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Background: Human umbilical cord mesenchymal stem cells (UCMSCs) are

being investigated in various clinical trials for different conditions, including

type 2 diabetes mellitus (T2DM). However, there is limited research on the

optimal injection routes for UCMSCs in T2DM, particularly intravenous injection.

Objective: The objective of this study aims to investigate the efficacy of four

different administration routes of UCMSCs in treating T2DM rats, including

pancreas injection (DP), tail vein injection (DT), intraperitoneal injection (DI),

and dorsal pancreatic artery injection (DPA).

Results: After two weeks of UCMSCs treatment, the fasting blood glucose levels

in the DT group decreased significantly. The oral glucose tolerance test (OGTT)

levels and the islet structure in the DT group almost recovered to normal. The

contents of C-P and GLP-1 in serum increased significantly in all treatment

groups, while the levels of INS, TNF-a, IL-6, IL-1b, IAA, and GSP decreased

significantly. These improvements were further observed after four weeks of

UCMSCs treatment. Histological analysis confirmed the progression of

pancreatic recovery in all treatment groups, with the DT group showing the

most significant improvement, correlating with the observed efficacy.

Immunohistochemistry results further demonstrated increased insulin and

PDX-1 expression, along with reduced glucagon levels in UCMSCs-treated rats.

Additionally, liver and kidney function significantly improved across all treatment

groups, with the DT group showing the best outcomes.

Conclusion: Overall, these findings suggest that the administration route

significantly affected the efficacy of UCMSCs in treating T2DM, with tail vein

injection showing the most effective results.
KEYWORDS

umbilical cord mesenchymal stem cells (UCMSCS), type 2 diabetes mellitus (T2DM),
administration routes, insulin, liver function
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic, serious disease

characterized by an unbalance of carbohydrate, lipid, and protein

metabolism in the blood, along with insulin resistance, and

inadequate insulin production (1, 2). According to the World

Health Organization (WHO) database, the prevalence of diabetes

for all ages worldwide was estimated to be 2.8% in 2000 and 4.4% in

2030 respectively (3). The cost of T2DM in individual, societal, and

national aspects is shocking and drives national departments and

academia to pay attention to primary prevention and treatment (4).

Current treatments, including metformin, sulfonylureas, and

insulin therapy, primarily manage symptoms but fail to address

the underlying pathophysiology or reverse disease progression,

highlighting the necessity for novel regenerative approaches (5, 6).

In recent years, significant progress has been made in

therapeutic research for diabetes, with stem cell therapy which is

emerging as a promising cure (7, 8). Among various stem cells, the

umbilical cord mesenchymal stem cells (UCMSCs) have garnered

increasing attention due to their remarkable biological

characteristics, including self-proliferation, multilineage

differentiation, and immunomodulatory properties (9). Compared

to other stem cell sources, UCMSCs are derived from non-

controversial, non-invasive sources, exhibit low immunogenicity,

and possess a high capacity for tissue repair and regeneration,

making them ideal candidates for clinical applications (10, 11).

UCMSCs have shown the ability to modulate immune responses,

reduce inflammation, and promote tissue regeneration (10, 11),

which are critical for addressing the complex pathophysiology of

diabetes. Currently, human UCMSCs are implemented and under

investigation for various clinical trials in different conditions and

stages, including neurological diseases (12), autoimmune diseases

(13), endocrine system diseases (14), etc., showing the safety of

transplantation/injection and improvements in clinical symptoms

(7). In ongoing clinical trials, the main routes of delivery are

intrathecal, intravenous, and local delivery (7). There were some

studies indicating that injection of human UCMSCs via intravenous

(tail vein) has similar therapeutic efficacy compared with

intrahepatic injection in acute liver failure rat models (15), and

other c l in i ca l s tud i e s v i a the pancrea t i c a r t e ry or

pancreaticoduodenal artery (16). Several studies, including clinical

trials, have investigated the safety and efficacy of human UCMSCs

therapy for type 1 diabetes and T2DM (17–19). For instance, a

randomized controlled trial by Zang et al. reported that intravenous

UCMSCs administration in T2DM patients significantly improved

b-cell function and reduced HbA1c levels over 12 months (19).

Despite these advances, there is limited research on the optimal

injection routes for human UCMSCs in T2DM, particularly

intravenous injection.

