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Ethylene oxide (EO) is a crucial organic compound commonly utilized in

industrial and medical products. Food and Drug Administration (FDA)-approved

EO sterilization sterilizes about 50% of sterile medical devices in the U.S. Animal

and human studies have suggested that EO exposure may result in severe health

problem. However, studies evaluating the relationship between EO exposure and

sex hormones in human populations are still lacking. Therefore, further

investigation into EO’s effects on humans is essential. This cross-sectional

study within the U.S. National Health and Nutrition Examination Survey

(NHANES),2013–2016 examined the relationship between EO-hemoglobin

adducts (HbEO) and sex hormones. HbEO was found to be inversely

associated with estradiol (E2) and positively associated with the ratio of total

testosterone (TT) to E2 and sex hormone-binding globulin (SHBG) levels in adult

males. Such associations HbEO and E2 and SHBGwere non-linear in male adults.

However, no significant associations were found between HbEO and sex steroids

across various age groups of females and all male age groups except for adults.

Thus, our study provides evidence that EO may potentially serve as an endocrine

disruptor in the environment, affecting the levels of sex hormones in adult males.
KEYWORDS

ethylene oxide, endocrine disruptor, sex hormones, total testosterone, estradiol
1 Introduction

Ethylene oxide (EO) is a crucial organic compound extensively employed in industrial

and medical applications. It is extensively utilized as a disinfectant and sterilizing agent in

numerous industrial processes to ensure product quality and safety (1). Additionally, it is

employed in the manufacturing of various chemical products including ethylene glycol,

emulsifiers, and surfactants (2). Despite its widespread applications, EO can cause potential
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hazards to human health. It exists in a gaseous form at room

temperature, easily entering the respiratory system and bind to

DNA and proteins. The blood biomarker N-(2-hydroxyethyl)

valine, known as the hemoglobin adduct of EO (HbEO), is a

valuable indicator of ethylene oxide exposure (3). In-vitro studies

demonstrated that EO exposure exhibited genotoxic and mutagenic

effects (4, 5). In population-based studies, it has been observed that

long-term contact with EO may cause severe health issues such as

cancer, cardiovascular diseases, diabetes, neurological impairments,

respiratory diseases, as well as adverse reproductive outcomes (6–

10). EO gas presents a significant health risk to residents, patients,

and workers living in proximity to the currently hundreds of active

EO-emitting facilities across the U.S. These individuals may be

exposed to medical devices sterilized with EO within hospital

environments, or directly as employees within EO-emitting

manufacturing plants (11, 12). Although EO has previously been

considered a “potentially hazardous air pollutant” in 2016, the U.S.

Environmental Protection Agency (EPA) reclassified EO as a

known human carcinogen based on new data, which indicate that

the toxicity of EO is 30 times higher than previously estimated (5,

13). Given that there are a significant number of facilities emitting

EO located in densely populated areas worldwide, understanding

the comprehensive health risks associated with EO exposure is an

urgent public health priority.

Sex hormones serve a crucial function in triggering and

sustaining human reproductive well-being (14). Important human

sex hormones include TT, E2, and SHBG play prominent roles

(14).The levels of various sex hormones within the body vary at

different stages of life. Studies on animals have demonstrated that

exposure to EO by inhalation led to elongated estrous cycles in

female mice (15), while male mice experienced testicular atrophy in

the presence of EO exposure (16). These evidences implied

detrimental impacts of EO on the reproductive system in mice.

However, currently, studies in human populations evaluating the

correlation between exposure to EO and sex steroid hormone are

still lacking. Hence, the objective of this research is to investigate the

connection between exposure to EO and sex hormones across

various demographic segments of the human population.
2 Materials and methods

2.1 Study design and population

NHANES survey measures the health and nutrition of

American adults, adolescents and children in the most

comprehensive way. This survey combines information from

interviews and physical examinations, which information from

interviews and physical examinations is combined. NHANES is

conducted under the National Center for Health Statistics (NCHS),

an agency that falls under the jurisdiction of the Centers for Disease

Control and Prevention (17).Data collection and laboratory analysis

methods for the NHANES are described elsewhere. Questions on

demographics, socioeconomics, dietary habits, and health are

included in the interviews. Participants gave written consent, and
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the study’s methods and materials were ethics board-approved. This

study used data from the 2013–2016 NHANES to determine blood

HbEO, serum TT, E2, and SHBG levels for the United States

population. Referring to previous NHANES literature, we deleted

participants with missing covariates (18, 19). A total of 20146

participants were enrolled at first, after the exclusion of

individuals who were pregnant (n=135), missed data on blood EO

(n=15189) and unavailable data on sex hormones (n=601), 4221

participants were included in our final analysis. Figure 1 illustrates

the selection process for participants.
2.2 Measurements of blood ethylene oxide

HbEO, with a longer in vivo half-life than EO, is utilized as an

indicator of EO exposure. The measurement of HbEO levels was

performed according to the guidelines outlined in the NHANES

Laboratory/Medical Technologist Procedures Manual (https://wwwn.

cdc.gov/Nchs/Nhanes/2013-2014/ETHOX_H.htm). Initially, samples

of erythrocytes were gathered, preserved at −30°C, and then sent to

the National Center for Environmental Health for assessment.

