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Introduction: A significant proportion of women in their reproductive years are

afflicted by endometriosis. And one of the major contributing factors to infertility

linked to ovarian endometriosis is thought to be oocyte quality. The precise

molecular mechanisms are still unknown. Furthermore, because of transcriptional

silence, translatome is better able to explain molecular behavior in oocytes than

transcriptome sequencing, which has been used widely in recent years.

Methods: We conducted single-cell transcriptome and translatome sequencing

on oocytes obtained from patients with ovarian endometriosis, as well as from

control subjects with infertility due to tubal or male factors.

Results: For the first time, we characterized the translational and transcriptional

profiles of mRNA in GV-stage oocytes from patients with ovarian endometriosis

and control subjects. Our translational analysis identified 2,480 differentially

expressed genes in oocytes from ovarian endometriosis patients. Furthermore,

we demonstrated that global translational activity in human oocytes is

significantly altered by ovarian endometriosis. Key pathways such as "oxidative

stress," "oocyte meiosis," and "spliceosome" were identified as critical factors

influencing oocyte quality in ovarian endometriosis patients.

Discussion: This study elucidated the molecular characteristics and potential

mechanisms underlying poor oocyte quality in patients with ovarian

endometriosis. Our findings provided new insights into the pathogenesis of

endometriosis-associated infertility and highlighted potential therapeutic

targets for improving oocyte quality and reproductive outcomes.
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1 Introduction

Endometriosis (EMs) is characterized by the ectopic presence of

endometrial tissue outside the uterus (1). Ovarian endometriosis

(OE) is a common subtype of endometriosis (2). In recent years,

many potential causes of OE-related infertility have been proposed,

including gamete transport barrier, decreased ovarian reserve,

impaired endometrial receptivity, immune dysfunction, and

lowered oocyte and embryo quality (3–5). In particular, lower

oocyte and embryo quality has a greater effect on adverse

reproductive outcomes compared to impaired endometrial

receptivity (6). Current research has shown that oxidative stress,

mitochondrial dysfunction, morphological abnormalities, and

arrested oocyte maturation can all have negative impacts on the

quality of oocytes and embryos in patients with OE (7, 8).

Nevertheless, deeper research into the underlying molecular

mechanisms is required.

Previous study has conducted single-cell RNA sequencing on

oocytes from patients with OE, which reveals the changes in steroid

metabolism, oxidative stress, and cell growth regulation (9). Notably,

when mammalian oocytes reach the germinal vesicle (GV) stage of

the fully developed state, they cease to be transcriptionally active (10,

11). The maturation process of oocytes is almost totally dependent on

post-transcriptional modifications and translational regulation of

previous accumulating mRNA (10). Thus, rather than using the

transcriptome to analyze molecular events in oocytes, the translatome

is a more useful tool. Although great advances have been made in

single-cell techniques, the majority of translatome strategies now in

use require a significant number of cells (11, 12). For instance,

hundreds of cells are still needed for ribosome profiling sequencing

(Ribo-seq), which is currently more popular (11). Even low-input

LiRibo-seq requires 100 to 250 oocytes/embryos and ultrasensitive

Ribo-seq technique using 30-150 oocytes/embryos to detect the

translational dynamics (11, 12). These methods are not feasible for

precious human oocyte studies. Luckily, we have established a single-

cell transcriptome and translatome sequencing(T&T-seq) method

that can be used with a single oocyte (13, 14). Because human oocytes

are rare, no translatome of humanOE oocytes has been studied to yet.