In this study, the efficacy of UCMSCs in the treatment of T2DM

was investigated in T2DM rats including four distinct injection

routes, tail vein, pancreatic, intraperitoneal, and pancreatic artery

intravenous with tail vein injection of saline and T2DM rats without

treatment as another control groups. Our study evaluated

longitudinal changes in glucose homeostasis (FBG, OGTT),
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inflammatory cytokines (TNF-a, IL-6, IL-1b), pancreatic

histopathology, and renal/liver function over four weeks. By

examining the outcomes and the differences among these four

administration routes, we seek to establish a solid theoretical

foundation for the clinical application of human UCMSCs

transplantation in treating T2DM.
2 Experimental section

2.1 Materials

Human UCMSCs were obtained from Hainan Beautech Stem

Cell Anti-aging Hospital Co.Ltd, Hainan, China. Streptozotocin

(STZ, S8050), glucose anhydrous (G8150), rat tumor necrosis factor

a (TNF-a) ELISA kits (SEKR0009), rat interleukin 6 (IL-6) ELISA

kits (SEKR0005), rat interleukin 1b (IL-1b) ELISA kits (SEKR0002),

paraffin with ceresin (YA0011), neutral balsam (G8590), total

cholesterol content assay kits (BC1980), and triglyceride content

assay kits (BC0620) were purchased from Beijing Solarbio Science &

Technology Co., Ltd., Beijing, China. Rat C-peptide (C-P) ELISA

kits (JL20784), rat insulin (INS) ELISA kits (JL10692), rat glycated

serum protein (GSP) ELISA kits (JL21292), rat glucagon-like

peptide 1 (GLP1) ELISA kits (JL12394), rat high density

lipoprotein (HDL) ELISA kit (JL13845), rat low density

lipoprotein (LDL) ELISA kit (JL13846), and rat glycated

hemoglobin (HbA1c) ELISA kit (JL21291) were purchased from

Shanghai Jianglai Biotechnology Co., Ltd., Shanghai, China. Rat

insulin autoantibodies (IAA) ELISA kits (ml003344), rat urea

nitrogen (BUN) content kits (100T/96S), were from Shanghai

Enzyme-linked Biotechnology Co., Ltd., Shanghai, China. The

high-fat diets were from SPF (Beijing) Biotechnology Co., Ltd.,

Beijing, China. Blood glucose test strips were purchased from the

Sinocare Biosensor Co., Ltd. Changsha, China. Ethanol absolutes

were purchased from Sinopharm Chemical Reagent Co., Ltd.,

Shanghai, China. Creatinine colorimetric (CCr) assay kits (E-BC-

K188-M) and rat microalbuminuria (MAU) ELISA kits (E-EL-

R0025c) were purchased from Elabscience Biotechnology Co.,

Ltd. Wuhan, China. e-cadherin antibody (sc-8426) was obtained

from Santa Cruz Biotechnology, Inc. Shanghai, China.

Recombinant anti-insulin (INS) antibody (ab181547),

recombinant anti-glucagon (GLU) antibody (ab92517),

recombinant anti- pancreatic and duodenal homeobox 1 (PDX-1)

antibody (ab219207), recombinant anti-collagen I (Col-I) antibody

(ab270993), goat anti-rabbit IgG H&L (ab6721), anti-alpha smooth

muscle actin (a-SMA) antibody (ab7817), goat anti-mouse IgG

H&L (ab6789) were purchased from ABcam, UK.
2.2 Induction of T2DM in rats by high-fat
diets and STZ

Male Sprague-Dawley (SD) rats (150-180 g) were used for all

experiments to avoid any possible impact of the estrous cycle on the

study outcomes. Animals were purchased from Shanghai Silaike
frontiersin.org
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Experiment Animal Co., Ltd. The rats were housed in groups of up

to three under standard conditions in cages with recycled paper

bedding in a 12/12 h light/dark cycle facility. Rats were free of food

and water and allowed one week of acclimatization to the

environment prior to the commencement of any procedures.

Animal experiments were performed in accordance with approval

from the Hainan Beautech Stem Cell Anti-Aging Hospital Ethics

Committee, Hainan, China (the approval number is S230701).

T2DM rats were induced by feeding on a high-fat diet (67.5%

conventional feed, 10% lard, 20% sucrose, and 2.5% cholesterol)

