIO)

mice (3, 4). Unimolecular GLP1R/GIPR dual agonists not only

amplify the metabolic benefits of GLP-1 therapies but may also

reduce common side effects, offering an effective strategy for

managing obesity and T2D-related conditions (57, 58).

The first dual GLP1R/GIPR agonist, MAR709 (also known as

NNC0090-2746) showed balanced in vitro activity at GIPR (EC50 =

3pM) and GLP1R (EC50 = 5pM) (3). In rodent models with genetic

and diet-induced obesity, MAR709 produced greater weight loss

and glycaemic improvements compared with pharmacokinetically

matched GLP-1 treatments (3). In a phase 2b trial, the reductions in

body weight and blood glucose in T2D patients treated with

MAR709 at the single tested dose were similar to dose-titrated
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liraglutide (59). However, MAR709 was not further developed for

commercial reasons (55).

A second GLP1R/GIPR coagonist, tirzepatide (previously called

LY3298176, marketed as Mounjaro® for T2D and Zepbound® for

obesity, Eli Lilly) is a 39-amino acid peptide acylated at the lysine 20

residue with a C20 fatty diacid. This acylation facilitates

noncovalent binding to albumin, extending its half-life to

approximately 160 hours in humans, compared with 19-25 hours

for MAR709. Tirzepatide is designed as an imbalanced agonist,

exhibiting greater affinity for human GIPR than for GLP1R. In

signalling studies involving cell lines expressing GIPR or GLP1R,

tirzepatide showed comparable potency to GIP in activating GIPR

but was less potent than GLP-1 in activating GLP1R (4). In phase 3

clinical trials, tirzepatide demonstrated more effective reductions in

body weight (approximately 20-22% weight loss with once-weekly

15 mg dosing) and glycated haemoglobin levels (up to 2.6%), along

with overall greater improvements in lipid profiles compared with 1

mg semaglutide in T2D patients, although it should be noted that a

higher dose of semaglutide (2.4 mg) is currently recommended for

treating obesity (4, 51–53, 60, 61). It remains unclear whether the

superior efficacy of tirzepatide in glucose and weight reduction,

compared with the more balanced dual agonist MAR709, is due to

its imbalanced pharmacology, its longer half-life or specific

properties of tirzepatide such as biased GLP1R agonism (62).

Collectively, these findings highlight the potential of GIPR

agonism as a promising complementary target for achieving

significant weight loss and blood glucose regulation, and there is

growing interest in understanding how GIPR activation contributes

to improved metabolic control and weight reduction (57).

As discussed in more detail below, a large body of preclinical

research supports the idea that GIPR agonism plays a physiologically

significant role in the mechanism of action of GLP1R/GIPR dual

agonists. Mice fed a high-fat diet (HFD) showed improved body

weight and glycaemic control when Gip was overexpressed (63). GIP

analogues reduce appetite and lead to weight loss in DIO mice (64,

65), particularly when used in conjunction with GLP1R agonists.

Importantly, cotreatment with agonists for GIPR and GLP1R reduced

food intake and body weight to a greater extent than either agonist

administered alone (3–6). These effects of GIP and GLP1R/GIPR dual

agonists to reduce food intake suggest that GIP may act through

central mechanisms and recruit neural networks that regulate energy

balance and feeding behaviour.
GIPR antagonism

Despite the clear success of agonising GIPR in the treatment of

obesity, there is evidence that taking the opposite approach and

antagonising GIPR activity could also be an effective treatment

strategy. Gipr knockout mice fed a HFD show protection against

obesity and insulin resistance even on a hyperphagic leptin-deficient

background (66). Some studies have shown that high-fat diets increase

intestinal K cell density in ob/ob mice, or reported elevated circulating

levels of GIP in obese animals and humans (67–71). It remains to be

shown whether elevated GIP levels seen in these reports drive further
Frontiers in Endocrinology 04
fat accumulation or reflect a failing counterregulatory response;