Subsequently, The HbEO quantity was measured utilizing high-

performance liquid chromatograph-tandem mass spectrometry

(HPLC-MS/MS) and the modified Edman reaction. Lastly, as a

result, the levels of HbEO were expressed as picomoles adducts per

gram of hemoglobin. Additionally, a comprehensive quality control

program, incorporating both external and internal surveillance, was

established to oversee and assess the accuracy and reliability of the

analytical testing process.
2.3 Sex hormone measurement

A serum sample was prepared, preserved at -20°C, and shipped to

the National Center for Environmental Health to be tested. To

measure TT and E2, isotope dilution-liquid chromatograph-tandem

mass spectrometry (ID-LC-MS/MS) was applied. The levels of SHBG

were measured using a chemiluminescent assay. Detailed technical

information about these methods are available in other sources (20,

21). The lower limit of detection (LLOD) was 0.75 ng/mL for TT,

2.994 pg/mL for E2, and 0.800 nmol/L for SHBG. For estimating the

concentration of circulating free testosterone, the free androgen index

(FAI) was used to estimate the level of circulating free testosterone by

dividing TT by SHBG (22). The TT to E2 ratio (TT/E2) was utilized

as an indirect measure of aromatase activity (23).
2.4 Other covariates

Potential confounding factors were also collected as covariates,

including age, race/ethnicity, education level, BMI, poverty income

ratio (PIR), cotinine and the time of sample collection. Race/ethnicity

was classified into Hispanics, non-Hispanic Black, non-Hispanic

White, and other races. Education level was classified as less than

high school, more than high school, high school, or general
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educational development (24). BMI was computed by dividing weight

(in kilograms) by the square of height (in meters). According to the

International Obesity Task Force (IOTF), children were classified as

overweight (BMI ≥ IOTF-25), obesity (BMI ≥ IOTF-30) and normal

(BMI< IOTF-25) (25). In the adult group, BMI category was classified

as < 25 kg/m2 and ≥ 25 kg/m2 (9). The PIR, which signifies the

family’s collective socioeconomic standing, was computed by

dividing the family income according to the poverty guidelines

pertinent to the participant’s household size, coupled with the year

and state data (26). Serum cotinine levels were measured and group

into 2 categories: <LOD (below the LOD, 0.015 ng/mL) and ≥LOD to

take the environmental tobacco exposure into account (27).

Moreover, to account for the variations in hormone levels, a six-

month time span (November 1 to April 30, May 1 to October 31)

incorporated as covariates in the statistical analysis. Physical activity

was calculated based on a detailed physical activity survey described

previously (28). Total energy intake was calculated from three-day

dietary-recall food composition tables (29).Whether the participant

has taken prescription medicine is assessed by NHANES interviewers

through the following question: “In the past 30 days, have you used or

taken any medication that requires a prescription? Please do not

include any prescription vitamins or minerals that you may have

already mentioned.” according to the NHANES analysis guideline

(https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2013/DataFiles/

RXQ_RX_H.htm#RXDCOUNT).

Potential confounding factors were also collected as covariates,

including age, race/ethnicity, education level, BMI, poverty income

ratio (PIR), cotinine and the time of sample collection. Race/

ethnicity was classified into Hispanics, non-Hispanic Black, non-
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Hispanic White, and other races. Education level was classified as

less than high school, more than high school, high school, or general

educational development (24). BMI was computed by dividing

weight (in kilograms) by the square of height (in meters).

According to the International Obesity Task Force (IOTF),

children were classified as overweight (BMI ≥ IOTF-25), obesity

(BMI ≥ IOTF-30) and normal (BMI< IOTF-25) (25). In the adult

group, BMI category was classified as < 25 kg/m2 and ≥ 25 kg/m2

(9). The PIR, which signifies the family’s collective socioeconomic

standing, was computed by dividing the family income according to

the poverty guidelines pertinent to the participant’s household size,

coupled with the year and state data (26). Serum cotinine levels were

measured and group into 2 categories: <LOD (below the LOD,

0.015 ng/mL) and ≥LOD to take the environmental tobacco

exposure into account (27). Moreover, to account for the

variations in hormone levels, a six-month time span (November 1

to April 30, May 1 to October 31) incorporated as covariates in the

statistical analysis. Physical activity was calculated based on a

detailed physical activity survey described previously (28). Total

energy intake was calculated from three-day dietary-recall food

composition tables (29). Whether the participant has taken

prescription medicine is assessed by NHANES interviewers

through the following question: “In the past 30 days, have you

used or taken any medication that requires a prescription? Please do

not include any prescription vitamins or minerals that you may

have already mentioned.” According to the NHANES analysis

guideline (https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2013/

DataFiles/RXQ_RX_H.htm#RXDCOUNT). Urine specimens were

obtained during field examination visits and cryopreserved at −20°
FIGURE 1

Graphical abstract and flowchart of studied participants selection. TT, total testosterone; E2, total estradiol; SHBG, sex hormone binding globulin;
FAI, free androgen index, was calculated as total testosterone (ng/dL)/SHBG (nmol/L), TT/E2 was calculated as TT (ng/dL)/E2 (pm/ml); HbEO,
hemoglobin adducts of ethylene oxide.
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C prior to analytical processing. Chemical selection criteria required