In this study, single-cell T&T-seq were used to map the dual-omics

landscape of GV oocytes from OE patients. Here, we revealed the

possible underlying mechanisms of the decreased oocyte competence

and lower quality in human OE oocytes.
2 Results

2.1 T&T seq analysis of human OE and
CON oocytes

OE-related infertility is closely associated with poor oocyte quality

(15). To explore the underlying mechanisms of OE-related decreased

oocyte competence, we next conducted single-cell T&T seq on human

GV oocytes donated from the control-group (CON) and the OE-group

patients. The Spearman correlation analysis revealed consistency and
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repeatability between samples between the two groups, each of which

contained three biological duplicates (Figures 1A, B). Furthermore,

principal component analysis (PCA) revealed that CON oocytes and

OE oocytes clustered independently in translatomics and

transcriptomics (Figure 1C, Supplementary Figure S1). In this study,

the transcriptome of the CON and OE oocytes identified, respectively,

10708 and 11850 genes (transcripts per million (TPM) > 1). And in

translatome, the oocytes fromCON and OE identified 10,183 and 9926

genes (TPM > 1). The majority of OE oocyte-specific translationally

repressed (class I, 1701 genes) or enriched (class II, 1320 genes) genes

had constant transcriptional expression when we combined the

transcriptome and translatome for analysis (Figure 1D). This finding

is consistent with the widely accepted theory of transcriptional

inactivation in fully developed oocytes (10). These results suggested

that when examining the impact of OE on oocyte quality, the

translatome is more significant than the transcriptome.

We next examined differentially expressed genes (DEGs) in OE

and CON oocytes at the transcriptional and translational levels in

order to obtain additional understanding of global differences in

these two groups. In comparison to transcriptome, it was discovered

that there were much more differences between the CON and OE

groups in the translatome. The number of DEGs found in the

translatome was substantially higher than that of the transcriptome,

as seen by Venn and volcano plots (Figures 1E-G). That suggests a

great deal of important information on oocyte gene expression will

be missed by focusing solely on the transcriptome. Only 297 genes

were found to be up-regulated and 208 genes were found to be

down-regulated in transcriptome (Figure 1E). On the other hand,

the translatome revealed that the expression of 1248 genes were

upregulated and 1232 genes was downregulated in the OE group

(Figure 1F). Remarkably, the overlap DEGs between the

translatome and the transcriptome was limited to 149 genes

(Figure 1G). These imply a lack of synchronization between

transcription and translation in oocytes. We conducted an Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

and discovered that the 149 genes have a correlation with “oxidative

phosphorylation” and “reactive oxygen species” (Supplementary

Figure S2). Moreover, the “oxidative phosphorylation,” “reactive

oxygen species,” and “spliceosome” pathways were enriched in

DEGs of both the transcriptome and the translatome in OE

group oocytes, according to KEGG enrichment analysis

(Figures 1H, I). However, translatome analysis offered more

detailed pathway enrichment data and showed that the terms

“cell cycle,” “RNA degradation,” “DNA repair,” “apoptosis”

“progesterone-mediated oocyte maturation,” “homologous

recombination,” and “oocyte meiosis” were linked to translational

dysregulation in OE oocytes (Figure 1I). Hence, translatome,

compared with the transcriptome, according to the central

dogma, may be a more accurate indicator of oocyte quality and

may offer further information regarding the lower oocyte quality

observed in patients with OE. In addition, these results propose that

oxidative phosphorylation, spliceosome, oocyte meiosis, apoptosis,

RNA degradation, and DNA repair dysregulation may play key

roles in OE-related decreased oocyte quality.
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2.2 Downregulated DEGs analysis
in translatome

And then, the genes that were translationally up- and down-

regulated in OE oocytes were analyzed independently. The down-

regulated DEGs in the translatome were primarily enriched in terms of
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“cell cycle”, “DNA repair”, “DNA replication”, “RNA degradation”,

“homologous recombination”, and “oocyte meiosis”, according to our

KEGG analysis (Figure 2A). Gene Set Enrichment Analysis (GSEA)

demonstrated that genes that are translationally down-regulated in OE

oocytes are enriched in the oocyte maturation pathway (Figure 2B).

