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Background: Papillary thyroid carcinoma (PTC) is a common endocrine tumor

with a rapidly increasing incidence. While surgery and radioactive iodine

treatment are effective for most patients, they impose significant economic

and psychological burdens. Metabolic dysregulation, particularly in fatty acid

metabolism (FAM), plays a critical role in cancer progression and immune

responses. Identifying key FAM-related genes in PTC may provide valuable

biomarkers and potential treatment candidates.

Materials and methods: We analyzed 309 FAM-related genes to build a

prognostic signature. DEGs were identified and a multivariate Cox regression

model was utilized to establish a robust prognostic signature, which was

validated by evaluating its associations with clinical features, immune

responses, and tumor progression. Lastly, we examined the expression of key

FAM-related genes in PTC cell lines and assessed that silencing SCD disturbs the

proliferation, invasion, and migration of PTC cells.

Results:We identified three key FAM-related genes, ACACB, ADH1B, and SCD, as

significant prognostic markers. Immunological analysis uncovered that low-risk

patients exhibited higher immune cell abundance and increased expression of

immune checkpoints, indicating a better response to immunotherapy. In

contrast, high-risk patients showed lower immune cell abundance and

immune checkpoint expression, suggesting poorer immunotherapy outcomes.

Experimental validation demonstrated that ACACB and ADH1B were

downregulated, while SCD was upregulated in PTC cell lines. Furthermore,

silencing SCD inhibited PTC cell proliferation, migration, and invasion.

Conclusion: Our study underscores the pivotal role of FAM-related genes,

particularly ACACB, ADH1B, and SCD, in the progression and immune

regulation of PTC. The prognostic signature derived from these genes
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represents a valuable tool for predicting clinical outcomes and guiding

personalized treatment strategies. Among these, SCD stands out as a

promising therapeutic target for PTC, warranting further research to validate

these findings and uncover its underlying molecular mechanisms.
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Introduction

Thyroid cancer is a prevalent endocrine malignancy, with

papillary thyroid cancer (PTC) being the most common subtype,

representing approximately 90% of all thyroid cancer (1). The

incidence of thyroid cancer is rising rapidly worldwide in large

part because of the increasing incidence of PTC (2). Although the

prognosis of thyroid cancer patients is better than that of other

malignant tumors, 47,485 patients still died from thyroid cancer in

2022 (3). So, it is vital to explore the key molecular markers that

influence the progression of PTC.

Fatty acid metabolism (FAM) plays an important role in

maintaining cellular homeostasis, as it is complexly involved in

membrane synthesis, energy storage, and signal transduction (4).

FAM upregulation may represent an adaptive response to the

metabolic demands of tumor cells and is involved in multiple cellular

processes, including cancer cell growth (5). In cancer cells, FAM

upregulation not only provides the necessary lipids for membrane

synthesis but also supports tumor initiation, progression, and resistance

to therapy (6, 7). FAM reprogramming in cancer includes some key

enzyme upregulation as well as enhanced fatty acid uptake and

oxidation (4, 6, 8). These processes can promote tumor cell growth

and proliferation by overcoming the lack of nutrients and a hypoxic

environment (9). Recently, multiple studies have highlighted the

significance of FAM in thyroid cancer, particularly PTC. Chu J. et al.

found that circPCNXL2 enhanced tumor cell growth by influencing the

de-novo synthesis of fatty acids (10). Lu J. et al. demonstrated through

multi-omics analyses that fatty acid metabolism, including hydrolysis,

transport, and oxidation, is significantly upregulated in PTC (11).

These studies provided novel directions for therapy by targeting

dysregulated FAM-related genes in PTC. So, exploring the specific

roles of FAM-related genes could provide valuable insights into disease

mechanisms and novel biomarkers for the diagnosis, prognosis, and

treatment of PTC.
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In this study, the FAM-related genes originated from the

Molecular Signatures Database (MSigDB). Furthermore, we

constructed a polygenic prognostic model based on a TCGA

cohort for PTC. A comprehensive analysis was employed to

evaluate the relationship between the prognostic model and

immune and clinical features. Finally, we performed experiments

to validate the impact of FAM-related genes on PTC progression.

We concluded that further investigation is essential to elucidate

the underlying mechanisms by which FAM-related genes

influence PTC progression. The flowchart of this study is shown

in Figure 1A.
Materials and methods

Data acquisition

FAM-related genes were sourced from the MSigDB available at

https://www.gsea-msigdb.org/gsea/msigdb, a comprehensive

resource that curates gene sets to facilitate functional enrichment

analysis and the biological interpretation of genomic data (12–15).