≥85% detection frequency across samples, resulting in the inclusion

of: two phenolic compounds (bisphenol A [BPA] and bisphenol S

[BPS]), three phthalate derivatives (monobenzyl phthalate [MBzP],

monoisobutyl phthalate [MiBP], and monocarboxyoctyl phthalate

[MCOP]). BPA and BPS were quantified via automated online

solid-phase extraction coupled with isotope-dilution high-

performance liquid chromatography-tandem mass spectrometry

(SPE-HPLC-MS/MS). MBzP, MCOP, and MiBP analysis

employed HPLC separation with electrospray ionization tandem

mass spectrometric detection (HPLC-ESI-MS/MS). Methodological

specifications and quality assurance protocols adhere to NHANES

laboratory standards (https://wwwn.cdc.gov/Nchs/Data/Nhanes/

Public/2013/DataFiles/EPHPP_H.htm#URD14DLC), (https:

//wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2013/DataFiles/

PHTHTE_H.htm), polychlorinated biphenyls (PCBs) were

measured in serum by high-resolution gas chromatography/

isotope-dilution high-resolution mass spectrometry (https://

wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2013/DataFiles/

PCBPOL_H.htm). Based on prior literature, we identified three

polychlorinated biphenyls (PCBs) with potential endocrine-

disrupting effects on sex hormones (30).
2.5 Statistical analysis

Appropriate weighting, in accordance with the recommendations

of the NCHS, were employed for each analytical process. Weighted

mean value (± standard deviation [SD]) were calculated employing

NHANES primary sampling units and strata, with the results being

subjected to a weighted t-test for statistical analysis. Frequencies

(proportions) for categorical variables were analyzed using the

weighted chi-square test. The serum HbEO and sex hormone

indicator distributions exhibited a right-skewed pattern, prompting

log2 transformation to normalize them for descriptive and regression

analyses. The log2-transformed HbEO values were then analyzed as

continuous and categorical (divided into quartiles) variables (31).

Weighted quartiles for log2-transformed HbEO were calculated

within specific sex-age and sex-puberty subgroups, as shown in

Supplementary Table S1.

A weighted multiple linear regression was used to calculate b
(Standardized coefficients) values and corresponding 95%

confidence intervals (CIs) to examine the connections between

individual HbEO levels and sex steroid hormone indicators.

Restricted cubic spline (RCS) analysis was applied to further

examine linear and non-linear relationships between HbEO and

sex hormones after adjusting for various potential covariates (32,

33). The Akaike information criterion (AIC) was used to choose the

most suitable knots that had the smallest AIC (34).

Considering the marked variations in sex hormone levels between

genders and at different stages of development, this analysis was

conducted based on age (children: ≤11 years, adolescents: 12-19

years, adults: >19 years) for males and females (35). Grouping 6-19

years old participants as “children” or “adolescents” based solely on

their ages may include both pre-pubertal and pubertal individuals in
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the same groups. Such grouping could result in subgroups with

exceptionally high or low sex hormone levels, which might bias the

regression analysis relationship between HbEO and sex steroid

hormones. Moreover, the impact of log2-HbEO on sex hormones

may be influenced by the pubertal stage. To tackle this concern, we

further subcategorized individuals into pubertal and prepubertal

subgroups based on their serum sex hormone levels and menarcheal

status. Individuals were considered to have entered puberty (i.e.,

classified as pubertal) if their TT levels were equal to or greater than

50 ng/dL (in males) or E2 levels were 20 pg/mL or higher (in females),

or if they had experienced the onset of menstruation (in females) (36–

38). Those not meeting these criteria were classified as pre-pubertal

(i.e., classified as prepubertal). Data regarding girls’ menarche status

was collected through inquiries such as: “Have menstrual periods

commenced?” (found in the medical questionnaire) and “What age

was the first menstrual period?” (included in the reproductive health

questionnaire). Female whose answer was “Yes” or provided their age

at first menstrual period was recorded as having started menstrual

cycles. Furthermore, this analysis performed the multiple linear

regression analyses again, stratified by pubertal status in both males

and females.

Subgroup analyses with multiplicative interaction terms were

performed to show whether the relationship between individual

HbEO levels and sex steroid hormones varied by race, age (<45

years or ≥45 years), BMI (<24 or ≥24 kg/m2), energy intake (<2,400

or ≥ 2,400 kcal), physical activity (<200 or ≥ 200 METs-hour/week)

and taken prescription medicine (Yes or No) (39).