Therefore, we propose that OE affects oocyte quality by reducing the
FIGURE 1

Single-cell translatome and transcriptome of OE and CON oocytes. (A, B) Correlation coefficient of the transcriptome (A) and translatome (B) data from OE
and CON oocytes. (C) PCA plot of translatome sequencing data. Blue area covers CON oocytes and the orange area covers OE oocytes. (D) Scatter plot
showing the difference in gene translation and transcription between OE and CON oocytes. Class I (blue) denotes genes translationally downregulated in OE
oocytes but transcriptionally constant. Class II (red) denotes genes translationally upregulated in OE oocytes but transcriptionally constant. Class III (orange)
denotes genes with downregulated translation and transcription in OE oocytes. Class IV (green) denotes genes with upregulated translation and transcription
in OE oocytes. Downregulated, FC<0.5; upregulated, FC>2. (E, F) Volcano diagram showing DEGs detected by transcriptome (E) and translatome (F). Red
and blue dots denote up- and down-regulated genes, respectively. pagj < 0.05, FC>2 or <0.5. (G) Venn diagram showing the overlap of DEGs detected from
the transcriptome (FC>2 or <0.5) and translatome(FC>2 or <0.5). (H, I) Representative KEGG analysis of DEGs detected by transcriptome (H) and translatome
(I). FC, fold change. DEGs, differentially expressed genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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translational expression of genes involved in the meiotic cell cycle and

DNA damage repair in oocytes. Next, we conducted a Protein-Protein

Interaction (PPI) analysis and filtered 10 hub genes according to degree

values in order to gain a better understanding of the relationship

among the down-regulated DEGs (Figure 2C). The main genes are

CCNB1, CDK1, CHEK1, and AURKB, which are connected to oocyte

meiosis (16–18).

In addition, we assessed the expression levels of genes linked to

oocyte maturation, oocyte meiosis, DNA repair, RNA decay,

fertilization, and early embryo development in oocytes

(Figure 2D, Supplementary Figure S3). Surprisedly, we found a

significant reduction in the expression levels of these genes,

especially in the translatome. These discoveries advance our

comprehension of the possible mechanisms responsible for the

reduction in oocyte quality/capacity in OE.
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2.3 Upregulated DEGs analysis
in translatome

In line with earlier research, we conducted KEGG analysis on

the up-regulated genes in the translatome and discovered that they

were primarily enriched in the pathways of “oxidative

phosphorylation,” “reactive oxygen species,” “ferroptosis,” and

“apoptosis”, which correspond with other research findings

(Figure 3A) (19). Notably, the term “spliceosome” was also

enriched (Figure 3A), which is further illustrated by the GSEA

(Figure 3B). Previous studies have demonstrated a connection

between oocyte DNA damage and RNA splicing (14, 20). But for

the first time, we discovered that RNA splicing dysregulation might

be a significant factor in the decline in oocyte quality brought on by

OE. Each pathway-related gene’s translational expression in each
FIGURE 2

Downregulated DEGs analysis in translatome. (A) Representative KEGG analysis of downregulated DEGs detected by translatome. (B) Gene set
enrichment analysis showing the translationally downregulated genes enriched in the oocyte maturation. (C) Cytoscape plots showing the hub
genes in downregulated DEGs detected by translatome. (D) Translational expression heatmap showing specific genes in CON and OE oocytes.
*p < 0.05. DEGs, differentially expressed genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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sample is displayed on the heatmap (Figure 3C). We then carried

out an analysis of PPI, and discovered that the top 30 hub genes

were essentially split into two groups that were closely associated

with RNA splicing and oxidative phosphorylation (Figure 3D).

Hence, we discovered that, in addition to the previously

documented elevated levels of oxidative stress, aberrant RNA

splicing may contribute to the poor quality of OE oocytes.
2.4 Translational patterns in human
OE oocytes

Next, in order to gain a better understanding of the translation

dynamics of OE oocytes, we determined the translation efficiency

(TE) of highly expressed genes (TPM > 1 in transcriptome). When

OE oocytes were compared to the controls, we discovered that large

number of genes had abnormal translational suppression (1445
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genes) and translational activation (2657 genes) (Figure 4A). The

proportion of high TE genes (44.81%) and low TE genes (18.32%) in

OE oocytes was significantly higher than those of CON (18.21% and

2.66%) (Figure 4B). Venn plots revealed that OE oocytes included

2316 high TE genes and 1266 distinct low TE genes (Figure 4C).