deleting GIP in the context of leptin deficiency, however, had little

effect on the development of obesity in ob/ob mice (72). Various GIP

or GIPR pharmacologic inhibition strategies in rodents, including

genetic ablation of GIP-secreting K cells, infusions of neutralising

antibodies against GIP, monoclonal antagonistic antibodies against

GIPR, and vaccination against GIP, have all been shown to protect

against HFD-induced weight gain without substantially deteriorating

glucose homeostasis (47, 73–81). However, it is worth highlighting

that chronic antagonism or knockout of GLP1R produces similar

protection against diet-induced obesity in mice (82–84), implying that

both incretin hormones exhibit paradoxical agonist/antagonist effects.

One of the strongest arguments for developing therapeutic

GIPR antagonists is that in humans, common (E354Q) (85) and

rare (R190Q, E288G) (86) coding variants of GIPR that are

associated with decreased receptor signalling (87–89) have been

associated with lower body mass index (BMI). A recent study found

that GIPRmissense mutations resulting in a loss of both Gs-coupled

cAMP accumulation and b-arrestin coupling are associated with a

lower BMI, whereas selective loss of function of Gs-coupling was

not “protective” in a similar manner, pointing towards an

important role of b-arrestin signalling in GIPR-function (90, 91).

Several groups are developing GIPR antagonists for the treatment of

obesity, as discussed in more detail below. These promote weight

loss in preclinical and/or clinical studies (7, 8, 47, 78, 92–94) and

demonstrate superior weight loss when combined with GLP1R-

agonism compared to GLP1R-agonism alone, but it remains

unclear what mechanisms these agents engage.

Some studies have suggested that increased energy expenditure is

important for protection against DIO upon GIPR knockout or

antagonism (73, 77, 81, 95, 96). Such studies consider effects on

food intake to be secondary to weight loss, and emphasise the

importance of altered glucose and lipid handling, possibly affected

by altered postprandial insulin excursions (76). GIP mediates the

uptake, storage and synthesis of fatty acids and triglycerides in

adipocytes, especially under conditions of hyperinsulinemia (97–99)

and it seems likely that GIPR-blocking agents and/or Gipr knock-out

achieve some of their protection from diet-induced weight gain at the

level of the adipose tissue. This lipogenic effect of GIP is thought to be

mediated through mechanisms including increased secretion and

activity of lipoprotein lipase (97, 100, 101), stimulation of insulin-

dependent glucose uptake, increased adipocyte insulin receptor

affinity, and conversion of glucose to lipids in the adipose tissue

(98, 102, 103). Whilst the expression of GIPR in white adipocytes in

vivo has been questioned (104), GIPR activation in combination with

insulin does improve the lipid storage ability of adipose tissue by

increasing responses to elevated insulin levels (105) whilst also

improving lipid mobilisation when insulin levels are low (106)

(Figure 1). It could be argued that inhibition of GIPR in adipose

tissue interferes with its lipid buffering ability and that rodents, which

as small animals are very sensitive to the insulating function of white

adipose tissue, will under such circumstances increase their use of

fatty acids to produce heat, e.g. increasing their energy expenditure.

Consistent with this idea, Gipr knock-out mice have been reported to

become obese on a HFD when kept at thermoneutrality (28°C) (107).
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Other studies have pointed towards a direct effect of GIPR

inhibition on food intake (7, 47). One study linked the anti-obesity

effect of GIPR antagonism to leptin sensitivity in the hypothalamus,

where genetically or pharmacologically blocking GIPR enhanced

the anorexigenic properties of leptin in HFD-fed mice. Notably,

Gipr knockout mice did not develop leptin resistance during HFD

feeding (47). In the same study, it was also observed that central GIP

could inhibit the appetite-suppressing effects of leptin. This GIP-

induced leptin resistance occurred through activation of the small

guanosine triphosphatase (GTPase) Ras-related protein 1 (Rap1),

which inhibits the phosphorylation of signal transducer and

activator of transcription 3 (STAT3) – a crucial mediator of

leptin action (47, 108). This is, however, unlikely to be the only

action of GIPR in the regulation of body weight, as whole-body Gipr

knock-out also reduced body weight in the leptin-deficient ob/ob

mouse model (66). It is also noteworthy that Rap1b activation

downstream of the GIPR and Epac1 has recently been implicated in

an anti-ageing action of GIP in the brain, reducing ferroptosis (109).