To evaluate the robustness of our results, 4 sensitivity analyses were

conducted to examine the relationship between individual HbEO levels

and sex steroid hormones: 1) Multiple imputation for missing data was

conducted using the ‘mice’ package (Multivariate Imputation by

Chained Equations) in R (40); 2) Energy intake, physical activity,

and prescription medication was adjusted additionally; 3) exposure of

bisphenol A, phthalates and polychlorinated biphenyls was adjusted

additionally; 4) excluded participants aged ≥65 years in the adults. All

statistical analyses were performed using R software version 4.1.2, and a

two-tailed P value with a significance level of 0.05 was used for all

statistical tests to determine significance.
3 Results

3.1 Descriptive statistics

Table 1 summarizes the demographic features of the enrolled

participants categorized by sex and age. The study sample

comprised a total of 4221 individuals, including 2089 males and

2101 females. The individuals had a mean age of 41.70 years. The

detection rates for TT, E2, SHBG, and HbEO in the entire sample

were 99.81%, 85.93%, 100%, and 97.49%, respectively. The values

below the LLOD were replaced by the lower limit of detection

divided by the square root of 2 (LLOD/sqrt (2)) according to the

NHANES analysis guideline (https://wwwn.cdc.gov/Nchs/Data/

Nhanes/Public/2013/DataFiles/ETHOX_H.htm#LBXEOA)

(Supplementary Table S2). However, the detection rate for E2 in
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TABLE 1 Weighted sample characteristics of children (6-11 years old), adolescents (12–19 years old) and adults (≥ 20 years old) with serum sex hormones and HbEO in NHANES 2013–2014.

Variable ALL Female Male

Children Adolescents Adults P-value

5) 8.49 (0.11) 15.24 (0.14) 46.88 (0.60) < 0.0001

8) 18.80 (0.37) 23.13 (0.41) 28.80 (0.18) < 0.0001

< 0.0001

) 72 (50.56) 574 (65.74) 59 (49.03)

) 64 (12.64) 271 (10.98) 55 (11.88)

) 90 (15.91) 260 (9.26) 70 (19.83)

) 110 (20.89) 405 (14.03) 71 (19.25)

5 ) 2.41 (0.17) 2.45 (0.16) 3.06 (0.08) < 0.0001

0) 0.27 (0.06) 19.03 (6.43) 80.96 (6.71) < 0.0001

0.57

7) 173 (66.08) 231 (71.79) 1120 (69.80)

) 85 (33.92) 89 (28.21) 420 (30.20)

0.99

8) 131 (53.49) 150 (52.34) 743 (53.02)

2) 128 (46.51) 170 (47.66) 798 (46.98)

< 0.0001

) 0 (0.00) 154 (45.74) 566 (32.89)

) 259 (100.00) 147 (48.90) 168 (6.12)

) 0 (0.00) 19 (5.36) 806 (60.98)

< 0.0001

2) 160 (72.33) 187 (62.62) 781 (50.55)

) 53 (27.67) 118 (37.38) 638 (49.45)

0.59

0 (NA) 10 (2.02) 54 (3.70)

1) 0 (NA) 277 (97.98) 1155 (96.30)

(Continued)
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(47.0

(32.09

(17.14
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(49.8

(43.76

(2.68)

(74.2
ALL Children Adolescents Adults P-value

Age a 41.70 (0.46) 42.58 (0.60) 8.63 (0.17) 15.39 (0.17) 48.68 (0.66) < 0.0001 40.

BMI a 28.05 (0.20) 28.61 (0.28) 18.80 (0.40) 25.13 (0.46) 29.80 (0.32) < 0.0001 27.

Race/ethnicity b < 0.001

White (Non-Hispanic) 1478 (63.08) 773 (63.10) 98 (56.04) 603 (64.99) 72 (51.54) 70

Non-Hispanic Black 828 (10.88) 438 (10.54) 75 (12.57) 312 (10.19) 51 (11.59) 39

Hispanics 772 (10.56) 352 (10.47) 64 (14.85) 231 (9.41) 57 (16.27) 42

Other 1143 (15.49) 557 (15.88) 83 (16.53) 395 (15.41) 79 (20.59) 58

PIR a 2.87 (0.08) 2.78 (0.10) 2.34 (0.24) 2.20 (0.13) 2.89 (0.09) < 0.0001 2.9

Serum cotinine (ng/mL) a 50.74 (3.65) 32.62 (2.75) 0.37 (0.08) 5.41 (3.44) 38.59 (3.22) < 0.0001 68.

Cotinine exposure status b 0.61

Exposed (> 0.015 ng/ml) 2844 (67.43) 1320 (61.25) 155 (57.68) 197 (60.23) 968 (61.66) 152

Unexposed (≤0.015 ng/ml) 1374 (32.57) 780 (38.75) 100 (42.32) 139 (39.77) 541 (38.34) 59

Six month time period b 0.95

May 1 through October 31 2136 (50.6) 1112 (57.88) 134 (59.35) 180 (58.20) 798 (57.73) 102

November 1 through April 30 2085 (49.4) 989 (42.12) 121 (40.65) 156 (41.80) 712 (42.27) 109

Education level b < 0.0001

High school or general educational development 1372 (32.51) 652 (29.32) 0 (0.00) 174 (55.36) 478 (28.28) 72

Less than high school 1140 (27.01) 566 (15.57) 255 (100.00) 149 (42.40) 162 (5.61) 57