and intraperitoneal (i.p.) injection of STZ according to the previous

study (20). Briefly, rats were fed the high-fat diet for 4 weeks. The

body weights of rats were recorded once a week. Following this

initial 4-week period, the diet was switched to a clean-grade

standard feed to sustain the experimental conditions, and rats

received STZ intraperitoneally (20 mg/kg, dissolved in 0.1 mM

citrate buffer (pH = 4.2)) daily for 3 days. The establishment and

stability of T2DM in rats were tracked weekly. Rats with glucose

levels 12.2–13.9 mmol/L in 4 weeks post-STZ injection will be

considered diabetic and used for the designed study (21).
2.3 Study design

The objective of this study was to compare the efficacy of

human UCMSCs in T2DM rats by different administration routes

in a blinded manner. A schematic diagram of the study procedures

is shown in Figure 1. After confirming the establishment of T2DM,

rats were randomly divided into six groups as detailed in Table 1. A

single dose of human UCMSCs was given to T2DM rats by four

different administration routes with two control groups. The four

administration routes are T2DM rats treated with human UCMSCs

(1×106) by tail vein injection (DT), pancreas injection (DP),
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intraperitoneal injection (DI) and dorsal pancreatic artery

injection (DPA). The two control groups are T2DM rats without

treatment (DT), and T2DM rats treated with 0.2 ml saline via tail

vein injection (DC).
2.4 FBG measurement and OGTT

Before the test, all experimental rats underwent a 12-h fasting

period. On the day of the test, the rats were weighed, and FBG levels

were measured using a blood glucose meter (Sinocare, Hunan,

China). Subsequently, a glucose solution (2 g/kg) was administered

orally to the rats, and blood samples were collected to measure the

OGTT (22).
2.5 Serum and urine analysis

At the end of the experiment (4 weeks after human UCMSCs or

saline injection), rats were euthanized, and blood, urine and tissues

were collected after the final measurement of FBG and OGTT.

Tissues were fixed with 4% PFA for histology study. The content of

biomarkers in serum and urine samples was measured by the

biochemical rats ELISA or assay kits (C-P, INS, GSP, GLP1,

HDL, LDL, HbA1c, IAA, BUN, CCr, MAU) following the

manufacturer manual (23).
2.6 Histological analysis

The fixed pancreas and kidney tissues were embedded in

paraffin and 5 µm serial sections were subjected to histology

analysis (H&E, immunohistochemistry and TUNEL staining)
FIGURE 1

Schematic overview of the experimental protocol for efficacy evaluation of human UCMSCs in T2DM rats by comparing four administration routes.
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a c c o r d i n g t o t h e p r e v i o u s s t u d y ( 2 4 , 2 5 ) , a n d .

Immunohistochemistry of pancreas and kidney tissues was

performed according to studies by others (26). Briefly, sections

were treated with EDTA to the recovery of antigen after dewaxing,

then blocked with 10% (v/v) normal goat serum for 20 min at 37°C,

followed by incubation with the primary antibody (concentrations:

INS 1:64000, GLU 1:8000, PDX-1 1:500, e-cadherin 1:50, Col-l

1:500, a-SMA 0.034 µg/ml), or phosphate-buffered saline as the

negative control, overnight at 2-4°C overnight. The next day,

sections were incubated with a secondary antibody of horseradish

peroxidase-labelled goat anti-rabbit IgG for 30 min at 37°C. Then

after washing with PBS, the sections were incubated with the 3,3′-
diaminobenzidine (DAB) solution. Finally, sections were

hematoxylin counterstained after washing with running water for

20 min, dehydrated, and sealed for imaging.
2.7 Statistical analysis and data availability

The data are presented as mean (± SD). The t-test was used to

compare the means between treatment groups and controls and

Cohen’s d value was used to identify the effect size for measuring the

difference between treatment groups and control groups (27). The

one-way ANOVA followed by Tukey’s multiple comparison test was

used to analyze the between-group differences. GraphPad P v10

(GraphPad Software, La Jolla, United States) was used for statistical

analyses. The statistical significance criterion was P ≤ 0.05. Numerical

data for this study have been deposited in an open data repository for

public access: http://doi.org/10.5281/zenodo.14955051.
3 Results

3.1 Establishment of T2DM

T2DM was induced successfully in all rats as shown in Figure 2.

As shown in Figure 2A, the body weight of all mice increased

significantly (P ≤ 0.01) following one week of a high-fat diet and

consistently increased till STZ injection. Body weight was then
Frontiers in Endocrinology 04
decreased 1 week (P ≤ 0.001) after STZ injection significantly and

consistently decreased in 2 weeks, 3 weeks, and 4 weeks. In

comparison with the baseline (before the high-fat diet, week -5)