Emerging evidence suggests that the combination of antibody-

based GIPR antagonism and GLP1R agonism leads to more

significant weight loss in mice compared to the weight loss

achieved through GLP1R agonism alone (7, 110). A bispecific

molecule, maritide, in clinical trials comprises an antagonistic

GIPR antibody coupled to two GLP-1 peptides. Phase 1 data on

maritide, injected once monthly due to its long half-life,

demonstrated effective body weight lowering in obese humans

(8). The contribution of GIPR antagonism to the effectiveness of

this molecule is not currently clear, as clinical dosing results in high
Frontiers in Endocrinology 05
circulating levels, raising the effective concentration of the GLP-1

component several orders of magnitude above the EC50 for GLP1R.

As discussed later, GIP also acts to reduce nausea triggered by GLP-

1, so antagonising GIPR could enhance the capability of the GLP-1

moiety to reduce food intake through the induction of nausea. An

alternative approach of combining a GLP1R agonist with an

antagonistic GIP peptide (AT-7687) is also under development,

with some notable success in inducing weight loss in non-human

primates (93).

Of note, whilst inhibition of food intake in response to

peripheral treatment with a GIPR-blocking antibody was

instantaneous in non-human primates, the effect took several

days to develop in obese mice and might be secondary to weight

loss (7). This group from Amgen also linked the effects of their

GIPR-antagonistic antibody on body weight to adipose GIPR

signalling and proposed that long-acting GIPR-agonism might act

as functional antagonism due to receptor desensitisation/

downregulation in adipocytes, but not other tissues such as

pancreatic islets (92). This latter idea is, however, difficult to

reconcile with reported effects of dual GLP1R/GIPR agonism

which showed improved lipid flow into and out of adipose

tissues, dependent on GIPR-agonism (106).

Effects of therapeutic GIPR antagonism should also be

considered in the context of peripheral and central inflammation.

Several studies suggest a pro-inflammatory role for GIP, contrasting

with the well-documented anti-inflammatory action of GLP1R

agonists (111, 112). Short term GIP infusion in human subjects

increased IL-6 and monocyte chemoattractant protein-1 (MCP-1)
FIGURE 1

Role of GIP receptor in white adipose tissue (WAT). GIP receptor is expressed within adipose tissue in endothelial cells, macrophages, pericytes,
mesothelial cells and adipocytes (the latter being discussed controversially). GIP stimulates blood flow and transport of nutrients to WAT, storage of
triglycerides, lipoprotein lipase (LPL) activity, glucose and free fatty acid uptake, insulin sensitisation, de novo lipogenesis as well as lipolysis.
Conversely, GIPR protects against HFD-induced weight gain presumably by inhibiting GIP-induced triglyceride storage and lipogenesis at the level of
the adipose tissue. GIP, glucose-dependent insulinotropic polypeptide; GIPR, GIP receptor. Figure created with BioRender.com.
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in adipose tissue biopsies, likely reflecting enhanced macrophage-

adipocyte crosstalk (113). Another study reported higher levels of

inflammatory markers and differential expression of genes linked to

leukocyte chemotaxis and tissue infiltration in obese adults with

higher compared with lower fasting GIP levels, although participant

numbers were relatively low and obesity parameters differed

between the groups (114). In mouse models, central or peripheral

administration of GIP promoted hypothalamic inflammation, with

proinflammatory-related factors such as Il-6 and Socs3 elevated in

the hypothalamus, which were reversed by an antagonistic GIPR

antibody (115). By contrast, other studies reported anti-

inflammatory effects of GIP, including a reduction in

neuroinflammation surrounding amyloid plaques in a mouse

model of Alzheimer’s disease after chronic treatment with [D-

Ala2]GIP or a dual GLP1R/GIPR agonist. However, in these and

other studies, it will be crucial to disentangle the extent to which

inflammatory changes reflect direct effects of GIP on the

inflammatory system rather than indirect effects arising from

alterations in body weight and adiposity (116, 117).
Gut-brain circuits in the regulation of
food intake