This may indicate that OE oocytes have a modified global

translational pattern. According to the DEGs of translational

genomics, “spliceosome” was the KEGG-enriched terms for the

OE-specific high TE genes (Figure 4D). Consistent with other

research, this shows that abnormal RNA slicing are significant

factors in the reduced quality of OE oocytes (14, 21, 22).

And then, we evaluated the translational efficiency of RNA

splicing-related genes (Figure 4E), including SNRPB, HNRNPA1,

and HNRNPC, which are crucial to the maternal to zygotic

transition (MZT) and apoptosis pathway (20, 23, 24). In comparison

to CON oocytes, their translation efficiency in OE oocytes was

noticeably higher. Additionally, the phrases “autophagy” and
FIGURE 3

Upregulated DEGs analysis in translatome. (A) Representative KEGG analysis of upregulated DEGs detected by translatome. (B) Gene set enrichment
analysis showing the translationally upregulated genes enriched in the spliceosome. (C) Translational expression heatmaps of genes in CON oocytes
and OE oocytes with specific KEGG terms. (D) Cytoscape plots showing the hub genes in upregulated DEGs detected by translatome. DEGs,
differentially expressed genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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“mitophagy” were similarly enriched in high TE genes (Figure 4D).

These imply that one of the factors influencing oocyte quality may be

the higher level of autophagy in OE oocytes. In summary, we have

clarified the distinct translational pattern of OE oocytes and

demonstrated that oocyte and embryo developmental potential may

be impacted by abnormal activation of high TE genes related to RNA

splicing and autophagy. To explore the RNA splicing events in OE

group oocytes in more detail. We used replicate multivariate analysis of

transcript splicing (rMATS) to examine differential splicing events in

the CON and OE transcriptome. Skipped exon (SE), retained intron

(RI), alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS),

and mutually exclusive exons (MXE) were among the 1084 differential

splicing events found in the OE group as compared to the CON group.

SE was the most common differential splicing event (63.1%)

(Figure 4F). According to published research, the abnormalities in

the alternative splicing (AS) of key factors have been associated to

translational efficiency of their target genes (25).
Frontiers in Endocrinology 06
3 Discussion

It has been widely reported that female fertility may be

negatively impacted by OE (26), presenting decreased number of

retrieved oocytes, number of available embryos, top-quality

embryos rate, blastocyst formation rate, and cumulative live birth

rate (27, 28). Hence, there is an urgent need to elucidate the

underlying mechanisms of OE-associated declined oocyte quality

and competence. As fully grown GV-stage oocytes are in

transcriptional arrest, the post-transcriptional modifications and

translational regulation of mRNAs stored in advance is a crucial

step in oocyte maturation and oocyte-to-embryo transition (OET)

(10). Up to now, owing to the cell number requirement of

translatomics and limitations of human oocytes not much is

known about the mRNA translational landscapes in OE oocytes.

Here, we first conducted single cell T&T-seq to document the

translation and transcriptional patterns of mRNA in GV-stage
FIGURE 4

Distinct translatome pattern of CON and OE oocytes. (A) Scatter plot showing the RNA TE alterations of OE oocytes compared with CON oocytes.
Orange and blue dots denote up- and down-regulated genes, respectively. Upregulated, FC>2; downregulated, FC<0.5. (B) Pie charts showing the
proportion of TE in CON group and OE group respectively. (C) Venn diagram showing the overlap of low TE genes and high TE genes identified
from CON and OE oocytes. (D) Representative KEGG analysis of OE high TE genes. (E) Translational expression levels of the representative RNA
splicing-related genes in CON and OE oocytes. Data are shown as the mean ± SEMs. p-Values were calculated with Student’s t-test for independent
samples. (F) Donut chart indicates the proportion of differential AS events in each category. AS, alternative splicing. SE, skipped exon, RI, retained
intron, A5SS, alternative 5’ splice site, A3SS, alternative 3’ splice site, MXE, mutually exclusive exons. TE, translational efficiency. KEGG, Kyoto
Encyclopedia of Genes and Genomes. ns, no significant difference. *p < 0.05, **p < 0.01, ****p < 0.0001.
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oocytes donated from the OE and CON patients. The alterations in

gene expression between OE and CON oocytes were investigated.