More than high school 1708 (40.47) 883 (55.10) 0 (0.00) 13 (2.25) 870 (66.11) 82

Energy intake (kcal/d) b 0.11

<2400 2639 (61.48) 1511 (73.20) 178 (85.80) 255 (80.12) 1078 (78.97) 112

≥2400 1187 (31.36) 378 (18.89) 34 (14.20) 64 (19.88) 280 (21.03) 80

Physical activity (METs-hour/week) b 0.76

<200 130 (2.98) 66 (3.28) 0 (NA) 14 (3.54) 52 (4.86) 6

≥200 2691 (70.42) 1259 (66.62) 0 (NA) 266 (96.46) 993 (95.14) 143
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TABLE 1 Continued

Variable ALL Female Male

Children Adolescents Adults P-value ALL Children Adolescents Adults P-value

< 0.0001 < 0.0001

221 (86.60) 263 (74.29) 551 (33.21) 1185 (52.34) 187 (67.38) 253 (76.50) 745 (47.90)

34 (13.40) 72 (25.71) 959 (66.79) 934 (47.63) 72 (32.62) 67 (23.50) 795 (52.10)

8.55 (0.69) 27.16 (0.89) 23.59 (0.57) < 0.0001 386.42 (5.93) 17.54 (4.64) 390.04 (17.38) 416.08 (5.64) < 0.0001

88.19 (4.57) 67.34 (4.43) 75.85 (2.05) 0.01 46.70 (0.87) 106.07
(5.14)

42.23 (1.36) 42.45 (0.62) < 0.0001

14.19 (2.11) 77.90 (5.01) 59.73 (3.13) < 0.0001 22.19 (0.33) 2.47 (0.12) 19.09 (0.74) 24.22 (0.36) < 0.0001

0.17 (0.02) 0.62 (0.03) 0.42 (0.01) < 0.0001 10.71 (0.18) 0.34 (0.09) 12.06 (0.50) 11.38 (0.20) < 0.0001

1.44 (0.15) 0.86 (0.16) 2.16 (0.09) < 0.0001 18.12 (0.46) 4.21 (0.55) 22.12 (0.81) 18.72 (0.49) < 0.0001

36.09 (1.26) 39.41 (5.69) 75.40 (5.62) < 0.0001 83.52 (5.21) 36.15 (1.55) 52.89 (6.97) 91.48 (5.96) < 0.0001

overty guidelines specific to family size, as well as the appropriate year and state. TT, total testosterone; E2, total estradiol; SHBG, sex hormone binding globulin; FAI, free
ulated as TT (ng/dL)/E2 (pm/ml). BMI, body mass index; HbEO, hemoglobin adducts of ethylene oxide.
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Prescription medicine b

No 2220 (46.68) 1035 (40.98)

Yes 1999 (53.30) 1065 (59.01)

Serum sex hormones indices a

TT (ng/dL) 205.25 (5.05) 23.00 (0.45)

SHBG (nmol/L) 61.18 (1.25) 75.74 (1.97)

E2 (pg/mL) 40.40 (1.40) 58.72 (2.67)

FAI 5.58 (0.14) 0.42 (0.01)

TT/E2 10.07 (0.30) 1.98 (0.08)

HbEO (pmol/gHb) a 76.31 (3.59) 69.06 (4.96)

aWeighted mean value (± standard deviation [SD]).
bFrequencies (proportions) as appropriate.
PIR, the ratio of family income to poverty, was calculated by dividing family income by the p
androgen index, was calculated as total testosterone (ng/dL)/SHBG (nmol/L), TT/E2 was cal
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male children was less than 50%. As a result, the analyses for E2 and

TT/E2 were omitted for this particular subgroup. Comparatively,

adult participants exhibited greater ethylene oxide exposure levels

than adolescents, while adolescents showed higher exposure levels

than children, across both genders (Supplementary Table S3).

Given the crucial involvement of sex hormones in the initiation

of puberty, the statuses of pre-puberty and puberty were also

examined (Supplementary Table S4). The proportion of E2

detections in prepubertal males and females was below 50%.

Consequently, assessments of E2 and TT/E2 were not conducted

for these demographic subsets. EO exposure was significantly higher

in the puberty than that of pre-puberty in males. While there were no

significances between pre-puberty and puberty in females.
3.2 The associations between individual
HbEO levels and sex hormone levels across
sex-age and sex-puberty categories

Figure 2 and Supplementary Table S4 present the relationships

between HbEO levels, categorized as continuous and quartiles, and

sex hormones across various stages of development. Among males,

no substantial correlations were found between HbEO and sex

steroid hormones among children and adolescents (Supplementary

Table S4). However, in male adults, HbEO doubling corresponds to

a 2.85% decrease in E2, a 2.10% increase in SHBG, and a 4.3% rise in

the TT/E2 (for E2: p= 0.04, OR = -0.03, 95% CI: -0.06 to 0.00; for

SHBG: p= 0.03, OR = 0.03, 95% CI: 0.00 to 0.06; for TT/E2: p<

0.001, OR = 0.06, 95% CI: 0.03 to 0.09). Moreover, consistent

associations of serum E2 and TT/E2 levels with HbEO were also

observed across quartiles of EO exposure. Serum E2 levels were

decreased along with the increased exposure of EO (p for

trend=0.014). Similarly, TT/E2 levels were increased accompanied

by the increased exposure of EO (p for trend=0.003) (Figure 2). No

correlations were identified between EO exposure and sex

hormones in female subjects across various categories.

