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1 Introduction

A recent case report by Sahota and colleagues has provided new insights into treatment

of dysglycemia via dopamine (DA) receptor stimulation in the setting of autoimmune

diabetes (1). Briefly, a patient with autoimmune diabetes was diagnosed with a pituitary

prolactinoma, resulting in treatment with cabergoline, an agonist of DA D2-like receptors,

alongside preexisting diabetes medications. Over time, the patient was switched to

cabergoline monotherapy which reversed his insulin requirement. This led to

significantly improved glycemic control and a revised diagnosis of latent autoimmune

diabetes of adults (LADA). Ultimately, however, the patient was restarted on insulin

therapy in the setting of progressively increased blood glucose.

Patients with LADA often achieve adequate glycemic control soon after the initiation of

antihyperglycemic treatment, including non-insulin agents (2). Consistent with this, recent

studies in LADA patients with non-insulin agents like dipeptidyl peptidase 4 inhibitors (e.g.,

saxagliptin), or glucagon‐like peptide 1 receptor agonists (e.g., dulaglutide) showed improved

glycemic control for months and delayed progression to insulin requirement (2–5).

Importantly, in contrast to the more commonly used drug classes above, this case represents

the first description of DA receptor agonist monotherapy for autoimmune diabetes (1). These

findings have raised important questions concerning the biological mechanisms by which D2-

like receptor agonists can effectively treat dysglycemia, particularly in the setting of diabetes.
2 Discussion

2.1 CNS targets

D2-like receptor agonists such as cabergoline and bromocriptine have been used for

decades to control CNS prolactinoma size and secretion given their expression of the DA

D2 receptor (D2R) (6). There is much evidence that these agonists are associated with

improved glycemic control (7). Moreover, bromocriptine was approved by the
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United States Food & Drug Administration as a novel treatment for

dysglycemia in type 2 diabetes mellitus (T2DM) (8, 9). While

mechanisms by which D2-like receptor agonists improve glycemic

control have remained unclear, most attention has been devoted to

these drugs’ actions on neuroendocrine targets within the central

nervous system (CNS) (8).

Sahota et al. suggested that drug-induced reduction of

pathological prolactin levels led to the patient’s metabolic

improvements (1). CNS D2R agonism via cabergoline therapy

could therefore modify prolactin-induced disruptions in lipid and

glucose metabolism in insulin-responsive tissues including adipose

tissue and skeletal muscle (1, 10, 11). These prolactin reductions

also likely contributed to improved testosterone levels, which in

turn reversed the patient’s hypogonadism. This is consistent with

evidence showing that testosterone restoration contributes to

significant weight loss as well as improved insulin resistance and

overall glycemic control (12, 13). Cabergoline-induced

normalization of prolactin may therefore lead to restored total

and free testosterone levels to improve glycemic control via a wide

range of mechanisms including via reductions in inflammation and

weight gain – factors that further drive insulin resistance (11, 14).

Moreover, D2R is also expressed in the hypothalamus and is

implicated in centrally-mediated metabolic regulation, including

through control over satiety (15, 16). Therefore, it is possible that

D2R agonists may improve glycemic control via these CNS

pathways, in addition to its actions in the pituitary (Figure 1A).

Though CNS DA receptor agonism was proposed by Sahota

et al. as a primary driver of improved glycemic control (1),

additional factors likely play key roles. A leading determinant of

improved glucose control is the “honeymoon” effect where patients

present with temporary remission after symptomatic onset. The

honeymoon period in LADA typically lasts weeks to months and

may reflect reduced stress on remaining islet beta-cells (17–19).

Body weight loss similarly improves glycemic control, which in turn

lowers cell stress to help preserve beta-cell function (e.g., insulin

synthesis and release) (20).
2.2 Endocrine pancreas

In addition to CNS targets, we posit that the ability of D2-like

receptor agonists to effectively treat dysglycemia in diabetes is at

least in part via their actions on metabolically relevant peripheral

targets including the endocrine pancreas. We and others

demonstrated that pancreatic islet cells express D2-like receptors

(21–26). Moreover, alpha-cells and beta-cells produce their own DA

which signals locally via D2-like receptors as an autocrine/paracrine

negative modulator of insulin and glucagon secretion (21, 22, 26,

27). More recently, we found that bromocriptine acts directly on

peripheral D2R to inhibit islet insulin and glucagon secretion (28).

It is possible that D2-like receptor agonist inhibition of glucose-

stimulated insulin secretion (GSIS) therefore leads to “beta-cell

rest.” Lowering excessive insulin release may reduce cytotoxic beta-

cell stress and re-sensitize insulin-resistant tissues like skeletal

muscle, adipose tissue, and liver to improve dysglycemia (26).
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Interestingly, besides DA receptors, beta-cells also express

inhibitory adrenergic receptors including alpha2A adrenergic

receptors which can similarly be stimulated by local DA or

D2-like receptor agonists like bromocriptine (22, 28, 29). This

results in further inhibition of GSIS (22, 28, 29). Likewise,

diminishing alpha-cell glucagon secretion via D2R agonism may

concurrently lower hyperglycemia and improve both insulin

resistance and overall glycemic control (26) (Figure 1B).
2.3 Adipose tissue

D2-like receptors are expressed in adipose tissue (30, 31).