Single cell T&T seq revealed the global translational activity of

human oocytes was affected by OE. More importantly, the

translationally altered genes were transcriptionally constant,

which is in consensus with the classical theory that fully grown

oocytes are transcriptional silence (29). Besides, it highlights the

value of this study that, compared with transcriptomics,

translatomics can provide deeper information of how OE affect

oocyte quality and developmental competence. “Oxidative stress”,

“oocyte meiosis”, and “spliceosome” were identified as the critical

pathway that affected OE-oocyte quality, which may be the

potential targets for improve oocyte quality.

Noticeably, the down-regulated DEGs in the translatome were

primarily enriched in terms of “cell cycle”, “DNA repair”, “DNA

replication”, “RNA degradation”, “homologous recombination”, and

“oocyte meiosis”. Repairing the damage later in the cell cycle, as

rather as during the resumption of meiosis, has selective advantage

(30). Inherited errors related to DNA repair may result from

upregulation of the DNA repair pathway in OE oocytes at the GV

stage (30). In addition, dysregulation of maternal mRNA degradation

leads to oocyte dysmaturity and embryo arrest (31). Downregulation

of BTG4 and CNOT6L, key factors in RNA degradation also

observed in this study (31). Furthermore, it has been reported that

recurrent meiotic anomalies in oocytes in vitro maturation (IVM)

from EMs patients are correlated with a possible meiotic phase I delay

or impairment (32). Additionally, ferroptosis in oocytes and cumulus

cells is caused on by iron-overloaded follicular fluid, which results in

oocyte dysmaturity (33, 34). And hub gene analysis of translational

inhibited genes in our study further showing the main genes are

CCNB1, CDK1, CHEK1, and AURKB, which are connected to oocyte

meiosis (16–18). Noticeably, CCNB1 and CDK1 play key roles in

oocyte GVBD promotion (18). CHEK1 is one of the G2/M

checkpoints, involving in DNA replication during the S-phase of

cell division (17). And the quality of oocytes and embryos was

favorably linked with BIRC5 protein levels (35). In addition, down-

regulation of other genes, detected by translatome, may also affect the

quality of OE oocytes. For example, TUBB8 is involved in human

oocyte spindle assembly, and mutations in this gene cause oocyte

developmental arrest at the MI stage (36). Moreover, PADI6, NLRP2,

and NLRP5 are components of the subcortical maternal complex

(SCMC), which is essential in embryo activation (36, 37). Therefore,

cell cycle dysregulation is important in OE-related declined oocyte

quality, which may help provide future therapeutic targets to improve

the quality of OE oocytes.

On the other hand, our research indicated that the translationally

altered genes enriched in the “oxidative phosphorylation”, “reactive

oxygen species”, “DNA repair”, “cell cycle”, “progesterone-mediated

oocyte maturation,” “homologous recombination,” and “oocyte

meiosis” pathways. Previous studies have shown increased oxidative

stress damage in OE patients’ ovarian cortex, follicular fluid, and

granulosa cells (19). Reactive oxygen species (ROS) may cause

meiotic arrest through inducing DNA damage and disturbing the

spindle assembly checkpoint (38). Further evidence shows that

endometriosis causes cell cycle dysregulation then affecting oocyte

quality. For example, mouse oocytes collected from either
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endometriosis models or exposed to human serum, peritoneal fluid

and follicular fluid from patients with endometriosis show spindle

abnormalities and incomplete extrusion or division of the first polar

body, which are associated with decreased oocyte quality and early

embryo development rate (38–41). Furthermore, translatome analysis

of up-regulated genes also pointed to aberrant regulation of the

pathways for reactive oxygen species and oxidative phosphorylation.