The relationship between the continuous and quartile

distributions of HbEO and sex steroid hormones in prepubertal

and pubertal status were presented in Supplementary Table S5.

There were no significant correlations found between HbEO and

sex steroid hormones in prepuberty and puberty, irrespective of

gender. When evaluated by quartiles of EO exposure, HbEO

(quartile 4 versus 1) showed a positive correlation with SHBG in

pre-pubertal males (P = 0.03, OR = 0.21, 95% CI: 0.02, 0.4). In

contrast, HbEO (quartile 3 versus 1) was negatively correlation with

SHBG in pubertal males (P = 0.03, OR = -0.22, 95% CI: -0.42, -0.03).
3.3 Association between individual
log2_HbEO and sex steroid hormone
indicators by sex-age and sex-puberty
groups shown by RCS

A restricted cubic spline (RCS) analysis was utilized for further

investigating the linear and nonlinear relationships between HbEO
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with sex hormones after adjusting for various confounding factors,

as depicted in Figure 3 and Supplementary Figure S1. In male

children, A nonlinear association was found between HbEO and

SHBG (NL-P value = 0.049). A non-linear relationship was found

between HbEO and TT in male adolescents (NL-P value = 0.042). In

male adult, non-linear relationships were discovered between

HbEO with E2, SHBG and FAI (E2: NL-P value = 0.0026; SHBG:

NL-P value =0; FAI: NL-P value =0.017). Furthermore, nonlinear

associations were found between FAI, SHBG, and HbEO in female

adult participants. (NL-P value = 0.041; FAI: NL-P value =

0.024) (Figure 3).

What’s more, our RCS analysis uncovered a nonlinear

relationship between HbEO and SHBG in the prepubertal group

among males (NL-P value = 0.0264). While, HbEO has a non-linear

association with FAI in female pubertal individuals (NL-P value =

0.0476) (Supplementary Figure S1).
3.4 Subgroup analysis and sensitive
analysis

Subgroup analyses were conducted among adult males

categorized by age, race, BMI, energy intake, physical activity, and

prescription medication to further investigate the consistency of the

relationship between the log2-transformed HbEO levels and sex

hormones across different groups. These results confirmed a robust

association between the log2-transformed HbEO levels and TT, E2,

FAI, TT/E2 across different subgroups (P for interaction > 0.05)

(Figures 4A, B, D, E). We found that the effect of HbEO on SHBG

was significantly dependent on energy intake (interaction P <

0.001). In adult males with an energy intake ≥ 2400 kcal, HbEO

was positively associated with SHBG (Figure 4C).

To validate the robustness of our findings, we conducted 4

sensitivity analyses. In all sensitivity analyses, the negative

association of HbEO with E2 and TT/E2 remained significant,

demonstrating the robustness of our results (Supplementary

Tables S6–S12).
4 Discussion

This investigation represents the first to explore the connection

between EO and sex steroids across various age brackets within a

participant population. The findings demonstrated that HbEO was

significantly inversely associated with E2 and positively associated

with TT/E2 and SHBG levels in adult males. Such associations

between HbEO with E2 and SHBG were non-linear in male adults.

However, no significant correlation was detected between HbEO and

sex steroids in different age female groups. Thus, our study provides

evidence that EO may potentially serve as an endocrine disruptor in

the environment, affecting the levels of sex hormones in adult males.

EO is a gaseous compound at room temperature and is

primarily encountered through inhalation (41). Members of the

public may encounter EO through a range of routes, such as

breathing polluted air, inhaling tobacco smoke, exposure to
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vehicle exhaust, or encountering fumes from commercial products

in domestic settings (1, 42). a key industrial chemical derived from

ethylene, is extensively employed in the manufacturing of diverse

compounds that are prevalent in industrial, medical, and consumer

goods (4). Nevertheless, in 2016, Ethylene oxide is classified as a

carcinogen for humans by both the International Agency for
Frontiers in Endocrinology 08
Research on Cancer (IARC) and the United States Environmental

Protection Agency (USEPA), signifying that ethylene oxide is

harmful to human health’ sake (43). EO sterilization, FDA, is

responsible for sterilizing approximately half of all sterile medical

devices within the U.S. Workers, especially those in the medical

equipment sterilization sector, have been documented to face
FIGURE 2

Analysis of the association between log2-HbEO and sex hormones by sex-age groups in participants in NHANES 2013–2016 using the RCS. TT, total
testosterone; E2, total estradiol; SHBG, sex hormone binding globulin; FAI, free androgen index, was calculated as total testosterone (ng/dL)/SHBG
(nmol/L), TT/E2 was calculated as TT (ng/dL)/E2 (pm/ml). HbEO, hemoglobin adducts of ethylene oxide.
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occupational exposure to EO at elevated levels (2, 44). EO

sterilization has also gained great attention in the worldwide

effort to combat the COVID-19 pandemic. The rise in requests

for personal protective equipment (PPE), including items like face

masks, gloves, and protective suits, might have led to a higher

exposure to EO. It is noteworthy that single-use sterile medical

devices have stringent standard regarding EO residue. Specifically,

the allowable residual limit for EO limit content in face masks is

established at <10 mg/g. These regulatory standards underscore the
importance of conducting interventions limiting the exposure of EO