The Cancer Genome Atlas (TCGA) is a comprehensive database

that integrates genomic and clinical data across various cancer

types, serving as a valuable resource for cancer research (16). The

TCGA cohort includes 59 normal thyroid tissues and 513 PTC

tissues. We used survival, clinical features, and expression data in

the TCGA cohort. Gene Expression Omnibus (GEO) is a public

repository designed for the storage and sharing of gene expression

and functional genomics data from high-throughput experiments.

We used the GSE29265 and GSE33630 cohorts. The GSE29265

cohort includes 20 normal and 20 PTC tissues (17). The GSE33630

cohort includes 45 normal and 49 PTC tissues (18, 19).

The scRNA-seq data of GSE232237 were obtained from the GEO,

which included three normal thyroid, seven PTC, and five anaplastic

thyroid cancer (ATC) cases (20). In this study, we selected seven PTC

samples to perform our analysis. The R package “Seruat” was utilized

to perform the single-cell analysis. According to cell-specific markers,

we isolated eight types of cells, namely, thyrocytes (“TG,” “EPCAM,”

“KRT18”), T cells (“CD3D,” “CD3E,” “CD8A”), B cells (“CD79A,”

“MS4A1,” “IGHG1”), myeloid cells (“CD68,” “CD163,” “LYZ”),

endothelial cells (“PECAM1,” “VWF,” “CLDN5”), plasma cells

(“MZB1,” “SDC1,” “CD79A”), mast cells (“CST3,” “KIT,” “CPA3”),

and fibroblasts (“FGF7,” “COL1A1,” “COL1A2”).
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Construction and verification of the FAM-
related gene prognostic signature

The RStudio (Version 4.4.1) software was used to construct the

FAM-related gene prognostic signature. In this study, we employed

several R packages, including “survival,” “survminer,” “heatmap,”

“survivalROC,” “ComplexHeatmap,” “ggplot2,” “ggpubr,” “ggExtra,”

and “limma.” To build the prognostic signature, the “survival” R
Frontiers in Endocrinology 03
package was employed for multivariate Cox regression analysis.

Survival analysis utilized the “survival” and “survminer” R

packages. Additionally, the “survival” R package was also used for

both univariate and multivariate Cox regression analyses. A heatmap

of three FAM-related genes was generated utilizing the “heatmap” R

package. The ROC curve was plotted employing the “survivalROC” R

package. The “ComplexHeatmap” R package was used to depict the

association between clinical features and risk scores.
FIGURE 1

(A) Flowchart of this study. (B) The heatmap of DEGs based on FAM-related genes. (C) Volcano plot of DEGs based on FAM-related genes.
(D) Univariate Cox regression analysis for survival-related genes. (E) Construction of the prognostic signature based on the three FAM-related genes
using multivariate Cox regression analysis.
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Functional analysis and somatic
mutation landscape

Gene set enrichment analysis (GSEA) is a computational

method that evaluates whether predefined gene sets exhibit

significant changes in expression across distinct biological states

or conditions. In this study, the GSEA software was utilized to carry

out function analysis. The plots for multiple GSEA were generated

using the “plyr,” “ggplot2,” “grid,” and “gridExtra” R packages.

Mutation data were downloaded from the TCGA database.

Mutation analysis mainly employed the “maftools” R package to

generate waterfall plots, which visually represented the mutation

frequency and types across samples, displaying gene-wise and

sample-wise mutation distributions to highlight common

mutations and patterns in genomic data.
Immune-related analysis of the
prognostic signature

The CIBERSORT algorithm, based on linear support vector

regression (SVR), is a widely recognized and reliable machine

learning technique for deconvolving expression matrices to

evaluate the ratio of 22 distinct human immune cell subtypes

(21). In this study, based on the CIBERSORT algorithm, we

evaluated the immune cell abundance in each PTC sample from

the TCGA database. In addition, we used two R packages:

“preprocessCore” and “limma”.