FBG levels increased substantially and consistently following STZ

injection (Figure 2B). The OGTT in Figure 2C indicated the

abnormal glucose tolerance of rats after 1 week of STZ injection

for T2DM model induction.
3.2 FBG levels after human
UCMSCs treatment

T2DM rats were treated with human UCMSCs (single

injection) compared to saline control and an additional group of

T2DM without treatment. As shown in Figure 3, there were no

improvements in all groups after receiving treatment of UCMSCs in

one week. After two weeks of the treatment, only the DT group

showed a significant decrease in FBG. After 4 weeks of human

UCMSCs treatment, FBG in DT (P<0.001) and DPA (P<0.05)

groups decreased significantly, and other groups did not show

significant changes in FBG.
3.3 OGTT after human UCMSCs treatment

To further investigate the therapeutic effect, the OGTT levels

were evaluated (Figure 4). There were no significant changes in

OGTT levels observed between each group in 1 week after human

UCMSCs injection. The OGTT levels in the DT group showed a

recovery in 2 weeks after treatment, but no significant difference in

the other groups. After four weeks of treatment of UCMSCs, the

OGTT levels were significantly improved in both DT (P<0.001) and

DPA (P<0.01) groups but not in the remaining groups.
3.4 Glucose metabolism and metabolomic
changes in response to the human
UCMSCs treatment

The glycometabolism biomarkers in serum were further

analyzed. There was a significant elevation (P<0.05) in the levels

of C-P and GLP-1, and a marked reduction (P<0.05) in INS, TNF-

a, IL-6, IL-1b, IAA, and GSP across all treatment groups after 4

weeks of treatment (Figure 5). There were no significant changes in

these biomarkers were observed across the various treatment

groups compared to the DM group before treatment (0 weeks)

and 1-week post-treatment (Supplementary Figure S1A). However,

after 2 weeks of treatment, C-P and GLP-1 levels were significantly

increased (P<0.05) in all treatment groups, and INS, TNF-a, IL-6,
IL-1b, IAA, and GSP levels showed a significant decrease (P<0.05)

(Supplementary Figure S1B). No substantial changes were observed

in any biomarkers tested in the DC group compared to the

DM group.
TABLE 1 Study design (Type 2 diabetes mellitus (T2DM) rats, n=12).

Groups Treatment Administration
route

DM No N/A

DC 0.2 ml saline Tail vein injection

DP 0.2 ml human UCMSCs
(1 × 106 cells)

Pancreas injection

DT Tail vein injection

DI Intraperitoneal injection

DPA Dorsal pancreatic
artery injection
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3.5 Liver and kidney function after the
human UCMSCs treatment

To comprehensively assess the physiological effects following

human UCMSCs therapy, the impact on liver and kidney function

was evaluated. There was a marked increase in HDL, UCr, and CCr,

and a significant decrease in TC, TG, LDL, HbA1c, BUN, SCr, and

MAU in all human UCMSCs treatment groups compared to DM

rats, but not in the saline-treated DC group by week 2 of the

treatment (Supplementary Figures S2, S3). The DT group showed

the best outcomes. No significant changes were observed in all

treatment groups before treatment (0 weeks) and 1 week

post-treatment.

Additionally, both DM and DC groups exhibited disrupted

kidney structures post-treatment, which was characterized by renal

corpuscular atrophy, hypertrophy of renal tubular epithelial cells,

irregular tubular lumen morphology, and localized necrosis, with

some necrotic areas showing calcium salt deposit ion

(Supplementary Figure S4). Tubular vacuolar degeneration was

also observed, indicated by pale-staining, loose cytoplasm

containing multiple vacuoles in the DM and DC groups. In
Frontiers in Endocrinology 05
contrast, the DP, DI, and DPA groups showed gradual

improvement over time, as evidenced by reduced renal

corpuscular atrophy, alleviated tubular degeneration, and minimal

calcium salt deposition. Notably, the DI group exhibited the most

significant renal recovery, particularly at week 4, where glomeruli

appeared nearly normal, renal tubular epithelial cell size returned to

normal, the tubular lumen exhibited a regular shape, while vacuolar

degeneration and calcium salt deposition were almost undetectable.
3.6 Pathological changes of the pancreas
after the human UCMSCs treatment

As shown in Supplementary Figure S5, H&E staining results

showed that the pancreatic tissue structure in the DM and DC

groups was severely damaged, characterized by islet cell atrophy and

focal vacuolar changes. After 2 weeks of the treatment, compared to

the DM and DC groups, the number of islets significantly increased

in the DP, DT, DI, and DPA groups, with the DT group exhibiting

the most pronounced increase (Supplementary Figure S5). At week

4, islet cell atrophy and vacuolation were markedly reduced, and the
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tissue structure showed significant improvement in all treatment

groups. The islet morphology tended to recover, and the number of

islets significantly increased (Figure 6). Notably, the DT group

showed the best outcomes with relatively intact islet structures,
Frontiers in Endocrinology 06
indicating near-complete recovery. In addition, before treatment (0

weeks), irregularities in pancreatic tissue structure and signs of islet

cell atrophy, coupled with localized vacuole-like alterations, were

evident across all rat groups. There was no significant change after 1
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week of treatment. The TUNEL staining results also showed that at

weeks 2 and 4, islet cell apoptosis was significantly reduced in the

DP, DI, and DPA groups, with the DT group exhibiting the most

pronounced reduction (Figure 7; Supplementary Figure S6).
3.7 Immunohistochemistry analysis of
pancreas and kidney tissues