The gut-brain axis is a communication network of neuronal,

biochemical, and hormonal signals connecting the GI tract to the

brain. Following meal ingestion, changes in circulating nutrient

levels, stimulation of GI mechanoreceptors, and the release of gut

hormones work together to regulate subsequent food intake (118).

Peripherally-derived adiposity signals such as leptin and insulin,

alongside short-term satiety signals such as GLP-1, CCK and

peptide YY (PYY), interact with brain circuits to modulate

feeding behaviour and maintain energy balance (119, 120).

Information from the gut is relayed to the brain by vagal and

splanchnic afferent pathways; whilst these express receptors for gut

hormones, discussion of these is beyond the scope of this review,

given that Gipr expression within the CNS seems to be crucial for

GIP’s action on food intake (discussed in next section). In the brain,

neurons in the hypothalamus and the brainstem are essential for the

control of energy homeostasis and are well placed anatomically to

mediate the effects of gut peptides on feeding [reviewed in (121)].

The hypothalamus, particularly the ARH, is strategically located

adjacent to the third ventricle and the median eminence (ME) – a

CVO with fenestrated capillaries, lacking a BBB and allowing access

of peripheral nutritional signals to these appetite-controlling

regions of the CNS (122). Similarly, the DVC is located near the

fourth ventricle in the medulla oblongata. It includes the AP, NTS

and the dorsal motor nucleus of the vagus (DMV), with the AP

being another CVO accessible to peripheral signals due to its leaky

BBB. AP neurons and vagal sensory neurons project directly to the

NTS, enabling the NTS to integrate and transmit gut-derived

information to the brain (123, 124). Gastrointestinal, circulatory

and central cues integrate in the DVC, which projects to the

hypothalamus to regulate response to the body’s energy status

and influence feeding behaviours, and vice versa (125, 126). This
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gut-brain communication forms a crucial feedback loop for

maintaining energy balance and adapting feeding behaviour based

on physiological needs.
Role of central GIPR signalling in
appetite regulation

As apparent from the parallel development of drugs combining

GLP1R agonism with either GIPR agonists or antagonists for the

treatment of obesity, GIP appears to have several, sometimes

opposing, actions on the brain. On the one hand, GIP signalling

seems to favour weight gain, as evidenced by the protection of Gipr

knockout mice from DIO, the lower BMI of humans with loss of

function variants in GIPR, and a recently established ability of GIP

to overcome nausea triggered by agents such as GLP1R agonists,

discussed in more detail later. On the other hand, GIPR agonists

have been demonstrated to have direct inhibitory effects on food

intake in mice – a finding that is less evident in humans – and dual

GLP1R/GIPR agonists in clinical practice trigger more weight loss

than GLP1R agonism alone. These combined findings suggest that

GIPR agonists have more than one action on the brain, potentially

acting on different neuronal populations with different effects

depending on the feeding status. Before embarking on a

discussion of the different GIPR-containing neuronal circuitries

identified in the literature, it should be acknowledged that a

unifying consensus incorporating the multiple observations

surrounding GIP biology has not yet been reached.