Next, we utilized seven algorithms, namely, CIBERSORT-ABS

(21), CIBERSORT (21), Tumor Immune Estimation Resource

(TIMER) (22), QUANTISEQ (23), MCPcounter (24), xCell (25),

and EPIC (26), to comprehensively analyze the immune landscape

of two groups, which enabled us to assess various aspects of

immune cell infiltration and characterize the immunological

features in greater detail. We used the following eight R packages:

“limma,” “scales,” “ggplot2,” “ggtext,” “reshape2,” “tidyverse,”

“ggpubr,” and “pheatmap.” Additionally, immune function

analysis was carried out utilizing five R packages: “limma,”

“GSVA,” “GSEABase,” “ggpubr,” and “reshape2”.
Cell culture and transfection

In this study, all cell lines were purchased from the China Type

Culture Collection (CTCC). Nthy-ori 3-1 is a normal thyroid cell

line, while TPC-1, K1, KTC-1, and BCPAP are PTC cell lines. Nthy-

ori 3-1 cells were cultured in Dulbecco’s modified eagle medium

(DMEM). TPC-1, KTC-1, and BCPAP cells were maintained in

Roswell Park Memorial Institute 1640 (RPMI-1640) medium, and

K1 cells were grown in DMEM/F12 (DMEM and Ham’s F-12

nutrient mixture) medium. All cells were grown in media with

10% fetal bovine serum (FBS) and 1% penicillin–streptomycin and

incubated at 37°C with 5% CO2.

For the cell transfection of TPC-1, cell transfection was initiated

when the cell density reached approximately 30%. Lipofectamine
Frontiers in Endocrinology 04
2000 (Lip2000) was used as the transfection reagent. First, the

optimized minimum essential medium was separately mixed with

Lip2000 and siRNA, and each mixture was incubated for 5 min. The

two solutions were then combined for an additional 15 minutes. The

resulting transfection mixture was added to the complete RPMI-1640

medium without antibiotics. After 6–8 h, the medium was replaced,

and SCD knockdown efficiency was evaluated 24 h post-transfection.
Quantitative polymerase chain reaction

According to the manufacturer’s instructions, the TRIzol reagent

was employed to acquire total ribonucleic acid). Next,

complementary DNA (cDNA) was obtained by performing a

reverse transcription assay. Lastly, qPCR was utilized to assess

relative messenger ribonucleic acid (mRNA) expression. The 2−DDCt

method was used to calculate relative expression. The primer names

and primer sequences are shown in Supplementary Table S1.
CCK8, colony formation, scratch, and
Transwell assays

For the CCK8 assay, after successful transfection of TPC-1 cells,

3,000 cells from both the control and knockdown groups were

cultured in 96-well plates. Cell viability was checked by incubating

the cells for 0, 24, 48, and 72 h, and optical density (OD) at 450 nm

was determined at each time point using a microplate reader.

For the scratch assay, after successful transfection of TPC-1

cells, cells were cultured until they reached 100%. A scratch was

made using a 200-µL pipette tip, followed by PBS washing to

remove the medium. Images were captured immediately after

scratching and then again at 24 and 48 h to monitor wound healing.

For the colony formation assay, after successful transfection of

TPC-1 cells, 1,000 cells from both the control and knockdown

groups were seeded into six-well plates. The medium was replaced

every 3–5 days. After 14 days, the plates were collected, washed with

PBS, fixed with paraformaldehyde, and stained with crystal violet,

and the images were taken after the plates dried using an

Olympus microscope.

For the Transwell assay, after successful transfection of TPC-1

cells, 30,000 cells from both the control and knockdown groups

were mixed with 260 µL of serum-free medium and transferred to

the top chamber of the Transwell plates. The bottom chamber

contained 750 µL of complete medium. For the invasion assay, 20%

Matrigel was precoated on the bottom of the upper chamber, while

for the migration assay, no Matrigel was used. After 24 h, the upper

chamber was removed, washed, fixed, stained, and imaged using an

Olympus microscope.
Statistical analysis

RStudio (Version 4.4.1) and GraphPad Prism (Version 10.1.0)

were utilized to perform statistical analysis. In this study, a p-value

less than 0.05 was considered statistically significant.
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Results

Construction of the prognostic signature
for PTC patients

FAM-related genes were acquired from the MSigDB database

(HALLMARK, KEGG, REACTOME), and 309 FAM-related genes

were used for follow-up analyses (Supplementary Table S2). We

analyzed DEGs from 309 FAM-related genes based on logFC more

than 1 and p-value <0.05, in which 24 DEGs were identified and

employed to build the prognostic signature (Supplementary Table S3).