Strikingly, hub genes analysis screened CYC1, COX5B, NDUFB8, and

UQCRQ, which are all parts of complexes in the respiratory electron

transport chain of the mitochondria (42–45). The aberrant translations

of these genes may cause mitochondrial dysfunction, leading to

decrease the capacity of inhibiting ROS creation (46). The above

results and studies emphasize the critical role of oxidative stress in

OE-induced decreased oocyte quality and developmental competence.

Hence, antioxidants are recommended as therapeutic options to

improve oocyte quality in patients with endometriosis (41, 47, 48).

Interestingly, single cell T&T seq in this study offers us a fresh

perspective that RNA splicing may be critically involved in the

molecular mechanisms underlying OE-related declined oocyte

quality. Noticeably, AS is a crucial post-transcriptional mRNA

processing mechanism in GV oocytes, the abnormalities of which

may adversely impact oocyte and embryo development (14, 49). For

instance, RNA splicing has been reported that it is important for

preserving the integrity of the oocyte transcriptome and for oocyte

maturation (21, 22). Moreover, it has been demonstrated that splicing

errors at the ZGA are developmentally planned and evolutionarily

conserved in mammalian embryos, potentially attenuating the

cellular response to DNA damage (20). On the other hand, an

enhanced DNA damage response caused by the overexpression of

SNRPB, a spliceosome component, before the ZGA stage may affect

early embryo development (20, 50). SE events are impacted by

SNRPB, and our results also indicate that OE oocytes present

aberrant SE events (20). Furthermore, in zebrafish, overexpression

of the splicing factor HNRNPA1 lengthens the maternal mRNA’s

poly(A) tail and boosts translation efficiency, which could account for

the significantly higher proportion of high-TE genes in OE oocytes

compared to CON oocytes (23). And HNRNPC over-expression

encourages apoptosis (24). Hence, these suggest RNA splicing

dysregulation may play an essential role in the decreased oocyte

quality and developmental competence in OE patients. However,

further research should be undertaken to prove the hypothesis.

This study has a few limitations. We only had three biological

replicates per group since human oocytes were scarce. Individual

variations may still have an impact on the outcomes of data analysis

despite this. Furthermore, we didn’t perform out any functional

verification examinations. We therefore intend to look more closely

at the detailed biological pathways through which aberrant RNA

splicing impacts the quality of OE oocytes. Moreover, related

therapies are looked for to help OE patients have better

reproductive outcomes.

In summary, we first used T&T-seq to map the transcription

and translation of OE oocytes. The findings suggest that the

translation pattern of OE oocytes is distinct. Our findings include

the identification of numerous new genes linked to oxidative stress

damage and meiosis, which will aid in the exploration of the

fundamental mechanisms behind the OE oocyte quality reduction
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and the identification of potential treatment targets. Furthermore, it

was first proposed that OE oocytes had dysregulated RNA splicing.

This offers a fresh viewpoint for researching the molecular processes

by which OE impacts oocytes.
4 Methods

4.1 Human GV oocytes collection

Women identified with male factor infertility or tubal infertility

who underwent intracytoplasmic sperm injection (ICSI) between July

and August 2024 were included in control (CON) group. Women

who underwent ovarian stimulation and had endometriomas

identified via transvaginal ultrasound were categorized into the

ovarian endometriosis (OE) group. Ovarian stimulation was

induced using a short protocol of gonadotropin-releasing hormone

(GnRH) agonist. Transvaginal sonography was employed to monitor

follicular maturation, and a 250 mg injection of human chorionic

gonadotropin (HCG) was administered to trigger ovulation when the

dominant follicles measured 18 mm in diameter. Transvaginal

needle-guided oocyte extraction was executed, followed by

enzymatic treatment with hyaluronidase and gentle pipetting

removal of cumulus cells. Germinal vesicle (GV) oocytes were

rinsed twice with phosphate-buffered saline (PBS) and collected for

single-cell transcriptome and translatome sequencing (T&T-seq).