in daily life. HbEO serve as a more stable and sensitive blood

biomarker for assessing EO exposure. Prior research has established

a direct link between human HbEO levels and exposure to airborne

EO (45, 46). In this investigation, we utilized a widely recognized

HPLC-MS/MS that integrates a modified Edelman reaction to

concurrently measure HbEO level (47). Occupational exposure

limits for EO are set by organizations such as the Occupational

Safety and Health Administration (OSHA) in the United States. The

current OSHA permissible exposure limit (PEL) for EO is 1 ppm

(parts per million) as an 8-hour time-weighted average. OSHA

regulations require employers to implement controls to reduce EO

exposure below the PEL (48). The U.S. Food and Drug

Administration (FDA) regulates the use of EO in the sterilization

of medical devices and sets limits on the residual amounts of EO left

on these devices (49). The variability in EO regulations across

different countries and states can lead to inconsistencies in

protection levels. There can be challenges in enforcing regulations

due to the pervasive use of EO and the difficulty of monitoring and
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controlling emissions. Workers in industries that use EO, such as

healthcare workers and those in the sterilization and chemical

manufacturing industries, are at highest risk. Communities

located near facilities that emit EO may be at increased risk of

exposure. Ensuring compliance with exposure limits requires

effective monitoring and enforcement, which can be resource-

intensive. Public awareness about the risks of EO exposure is

crucial for informed decision-making and for the public to

advocate for stronger protections. As more is learned about the

health effects of EO, exposure limits may need to be revised and

additional controls implemented to protect public health. There

may be a need for enhanced research into the health effects of EO

and improved methods for monitoring and controlling

its emissions.

Only a few animal experiments have explored the relationship

between HbEO and sex steroid. Previous studies have found that

chronic inhalation of EO leads to a dose-dependent decrease in

testes weight and testes’ DNA content in adult male rats (50). Some

studies have also found damages to reproductive cells and impaired

sperm production in male rats after EO exposure (15, 51). In human

studies, Takumi Kagawa found a positive correlation between

HbEO and TT, TT/E2. Moderate EO exposure was associated

with a decrease in E2 levels (52). Another study by Cao et al.,

which only explored the relationship between HbEO and TT, found

that HbEO was positively correlated with TT, with the association

being stronger in males than in females (53). In contrast, our study

considered the distinct sex hormone levels across different sexes, age

groups, and pubertal status, providing a more comprehensive
FIGURE 3

Associations of continuous and quartiles of log2-HbEO with sex hormones in >19-year old adults. (A) TT. (B) E2. (C) SHBG. (D) FAI. (E) TT/E2. TT,
total testosterone; E2, total estradiol; SHBG, sex hormone binding globulin; FAI, free androgen index, was calculated as total testosterone (ng/dL)/
SHBG (nmol/L), TT/E2 was calculated as TT (ng/dL)/E2 (pm/ml); HbEO, hemoglobin adducts of ethylene oxide.
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exploration of the relationship between EO exposure and five sex

hormones by sex-age and sex-puberty groups. Consistently, we

observed that HbEO was significantly inversely associated with E2

and positively associated with TT/E2 and SHBG levels in adult

males. Previous studies have pointed out that sperm production can

be influenced by E2 (54, 55). Consequently, this analysis suggested

EO exposure may affect sperm production in male adults consistent

with previous animal experiments. For TT, our study did not find

results consistent with the two aforementioned studies. This

discrepancy is likely attributed to the fact that biologically

available TT and E2 levels depend on SHBG concentrations.

Therefore, in our regression models assessing the relationship

between HbEO and TT or E2, we strictly controlled for SHBG.

Our findings differ from previous studies, suggesting that the

observed increase in TT levels among adult males exposed to

HbEO may be mediated through SHBG. Further robust evidence

is required to confirm these mechanisms. Additionally, our findings

are consistent with results from animal studies, where plasma

testosterone concentrations did not significantly change after EO

exposure in rats (16). Notably, a prolonged estrus cycle and an

increased percentage of the diestrus stage in the presence of EO

exposure were observed in female mice (15, 56). Nonetheless, our

research did not uncover any substantial correlation between EO
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exposure and sex hormones in female subjects. Previous papers