Owing to the rapid inactivation of endogenous GLP-1 and GIP

by DPP4, it is currently debated whether endogenous gut-derived

incretins reach their brain receptors at concentrations high enough

to exert physiological actions. We recently demonstrated inhibition

of food intake in response to activating intestinal K-cells that could

be blocked by either systemic or central administration of a GIPR-

blocking antibody (46). However, other studies failed to observe

significant effects on food intake in mice when activating K-cells

(25, 127). Degradation-resistant incretin receptor agonists

undoubtedly have potential to act directly on the brain, likely

through the CVOs, which are accessible to peripherally-

administered fluorescent GIPR and GLP1R ligands (28, 128–130).

The expression of Gipr in feeding centres of the hypothalamus

and brainstem suggests that GIP and GIP-based agonists could

engage neuronal and/or non-neuronal circuitry in these regions to

regulate food intake and body weight (27, 29, 30, 33, 64, 131).

Emphasising the importance of brain GIPR signalling, deletion of

Gipr from the CNS replicates the protection from DIO observed in

global germline Gipr knockout models (64). Selective removal of

Gipr from GABAergic cells using Vgat-Cre-dependent

recombination further pointed to the importance of GABAergic

neurons for both the protection against DIO and the reduction in

food intake in response to systemically applied GIPR-agonists,

especially when co-administered with a GLP1R-agonist (129, 132).

Both the brainstem and hypothalamus have been considered the

primary central detectors of GIP and GIPR agonists in the peripheral

circulation, since both areas contain neurons expressing Gipr within
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or adjacent to regions with a leaky BBB. Overlap of c-Fos staining and

Gipr-Cre reporter-positive cells after administration of peripheral

GIPR-agonist was more pronounced in the brainstem (particularly

the AP) than the hypothalamus (46). Application of GIP also

triggered cAMP elevation and increased neuronal activity as

measured by electrophysiological recordings in hindbrain slices

(133). A role for AP Gipr-positive neurons, the majority of which

are GABAergic (32), does not, therefore, seem to be in any doubt, but

whether this cell population underlies all the observed effects of GIPR

agonists is less clear. A study by Adriaenssens et al., which

characterised the distinct roles of Gipr-expressing neurons in the

hypothalamus and brainstem, demonstrated that these neuronal

populations engage different anorexigenic pathways depending on

their neuroanatomical location (28). Whilst activation of Gipr-

neurons in either region reduced dark-phase food intake,

chemogenetic stimulation of DVC but not hypothalamic Gipr

neurons induced conditioned taste aversion (CTA) (28). As

evidence from other studies shows that AP Gipr neurons are anti-

aversive, as discussed below, the researchers suggested that the CTA

induced by DVC Gipr chemogenetic stimulation is mediated by

direct activation of Gipr-neurons deeper in the NTS rather than the

AP, and that the NTS is not a primary target of peripherally-

administered GIPR agonists.

The weight loss and food intake suppressing effects of long-acting

GIPR agonists and the GIP component of GLP1R/GIPR co-agonists

have been attributed to inhibitory GABAergic neurons, likely

reflecting Gipr-neurons in the AP (129) (Figure 2). In DIO WT

mice, acyl-GIP and MAR709 decreased food intake, body weight and

fat mass, concomitant with an increase in neuronal activation in the
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AP. Deletion of Gipr in Vgat-expressing GABAergic neurons blocked

the effect of acyl GIP on AP neuronal activity, food intake, and body

weight reduction, and abrogated the superior effectiveness of

MAR709, suggesting that GIPR signalling via inhibitory

GABAergic neurons is necessary for GIP’s anorectic effects (129).

Further studies are necessary to clarify whether acyl-GIP and GLP1R/

GIPR co-agonists act exclusively on brainstem GABAergic GIPR

neurons or whether they also act on GABAergic GIPR neurons in

other brain regions to reduce body weight and food intake.

Of note, mice lacking Gipr in Vgat-expressing neurons were

hypersensitive to GLP1R-agonist, losing more weight than wild-

type animals in response to the same GLP1R-agonist dose (132).