We used a heatmap and a volcano plot to display 25 DEGs associated

with FAM (Figures 1B, C). Furthermore, we selected survival-related

genes through univariate Cox regression analysis, and four FAM-

related genes were selected (Figure 1D). Lastly, multivariate Cox

regression analysis was utilized to build a three FAM-related gene

prognostic signature (Figure 1E).
Verification of the prognostic signature in
the TCGA cohort

Through the above analyses, we successfully constructed the

prognostic signature based on three FAM-related genes. It was

observed through survival analysis that compared with the low-risk

group, the high-risk group had a shorter survival probability

(Figure 2A). The receiver operating characteristic (ROC) curve

demonstrates that the prognostic signature exhibits high

predictive efficacy, with area under the curve (AUC) values of

0.95 at 1 year, 0.816 at 2 years, and 0.686 at 3 years (Figure 2B).

Univariate and multivariate regression analyses showed that stage

and risk score are independent prognostic factors for PTC patients

(Figures 2C, D). We depicted the heatmap of the three FAM-related

genes in this risk group (Figure 2E). In addition, we also displayed

the risk score curve (Figure 2F) and survival state distribution

(Figure 2G), which confirmed the reasonable distribution between

the two risk groups. Next, we integrated the clinical characteristics

of PTC and analyzed their correlation with risk score, presenting

the results in a heatmap for clarity (Figure 2H). The heatmap

revealed that risk score is associated with age, T stage, and N stage.

Lastly, a predictive nomogram was generated by integrating

multiple clinical factors with risk scores (Figure 2I). These scores

can be employed to estimate the survival probabilities of

PTC patients.
Functional analysis and somatic mutation
analysis of the prognostic signature

All PTC samples were categorized into high and low groups

according to the median expression levels of the hub genes. Next, we

performed GSEA to explore the potential functional enrichment of

the hub genes. Through GSEA of Gene Ontology (GO), we observed

that the high-risk group was related to the AMINO ACID

CATABOLIC PROCESS (BP), MONOATOMIC ANION

TRANSPORT (BP), FATTY ACID TRANSMEMBRANE
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TRANSPORT (BP), ABC TYPE TRANSPORTER ACTIVITY

(MF) , and ATPASE COUPLED TRANSMEMBRANE

TRANSPORTER ACTIVITY (MF), and the low-risk group was

related to CYTOSOLIC LARGE RIBOSOMAL SUBUNIT (CC),

NUCLEAR MEMBRANE REASSEMBLY (BP), BLOC 1

COMPLEX (CC), CYTOSOLIC SMALL RIBOSOMAL SUBUNIT

(CC), and CADHERIN BINDING INVOLVED IN CELL-CELL

ADHESION (MF) (Figure 3A). Through GSEA of KEGG, we

observed that the high-risk group was associated with LYSINE

DEGRADATION, ABC TRANSPORTERS, FATTY ACID

METABOLISM, TYPE II DIABETES MELLITUS, and

TRYPTOPHAN METABOLISM, and the low-risk group was

a s soc i a t ed w i th RIBOSOME, DNA REPLICATION,

PROTEASOME, PATHOGENIC ESCHERICHIA COLI

INFECTION, and P53 SIGNALING PATHWAY (Figure 3B).

To investigate the relationship between risk score and gene

mutations, we analyzed the heterogeneity of gene mutations

between the high-risk and low-risk groups. Compared with the

high-risk group (64.85%), we uncovered that the low-risk group

possessed a higher gene mutation ratio (85.31%) (Figures 3C, D).

Furthermore, we also observed that BRAF and NRAS gene

mutations are the most significant in those genes. The mutation

ratio of BRAF is 75% in the low-risk group and 44% in the high-risk

group. The mutation ratio of NRAS is 4% in the low-risk group and

12% in the high-risk group.
Immune-related analysis of the
prognostic signature

In order to observe the immune condition of PTC patients and

explore the relationship between FAM-related genes and tumor

immunity, the CIBERSORT algorithm was employed to visualize

the immune landscape of all PTC patients in the TCGA cohorts.

The immune cell ratio of PTC patients was displayed in a heatmap

(Figure 4A). The correlation results provided a comprehensive

overview of the associations between risk scores and immune cells

and stromal cells. We also employed a heatmap to visualize the

distribution of various immune cells across samples with different

risk scores (Figure 4B). Next, based on seven algorithms, we

evaluated the association between immune cells and risk score

(Figure 4C). We also showed the correlation between immune

cells and risk score. The results showed that risk score is closely

associated with multiple immune cells (Figures 4D–O) based on the

xCell algorithm.