Increasing evidence suggests that dopaminergic signaling in

adipocytes modulates expression of adipokines including leptin

(32–34). Consistent with this, recent work showed that D2R

expression was upregulated in human subcutaneous adipose

tissue in response to hyperglycemia and T2DM (34). The DA D4

receptor (DRD4), another D2-like receptor, was also upregulated in

adipose tissue of patients with prediabetes (35). Moreover,

bromocriptine treatment inhibited lipolysis in response to beta-

adrenergic receptor stimulation, suggesting that D2-like receptor

agonists may be acting directly on adipocytes to modify their

function (34). Despite this, the same study reported that

physiological concentrations of DA did not modify either

adipocyte glucose uptake or lipolysis (34). This raises the

possibility that D2-like receptor agonists achieve their therapeutic

effects via actions at additional non-dopaminergic adipocyte

receptors. It is also possible that at least some of the therapeutic

effects of D2-like receptor agonists on peripheral insulin resistance

are due to pleotropic, combined actions at multiple peripheral sites

which include adipocytes, but which also include other sites such as

liver. Indeed, earlier work demonstrated that bromocriptine

treatment led to remodeling of adipose tissue with increases in

fasting insulin signaling in brown adipose tissue (35). In parallel,

bromocriptine may also act on liver (e.g., diminished liver

triglyceride content) (35). Ultimately, more work is clearly needed

to investigate direct and indirect therapeutic actions of D2-like

receptor agonists on adipocyte function (Figure 1C).
2.4 Skeletal muscle

In addition to adipose tissue, skeletal muscle also plays a key

role in maintaining adequate peripheral insulin sensitivity and

optimal glucose control. However, effects of D2-like receptor

agonists on skeletal muscle are mixed. Limited preclinical

evidence in rodents showed that bromocriptine increased

phosphorylation of skeletal muscle AMP-activated protein kinase

(AMPK), an energy-sensing enzyme and therapeutic target in

diabetes (36, 37). In contrast, other preclinical and clinical studies

showed no significant effects of bromocriptine on skeletal muscle,

including on insulin sensitivity (35, 38). Nevertheless, in the case of

the patient described by Sahota and colleagues (1), irrespective of

potential direct actions of a D2-like receptor agonist on skeletal
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FIGURE 1

Model for joint actions of dopamine D2-like receptor agonist actions on CNS and peripheral targets to improve glycemic control. (A) In the CNS,
dopamine D2-like receptor agonists like bromocriptine and cabergoline act on targets including the dopamine D2 receptor (D2R) in the pituitary to
limit prolactin release. Targeting of additional hypothalamic targets may further modulate satiety and central metabolic circuitry to improve glycemic
control. (B) Outside the CNS, in the endocrine pancreas, D2-like receptor agonists act on D2R expressed in beta-cells. The resulting inhibition of
glucose-stimulated insulin secretion (GSIS) ultimately leads to therapeutic reductions in insulin resistance. In parallel, agonism of D2R in alpha-cells
diminishes glucagon secretion to reduce hyperglycemia and further improve insulin sensitivity. (C) In adipose tissue, D2-like receptor agonists can
act on D2R in adipocytes to modify release of adipokines and possibly lipolysis, improving insulin sensitivity. (D) D2-like receptor agonists also act on
T cells in the endocrine pancreas to reduce cytokine release. This may reduce local inflammatory processes to improve islet function. Panel (B) was
adapted from Aslanoglou et al. (2022) iScience 25 (2022) 104771. Created with Biorender.com.
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muscle, drug-induced restoration of serum levels of testosterone

may lead to improved skeletal muscle mass and strength and

improve insulin sensitivity (12, 39).
2.5 T cells

Immune T cells that have infiltrated pancreatic islets represent

another possible peripheral therapeutic target for D2-like receptor

agonists. Immune cells express D2-like receptors and stimulation of

these receptors can decrease cytokine secretion, potentially suppressing

activated actions of islet T cells (40). We therefore posit that resulting

decreases in islet inflammation can improve islet function and glycemic

control (Figure 1D).
2.6 Tandem CNS and peripheral
dopaminergic actions

We recently found that D2-like receptor agonists required access

to both CNS and peripheral targets to treat dysglycemia. Importantly,

restricting access to one compartment or the other eliminated the

therapeutic efficacy of the agonist drugs in reducing dysglycemia (41).

Overall, we conclude that tandem actions of D2-like receptor agonists

on CNS and peripheral targets offer a novel mechanism for

dysglycemia treatment of autoimmune diabetes and T2DM.
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