Similar GLP1R-agonist hypersensitivity was observed in a previous

study when GIPRs were selectively removed by stereotactic

injection of rAAV-Cre into the hypothalamus of Giprfxfx mice

(28). However, this manipulation failed to prevent the additional

food intake reduction that results from adding a GIPR-agonist on

top of treatment with a GLP1R-agonist, suggesting that the

hypothalamus is not the major site of GIPR-agonist action for

food intake reduction, despite the reduction in food intake triggered

by chemogenetic activation of hypothalamic Gipr-expressing

neurons in the Gipr-Cre model (27).

In addition to the strong brainstem c-Fos signal triggered by

administration of GIP analogues, this intervention also labels key

hypothalamic regions implicated in feeding regulation, including

the ARH, PVH, DMH, ventromedial (VMH), and lateral

hypothalamus (LH) (29, 33, 46, 64, 129, 134). This suggests that

hypothalamic engagement is involved in the overall neuronal

circuitry important for and may underscore the action of GIP on
FIGURE 2

GIPR expression in the hypothalamus and brainstem. Gipr is expressed in oligodendrocytes, pericytes and other vascular and glial cells that control
and regulate the transfer of circulating factors from CVOs (such as the ME and AP) to the brain parenchyma. Whilst GABAergic neurons in the AP
have cell bodies, dendrites and axons outside the BBB, such neurons are scarce in the ME, although axons or dendrites from cells in adjacent areas
(such as the ARH) might reach the ME, potentially allowing these neurons access to plasma-borne hormones. Alternatively, Gipr expression on non-
neuronal cells might affect access to neuronal receptors behind the BBB. 3V, third ventricle; ARH, arcuate nucleus; ME, median eminence; CC,
central canal; BBB, blood-brain barrier; CVO, circumventricular organs. Figure created with BioRender.com.
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food intake reduction. However, the overlap of c-Fos in response to

peripheral GIPR-agonist administration and Gipr-Cre dependent

reporter expression was limited in the hypothalamus (46),consistent

with the idea that hypothalamic engagement occurs downstream of

hindbrain activation by GIP. The relevance of the detected Gipr

mRNA and the Gipr-positive cells reported by the Gipr-Cre model

in the hypothalamus (Figure 2) therefore remains debated. Whilst it

could be argued that these cells represent aberrant Gipr-Cre activity,

the detection of Gipr mRNA in Hypomap argues against this (31).

Alternatively, hypothalamic cells express Gipr at levels too low to

elicit functional responses, or are not accessible to GIPR-agonists in

the circulation; direct measurements of functional responses to GIP

in Gipr-expressing neurons in brain slice preparations, which could

potentially distinguish between these options, are currently lacking.

However, it should be noted that cAMP or Ca2+ responses could be

absent from a Gipr-labelled cell soma if the GIPR-containing

compartment has been lost in the brain slice preparation or if the

receptors are located in small, restricted compartments such as

presynaptic terminals where they could play an important role in

sensitising to other stimuli. Further studies will be crucial to

disentangle this important area.

Regardless of exactly where GIP is primarily detected by the

brain, the hypothalamus seems important in its downstream effects

on food intake. Hunger-promoting AgRP neurons in the

hypothalamus are necessary and sufficient to drive food intake

and are key in maintaining energy balance (135–139), and although

Gipr is not expressed in hypothalamic AgRP neurons themselves,

GIPR and GLP1R agonism acutely inhibit AgRP neuronal activity

in fasted mice, reducing their responses to food (140). In this

context, it may be relevant that the ARH receives direct

projections from the NTS to regulate feeding (141–143), and

GABAergic projections from the DVC inhibit AgRP/NPY

neurons in the ARH to decrease food intake and body weight

(144). Studies by Kaneko and colleagues investigating the

mechanism of action of intracranially-administered GIPR-

antagonism alternatively implicated hypothalamic POMC

neurons in underlying GIP-induced leptin resistance (47).