Furthermore, we used boxplots to illustrate the changes in

immune cell abundance between the two groups, which revealed

that 17 immune cell types were present in lower quantities in the

high-risk group compared to the low-risk group (Figure 5A). Based

on the TIMER algorithm, we specifically analyzed the relationship

between six immune cells and risk scores, which showed a positive

correlation for all six immune cell types (Figures 5B–E).

Immune checkpoints and immunogenic cell death (ICD)-

related genes showed significant potential in tumor treatment,

offering promising avenues to enhance antitumor immunity and

improve therapeutic outcomes (27–29). We analyzed the expression
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differences of ICD-related genes and immune checkpoints

between the high-risk and low-risk groups and observed that

most immune checkpoints were upregulated in the low-risk group

(Figures 5F, G). This suggests that, unlike the high-risk group, PTC

patients in the low-risk group are more likely to respond favorably

to immunotherapy.
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Silencing SCD inhibits PTC progression

As a malignant tumor, DEGsmay play an important role in PTC.

Firstly, we analyzed the expression of three FAM-related genes across

the TCGA, GSE29265, and GSE33630 cohorts. The results showed

that, compared to PTC tissues, ACACB and ADH1B were more
FIGURE 2

Evaluation of the prognostic signature. (A) Survival analysis of high and low risks showed that the high-risk group possessed a worse OS. (B) ROC
curves at 1, 3, and 5 years showed the model has good predictive ability. (C, D) Univariate and multivariate Cox regression analyses of the prognostic
signature identified risk score to possess a better independent prognostic effect. (E) Heatmap of the three FAM-related genes. (F) Risk score
distribution for PTC patients. (G) Survival state curve for PTC patients. (H) The association between prognostic signature and clinical features,
including age, gender, and TNM stage. (I) Development of the FAM clinicopathologic nomogram for predicting the 1-, 3-, and 5-year OS for PTC
patients by incorporating risk score, age, gender, and TNM stage. *p < 0.05, **p < 0.01.
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highly expressed in normal thyroid tissues, whereas SCD exhibited

higher expression in PTC tissues (Figures 6A–C). Next, we used

qPCR experiments to verify the expression of three FAM-related

genes in normal thyroid cell lines and PTC cell lines. The results were

consistent with the findings from the above bioinformatics analysis

(Figure 6D). Moreover, using single-cell cohorts of PTC, we validated

the relative expression levels of key genes across different cell types

(Figure 7A). Our analysis revealed that ACACB is highly expressed in

fibroblasts and endothelial cells (Figure 7B), ADH1B shows elevated

expression in fibroblasts (Figure 7C), and SCD is predominantly

expressed in myeloid cells (Figure 7D). Given that SCD is the only

highly expressed gene among the three FAM-related genes, we plan

to further investigate its role in PTC cells. We used siRNA to

downregulate SCD expression in TPC-1 cells. Through the qPCR

assay, SCD expression is significantly downregulated after using

siRNA (Figure 8A). The CCK8 assay revealed that silencing SCD

expression decreased the cell proliferation activity in the TPC-1 cell

line (Figure 8B). The colony formation assay uncovered that colony

formation ability was downregulated after silencing SCD expression

(Figure 8C). Scratch assays observed that silencing SCD expression

inhibited TPC-1 cell migration (Figure 8D). Transwell assays showed

that silencing SCD expression suppressed TPC-1 cell migration and

invasion (Figure 8E). Therefore, we concluded that SCD is a new PTC

biomarker and silencing SCD expression inhibits PTC progression.
Frontiers in Endocrinology 07
Discussion

Thyroid cancer ranks as the seventh most prevalent cancer

worldwide, with its incidence rapidly increasing (3). As the most

common type of thyroid cancer, PTC is primarily treated with

surgery, often followed by radioactive iodine therapy (30). Although

most PTC patients have a favorable prognosis, surgical treatment

often imposes considerable economic and psychological burdens.

Therefore, exploring the mechanisms underlying PTC development

and progression and identifying potential treatment targets are

crucial for improving the diagnosis, treatment, and prognosis of

PTC patients. Our study seeks to explore the influence of FAM-

related genes on the prognosis of PTC patients. By constructing a

prognostic signature of FAM-related genes, we aim to predict

clinical outcomes and explore its associations with clinical

features, immunotherapy responses, and tumor progression.