have also shown different effects of other pollutants on male and

female sex hormones (27, 57, 58).Such differences may occur due to

the differences in hormonal regulatory networks exist significantly

between males and females. In females, the high baseline levels of

estrogen may help stabilize hormone dynamics by modulating the

secretion of gonadotropic hormones such as luteinizing hormone

(LH) and follicle-stimulating hormone (FSH), thereby mitigating

the disruptive effects of EO (59). Additionally, estrogens may exert

protective effects by activating their receptors (Estrogen Receptor

(ER) a and ERb), preserving the integrity of the endocrine system

and reducing the oxidative stress or genotoxicity induced by EO

exposure. Furthermore, EO may undergo distinct metabolic

pathways in males and females. For example, variations in

enzymatic activity due to gender differences could result in faster

detoxification of EO in female systems. Moreover, lifestyle and

environmental factors may play a role; women are more likely to use

hormonal medications, such as oral contraceptives, which might

modulate hormone levels and overshadow the effects of EO

exposure. The dynamic fluctuations in hormone levels during

specific life stages, such as premenopause and postmenopause,

might also contribute to the difficulty in detecting EO’s effects

through statistical analysis. Due to the limited research on the
FIGURE 4

Subgroup analysis of the association between log2-HbEO and sex hormones in subgroups of >19-year old male adults. (A) TT. (B) E2. (C) SHBG.
(D) FAI. (E) TT/E2. Each subgroup adjusted for all factors except the stratification factor itself. TT, total testosterone; E2, total estradiol; SHBG, sex
hormone binding globulin; FAI, free androgen index, was calculated as total testosterone (ng/dL)/SHBG (nmol/L), TT/E2 was calculated as TT (ng/
dL)/E2 (pm/ml). BMI, body mass index; HbEO, hemoglobin adducts of ethylene oxide.
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biological mechanisms of EO’s impact on sex hormones in

experimental animals, it is challenging to elucidate the

mechanistic approach behind the observed differences in EO’s

effects on sex hormones between male and female populations.

Such complexities underscore the need for further research to

comprehensively understand the biological mechanisms

underlying EO’s influence on sex hormones in both genders.

The biological processes through which EO influences endocrine

hormone levels remain unclear. Endocrine disruptors can indirectly

affect serum sex hormone levels through various mechanisms, such as

regulating luteinizing hormone and follicle-stimulating hormone

signaling, liver excretion processes, and the biofeedback processes

of related hormones (60–64). Air pollutants, may primarily act on

cholesterol metabolism pathways and hepatic function, thereby

influencing sex hormone synthesis (65, 66). Specifically, long-term

exposure to EO induces oxidative stress in the body, leading to

increased hepatic lipid peroxidation and decreased glutathione

reductase activity, which in turn affects lipid metabolism (67).

Abnormal lipid metabolism can interfere with sex hormone

synthesis. Additionally, EO exposure can trigger inflammation (68,

69). When inflammation occurs, pro-inflammatory cytokines

typically activate the hypothalamic-pituitary-adrenal (HPA) axis.

This activation helps prevent excessive inflammatory reactions by

leveraging the anti-inflammatory effects of glucocorticoids. In this

process, the HPA axis may also influence reproductive, growth, and

thyroid functions, ultimately altering sex hormone levels. Conversely,

abnormal sex hormone levels can modify inflammatory and immune

responses (70). Future studies should explore the biological

mechanisms involved in the relationship between EO and sex

hormones in greater depth.

This study possesses multiple strengths. To the best of our

understanding, this investigation represents the earliest utilization of

the NHANES dataset to examine the correlation between the degree of

EO exposure and sex hormones across a demographically

comprehensive sample of the American population by sex-age or

sex-puberty status. The database was meticulously filtered through

stringent protocols, ensuring standard quality control measures. Large-

scale databases, such as NHANES, have been instrumental to

researchers and humanity. With their access to diverse populations

and comprehensive datasets, these databases facilitate the identification

of additional risk factors and disease biomarkers (71–76). Additionally,

the levels of TT and E2 were assayed using ID-LC-MS/MS, offering

enhanced precision compared to the immunoassay technique (21).

Nevertheless, our study is subject to several constraints. Firstly, the lack

of precise puberty status data within our study population hinders the

thorough adjustment for the effects of puberty’s influence on this

finding. In addition, this study carried out analyses using a derived

“puberty status” classification, determined by the steroid hormone

levels and menarcheal status. These criteria are not reliable for

distinguishing pubertal from prepubertal status, as age and steroid

hormone levels are not the most dependable indicators of pubertal

progression (77). Consequently, unmeasured confounding variables

associated with the unquantified puberty status persist. Secondly, as

with other epidemiological analysis, our findings may be influenced by

unmeasured confounding variables, such as job status and exposure to
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other chemical and physical pollutants. Thirdly, the absence of data on

gonadotropins and key enzymes in steroidogenesis prevented us from

investigating the fundamental biological mechanisms involved.

Fourthly, The NHANES is a cross-sectional survey conducted by the

Centers for Disease Control and Prevention (CDC) to estimate the

health and nutritional status of the non-institutionalized population in

the US, it is does not represent the situation in other countries or

regions. Additionally, the NHANES data based on self-reported

information such as BMI from individuals, potentially leading to

recall bias. In the meanwhile, the measurement error of the exposure

may have led our results biased towards the null.
5 Conclusions

HbEO was significantly inversely associated with E2 and

positively associated with TT/E2 and SHBG levels in adult males.

Such associations between HbEO with E2 and SHBG were non-

linear in male adults. However, no significant correlation was

detected between HbEO and sex steroids in different age female

groups. Given the cross-sectional study design and the restricted

sample size, additional research is required to validate and replicate

these results. Furthermore, an in-depth exploration of the specific

mechanisms by which EO affects sex hormones in male adults is

essential. In addition, it is crucial for relevant U.S. agencies to

strengthen adherence to EO exposure limits and regulatory

frameworks, and to further refine corresponding research and

rule-making for populations with prolonged exposure to EO.
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