However, another study involving systemic administration of the

GIPR-agonist, GIPFA-085, suggested that increased plasma leptin

levels recruit hypothalamic POMC-neurons in the ARH to underlie

the reduced food intake (145). GIP’s interaction with leptin thus

remains contentious, and additional research is needed to clarify the

role of GIP in leptin signalling as well as to provide a more

comprehensive understanding of the role of GIPR-expressing

neurons in the hypothalamus in general.
GIP reduces nausea and emesis via
the brainstem

The gut hormones, GLP-1 and PYY, reduce food intake by

targeting overlapping neuronal circuits in the hypothalamus and

brainstem that reduce appetite and trigger nausea and emesis

(146–148). Despite their profound metabolic success, GLP-1-

based medications cause nausea and vomiting in many patients
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(146–148). These GI side effects are considered a barrier to

maximising the weight-loss profile of these treatments, suggesting

a need to develop and test the efficacy of novel agents with improved

tolerability. Interestingly, GIPR agonists have been shown to inhibit

emetic responses caused by cisplatin, GLP-1 or PYY in dogs, ferrets

and musk shrews, as well as nausea-associated behaviour in mice

and rats (29, 33, 36, 134, 149). These findings have led to the

concept that GIP acts as an anti-aversive hormone in response to

GI-derived nauseating signals (134) and that GIPR agonism may

improve the weight loss effectiveness of GLP1R agonists partly by

reducing GLP1R agonist-induced nausea, allowing higher dosing of

the GLP1R agonist.

The AP contains inhibitory neurons that counteract nausea and

vomiting responses triggered by certain visceral stimuli (150–152),

and as discussed above, Gipr is expressed in a subset of GABAergic

inhibitory neurons in this region. GIP has been demonstrated to

activate these inhibitory neurons, and thereby suppress the activity of

nausea-promoting excitatory neurons, including those which express

the growth/differentiation factor 15 (GDF15) receptor (Gfral), Glp1r

(29) and the calcium-sensing receptor (Casr) (32, 133) (Figure 3).

Diphtheria toxin-mediated ablation of AP Gipr neurons eliminated

the anti-nausea effects of GIP (133). However, it is unknown whether

these anti-aversive effects of GIP reflect its physiological as well as its

pharmacological actions, and future studies will be required to

determine whether intestinal GIP plays a physiological role in

inhibiting avoidance responses to nauseating gastrointestinal signals.
GIP may influence BBB permeability
and brain access to peripheral factors

For GIP- and GLP-1-based therapies to exert their full anorectic

effects, they must access their receptors located in CNS regions that

modulate energy balance. In the majority of brain regions, the BBB

carefully controls the entry of molecules from the bloodstream into

the brain [reviewed in (153)]. Fluorescent GIPR and GLP1R

agonists dosed peripherally can directly access brain areas that lie

outside the BBB. This includes the choroid plexus and CVOs, which

display a compromised BBB. CVOs with particular interest for the

regulation of food intake include the ME of the hypothalamus and

the AP of the brainstem (28, 128). Fluorescently labelled agonists

were also detected, albeit at low levels, in brain regions supposed to

be protected by the BBB, including the posterior ARH, NTS and

DMV, which are adjacent to the ME and AP, respectively, and have

been implicated in the regulation of food intake (28, 128).

Radiolabelled GIP was additionally found to cross the BBB in a

time-dependent saturable manner, which was inhibited by

competition with native unlabelled GIP (26), suggesting

involvement of a receptor-mediated mechanism, and GIP has

been detected in the CSF of mice (47) and humans (154), which

is interesting in the context of reported evidence of a

neuroprotective effect of GIP in animal models for Alzheimer’s

and Parkinson’s disease (16, 155).

While the majority of metabolic sensing neurons located in the

ARH are separated from the ME by diffusion barriers, these
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neuronal populations may extend dendrites or axons to the ME or

contact the ME through axonal terminals and directly access

peripherally secreted hormones (122, 156–158). Tanycytes are

thought to participate in the formation of CVO-parenchymal

barriers (159, 160) and peripheral liraglutide has been shown to

enter the hypothalamus via transcytosis across tanycytes (161).