Growing evidence suggests that metabolic dysregulation is a key

determinant of tumor progression, immunotherapy resistance,

recurrence, and metastasis (31). Aberrant lipid metabolism is a

hallmark of various cancers, enabling rapid proliferation by driving

excessive endogenous lipid production or enhanced uptake of

external lipids, with cancer cells relying on FAM, alongside

aerobic glycolysis and glutamine consumption, to meet their

heightened energy demands (4, 32–34). FAM primarily influences
FIGURE 3

GSEA and mutation analysis. (A) GSEA of GO revealed the function of the prognostic signature. (B) GSEA of KEGG showed the potential biological
pathway of the prognostic signature. (C) Mutation landscape displayed distinct genetic alterations in the high-risk group. (D) Mutation landscape
verified distinct genetic alterations in the low-risk group.
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the biological behavior of cancer cells through the formation of

membrane lipid constituents, as well as the generation and deposit

of energy (5). The composition of fatty acids (FAs) in the cell

membrane enhances cell survival and reduces lipotoxicity (35).

Tumor cells can acquire FAs exogenously or synthesize them

endogenously through dysregulated lipogenesis. Alterations in FA

levels or excessive lipid accumulation can disrupt homeostasis and

exacerbate cellular stress (4). Thyroid cancer, as a malignant tumor,
Frontiers in Endocrinology 08
has been reported to be closely related to the biological functions of

FAM (36). However, the molecular markers related to FAM in

thyroid cancer remain insufficiently characterized. Recently, the

construction of cancer prognostic signatures relying on specific

gene sets has gained increasing recognition (37–40). A reliable

prognostic model can help clinicians accurately classify patients

into high-risk and low-risk groups, applying it to personalized

treatment decisions. We constructed a significant prognostic
FIGURE 4

Immune-related analysis. (A) The ratio of 22 immune cells based on all PTC patients. (B) The distribution of various immune cells across samples
with different risk scores. (C) Immune cell association analysis using seven algorithms revealed that risk score is closely associated with immune
cells. (D–O) Correlation analysis of immune cells and risk scores.
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signature relying on FAM-related genes, validated its clinical

relevance, and evaluated the immune landscape.

Firstly, we retrieved 309 FAM-related genes from the MSigDB

database. Next, we identified 24 DEGs to construct prognostic

signatures. Next, we built a prognostic signature, which included

three FAM-related genes, namely, ACACB, ADH1B, and SCD.

Furthermore, we evaluated the association of the immune

landscape. We observed that the low-risk group showed elevated
Frontiers in Endocrinology 09
immune cell levels and enhanced expression of immune

checkpoints. Hot tumors respond well to immunotherapy due to

the high activity of immune cells, while cold tumors are

unresponsive to immunotherapy because of the lack of immune

cell infiltration (41–43). Therefore, we can classify the low-risk

group as hot tumors and the high-risk group as cold tumors, with

low-risk PTC patients likely to benefit from immunotherapy,

providing a new direction for clinical decision-making. Lastly, we
FIGURE 5

Immune function and immune cell association. (A) Immune function analysis-related risk score is related to potential functional immune cells.
(B) The association with CD8 T cells. (C) The association with dendritic cells. (D) The association with neutrophils. (E) The association with
macrophages. (F) Association between immune subgroups and ICD modulators. (G) Association between immune subgroups and ICP modulators.
*p < 0.05, **p < 0.01, ***p < 0.001.
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checked the expression of the three genes in normal thyroid and

PTC cell lines, finding that ACACB and ADH1B had a lower

expression in PTC cell lines, while SCD exhibited a higher

expression in PTC cell lines.

The ACC family influences tumor progression, with ACACB

being an important member of this family (44, 45). ACACB

has been reported in various diseases, including cancer (46),

diabetic nephropathy (47), obesity (48), diabetes (49), and hepatic

steatosis (50). Li K. et al. found that ACACB is highly expressed in

laryngeal cancer tissues and is closely related to cancer staging and

the degree of cellular differentiation in laryngeal cancer (51). Valvo

V. et al. observed that BRAFV600E downregulates ACACB

expression, thereby disrupting the regulation of lipid metabolism,
Frontiers in Endocrinology 10
which promotes de-novo lipogenesis and reduces fatty acid

oxidation (FAO), synergistically contributing to vemurafenib

resistance and increased tumor growth, suggesting that rescuing

ACACB may represent a novel strategy to overcome resistance to

BRAFV600E inhibitors in PTC and improve treatment outcomes

for patients with refractory disease (52).