Three GV oocytes from both OE and control groups were analyzed

using T&T-seq. This collection was performed with the consent of the

donors and was approved by the Ethics Committee of The Sixth

Affiliated Hospital of Sun Yat-sen University, in compliance with the

relevant certification(2024ZSLYFEC-001).
4.2 Transcriptome and
translatome sequencing

The procedure was executed based on established protocols.

Oocytes were lysed in a mixture of lysis buffer and RNase inhibitor

(Vazyme, N712) on ice for 20 minutes. The lysates were split into

two portions; one portion was for transcriptome, and the other was

for translatome. For the latter, RiboLace beads (Immagina, RL001)

were prepared as per the manufacturer’s instructions and each

sample was mixed with the beads in a binding buffer containing

various components. This mixture was incubated at 4°C for 1 hour.

The beads were then washed using the W-buffer (Immagina,

RL001) on a magnetic stand. Subsequently, they were

resuspended in a solution containing RLT buffer (Qiagen,74 004)

and 10% of beta-mercaptoethanol and 1% of glycoblue, followed by

a short incubation at room temperature. The supernatant was

moved to a new PCR tube, leaving the beads. The ribosome-

bound full-length RNA was isolated using LiCl and VAHTS RNA

Clean Beads (Vazyme, N412), following the manufacturer’s

protocol. Both the total RNA and ribosome-bound RNA were

reverse transcribed to synthesize cDNA, which was amplified for

20 PCR cycles. The cDNA was purified and quantified using the

protocol of Single Cell Full Length mRNA-Amplification Kit
Frontiers in Endocrinology 08
(Vazyme, N712). VAHTS DNA Clean Beads (Vazyme, N411)

were used to purify the cDNA amplification products. And the

integrity was confirmed using a Bioanalyzer 2100, showing a peak at

approximately 2000 bp. The construction of indexed libraries was

accomplished using the TruePrep DNA Library Prep Kit V2

(Vazyme, TD502), which is designed for Illumina sequencing

platforms. The VAHTS DNA Clean Beads (Vazyme, N411) were

employed to selectively isolate and purify the amplified DNA

fragments, targeting a size range of 250–450 bp. The libraries

were quantified and quality-checked using Qubit and Bioanalyzer

5400. Pair-end sequencing was conducted on an Illumina Novaseq

XP platform using a PE150 mode.
4.3 T&T-seq data analysis

The raw reads were quality-trimmed using Trim Galore, and the

cleaned reads were aligned to the human genome (hg38) with Hisat2.

The gene annotation files were obtained from the Gencode database

and GenBank. Read counts were calculated using Featurecounts, and

transcript abundance was determined in TPM. DEGs (Pagj < 0.05,

Fold Change>2 or <0.5) were identified using DESeq2, focusing on

genes with a TPM>1. The translational efficiency (TE) was calculated

by dividing the the adjusted TPM values (TPM + 1) of the

translatome by that of the transcriptome. TPM and TE were

compared between groups using the student’s t test. P < 0.05 was

considered significant. rMATS was used to analyze the splicing

events. Events with Dpercent-spliced-in (PSI)>|0.15| and false

discovery rate (FDR) < 0.05 were regarded as differential

splicing events.
4.4 Spearman correlation analysis

Spearman correlation analysis was conducted utilizing the

GENE DENOVO web-based tool. The analysis parameters were

set to their default values.
4.5 Principle component analysis and
functional enrichment analysis

Principle Component Analysis, Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA)

were conducted utilizing the GENE DENOVO web-based tool. The

analysis parameters were set to their default values. Statistical

significance was determined at the P < 0.05 threshold.
4.5 Protein-protein interaction and hub
genes analysis

The Search Tool for the Retrieval of Interacting Genes

(STRING) database built the PPI network. After determining

degree values, hub genes were filtered using the Cytohubba plugin

for Cytoscape (3.10.0).
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