However, there is currently no similar evidence for GIP crossing

into the brain through this mechanism; Gipr expression is especially

high in ependymal cells surrounding the third ventricle (31), and

oligodendrocytes but future work will need to address if these are

involved in regulating access of hormones in the plasma to neurons

behind the BBB. Enhancing the permeability and diffusion of these

molecules to neuronal populations deeper in the brain that regulate

energy balance may be a potential strategy to maximise the weight-

loss effect of GLP1R/GIPR agonists (153, 162). Further research is

needed to clarify the central mechanisms and routes through which

these drugs reach their target sites in the brain, and the importance

of brain penetration for induction of weight-loss.

Notably, in the hypothalamus and brainstem, Gipr is expressed

by vascular and glial cells which affect perfusion and permeability,

including pericytes, smooth muscle cells, vascular and

leptomeningeal cells, endothelial cells and oligodendrocytes

(27, 30, 37, 163). Oligodendrocytes are highly responsive to the

nutritional state, as fasting triggers rapid proliferation and
Frontiers in Endocrinology 09
differentiation of OLs (74). Transcriptomic and FISH analyses of

the murine and human hypothalamus have demonstrated that the

Gipr is enriched in oligodendrocytes, particularly in the ME (27, 30,

31, 163–165). Supporting a functional role of GIPR signalling in the

regulation of the oligodendrocyte lineage, a recent study

demonstrated that oligodendrocyte-specific Gipr deletion in adult

mice reduced oligodendrocyte survival and oligodendrogenesis,

whilst treatment with GIPR agonists enhanced oligodendrocyte

plasticity in the ME (165). GIPR signalling in oligodendrocytes

increased access of GLP1R agonists to ME axons, and boosted the

anorectic and weight-loss effects of GLP1R agonism (165),

suggesting a novel mechanism by which GIPR agonism may

enhance the weight loss profile of GLP1R agonists in incretin-

based therapies.
Conclusion and future perspectives

The success of dual incretin receptor agonists as obesity

pharmacotherapies has reignited interest in the previously

overlooked role of GIPR signalling in energy balance. In addition

to its insulinotropic effects, it is increasingly clear that GIP plays a

role in modulating food intake and body weight, likely through

central pathways that are not yet fully elucidated. GIP analogues act
FIGURE 3

GIPR agonism in modulating GLP1R-induced nausea. Activation of GIPR might alleviate GLP-1-induced malaise by directly acting on the AP/NTS
circuitry. Gipr is expressed in a subset of GABAergic inhibitory neurons in this region, through which GIP may act to suppress the activity of nausea-
promoting GLP1R neurons, thereby reducing nausea and improving the therapeutic index of GLP-1-based medications. It remains to be seen if the
same GABAergic GIPR-expressing neurons also underlie food intake inhibition by GIPR-agonists. Conversely, GIPR antagonism suppresses the
activity of these inhibitory neurons, leading to enhanced activation of GLP1R-expressing neurons. This results in a greater reduction of food intake,
albeit likely with increased nausea as a side effect of GLP1R activation. GABA, gamma-aminobutyric acid; AP, area postrema; NTS, nucleus of the
solitary tract; DMV, dorsal motor nucleus of the vagus; GIPR, GIP receptor; GLP1R, GLP-1 receptor. Figure created with BioRender.com.
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on regions of the brain that regulate energy balance, nausea and

feeding behaviour to reduce food intake. Anti-emetic effects of GIP

may enhance the therapeutic efficacy of GLP1R/GIPR dual agonists

by mitigating the nauseating effects of GLP1R agonism – although

this is yet to be proven in humans. Given the success of GLP1R/

GIPR dual agonists in clinical trials, further understanding how

GIPR signalling in the CNS affects energy balance is vital to fully

harness the therapeutic benefits of GIP to combat obesity and T2D.
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