ADH1B is a member of the ADH1 family and is involved in the

conversion of some alcohol products to aldehydes (53). The

expression of ADH1B in human adipocytes is regulated by

metabolic conditions (54, 55). Specifically, a downregulation of

ADH1B expression has been shown to impair adipocyte

differentiation, suggesting its crucial role in maintaining normal

adipogenesis and metabolic function (55). Zhou Y. et al. believed
FIGURE 6

Differential expression analysis of the three FAM-related genes. (A) TCGA; (B) GSE29265; (C) GSE33630; (D) qPCR verified mRNA expression in cell
lines. **p < 0.01, ***p < 0.001.
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that ADH1B is a key gene associated with afatinib, whose

downregulation correlates with poorer prognosis and immune

microenvironment changes in HCC patients, and they suggested

ADH1B as a value target, offering a significant method for
Frontiers in Endocrinology 11
developing novel therapies for HCC (56). Morales LD et al.

found that ADH1B disturbed the metabolic activity of adipose

tissue, and its expression is inhibited by obesity, which is

associated with insulin-stimulated glucose uptake (57). Yin D.
FIGURE 7

Single-cell analysis verified the expression of the three FAM-related genes. (A) UMAP plots of the major cell populations from PTC patients. Each
point depicts a single cell, colored according to cell type. (B) The expression of ACACB in different cell types. (C) The expression of ADH1B in
different cell types. (D) The expression of SCD in different cell types.
FIGURE 8

Silencing SCD inhibited PTC proliferation, migration, and invasion. (A) Silencing SCD downregulated SCD mRNA expression. (B) The CCK8 assay
showed that silencing SCD inhibited PTC cell proliferation. (C) The colony formation assay depicted that silencing SCD disturbed PTC cell colony
formation ability. (D) The scratch assay showed that silencing SCD controlled PTC cell migration. (E) The Transwell assay concluded that silencing
SCD restrained PTC cell migration and invasion. **p < 0.01.
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et al. found that ADH1B is one of the genes with upregulated or

downregulated expression in both LUAD and LUSC (58). Liu TT

et al. considered ADH1B as one of the important genes linking

Hashimoto’s thyroiditis (HT) and PTC, with potential diagnostic

value (59). ADH1B affects the metabolic functions of adipose

tissue, tumor progression, and metabolic diseases such as obesity,

which means that it may serve as a potential treatment target for

PTC patients.

SCD is a lipid-modifying enzyme that is upregulated in various

cancers, including ovarian cancer (60), breast cancer (61), gastric

cancer (GC) (62), and HCC (63). SCD promotes tumor

progression and resistance in lung cancer by activating the

EGFR/PI3K/AKT signaling pathway (64). SCD is also involved

in GC chemoresistance by regulating the stemness and

chemoresistance of GC cells through AKAP-8L, suggesting that

SCD may overcome chemoresistance in GC (65). Lingrand M.

et al. found that SCD regulates the migration of breast cancer cells

by producing oleic acid, thereby promoting tumor metastasis (66).

Yu Y. et al. uncovered that inhibiting SCD expression or function

selectively excludes colon cancer stem cells through apoptosis,

primarily by suppressing the Wnt and Notch signaling pathways

(67). SCD plays a critical role in lipid metabolism in PTC,

promoting PTC malignant progression through collaboration

with METTL16 and YTHDC2 (68).

ACACB, ADH1B, and SCD, as key genes related to FAM, play

important roles in tumor progression in PTC and may serve as

potential therapeutic targets in PTC patients. Lastly, we also

found that silencing SCD inhibited PTC cell proliferation,

migration, and invasion. In conclusion, we found that FAM-

related genes are involved in PTC progression, with SCD

emerging as a potential therapeutic target. Further research is

required to investigate its clinical implications and the

underlying molecular mechanisms.
Conclusion

In this study, we constructed a prognostic signature relying on

FAM-related genes and validated its clinical applicability in PTC

patients. We found that patients in the low-risk group represented

higher immune cell infiltration and immune checkpoint expression,

signifying that they are more likely to benefit from immunotherapy.

Additionally, silencing SCD in PTC inhibited cell proliferation,

migration, and invasion. Therefore, SCD could emerge as a

promising biomarker for PTC and offers a potential treatment

target for future interventions.
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