To evaluate the treatment efficacy at the tissue level, insulin,

glucagon, PDX-1 were further assessed in pancreatic and renal

tissues by immunohistochemistry (28). There were no significant

alterations in the mean expression levels of insulin, glucagon, and

PDX-1 in the pancreatic tissue of rats when compared to the DM
Frontiers in Endocrinology 07
group in 0 and 1 week post-treatment (Figure 8; Supplementary

Figures S7A-C). While in 2 and 4 weeks after treatment, the average

expression of insulin, glucagon and PDX-1 in the pancreatic tissue

of rats in the DC group did not change significantly, but the

expression of glucagon in the pancreatic tissue of all human

UCMSCs groups decreased significantly, and the expression of

insulin and PDX-1 increased significantly during this period

(Figure 8; Supplementary Figures S7A-C).

Consistently, there were no significant differences in the

expression of e-cadherin, collagen-I, and a-SMA in renal tissue

when comparing rats from the DM group in 0 and 1-week post-

treatment (Supplementary Figures S7D-F, S8). Notably, after 2 and

4 weeks of treatment, there were no significant changes in renal

tissue between rats in the DM and DC group, but the expression of
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collagen-I and a-SMA in all human UCMSCs treatment groups

exhibited significant reductions, and the expression of e-cadherin

displayed a substantial increase (Supplementary Figures S7D-F, S8).
4 Discussion

As expected, the efficacy of human UCMSCs is affected by the

administration routes in treating type 2 diabetes in rats. Previous

studies have demonstrated that MSCs have a natural homing ability

to the damaged or inflamed tissues, including the pancreas in

diabetic models (29–31). Although all treatment groups were

effective to some extent, the intravenous (tail vein) injection (DT
Frontiers in Endocrinology 08
group) proved to be the most effective, followed by the DPA group.

In two weeks post-treatment, the DT group rats exhibited a

significant decrease in FBG levels and a concurrent improvement

in OGTT levels (Figures 3, 4). By four weeks, both the DT and DPA

groups displayed substantial reductions in FBG levels and

normalized OGTT levels, while no significant changes in FBG

and OGTT were observed in the other groups. Similar therapeutic

results have been observed in db/db mice (32). A single intravenous

injection of UCMSCs in 7-week-old male db/db mice significantly

reduced blood glucose levels within 7 days post-injection for up to 5

weeks alongside notable improvements in hepatic glucose and lipid

metabolism (32).The primary mechanism was attributed to

enhanced Akt phosphorylation, which ameliorated glucose and
FIGURE 7

TUNEL staining of pancreatic tissues after 4 weeks of treatment (20×, n=3). *** P<0.001, **** P<0.0001 vs DM Group with Cohen’s d > 0.8 indicating
a large effect size.
FIGURE 6

H&E staining of pancreatic tissues and the number of islets after 4 weeks of treatment (20×, n=3). *P<0.05, ***P<0.001, vs DM Group with Cohen’s d
> 0.8 indicating a large effect size. At week 4, islet cell atrophy and vacuolation were significantly reduced in the DP, DT, DI, and DPA groups.
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lipid metabolism dysfunction and reduced inflammation in the

livers of db/db mice (32). In contrast, our findings reveal that 2

weeks after human UCMSCs treatment, serum levels of C-P and

GLP-1 significantly increased across all four treatment groups. DT

group demonstrated more significant change compared to the other

three treatment groups (Figure 5). Previous studies indicated that

decreased C-P was associated with an increased risk of T2DM in the

general population (33). Similarly, GLP-1 plays another key role in

the development of T2DM, including regulation of glucose

homeostasis, insulin secretion, and alteration of insulin resistance

(34). In agreement with our results, Zang et al. found that the C-P

area under the curve improved after human UCMSCs intravenous

infusion at 9 and 48 weeks in T2DM patients, and the C-P area

under the curve could be an independent risk factor associated with

efficacy in T2D undergoing human UCMSCs intervention (19).

A significant reduction in INS, TNF-a, IL-6, and IL-1b levels

was observed in our study, indicating an improved diabetic state,
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diminished insulin demand, reduced insulin autoantibodies, and a

more pronounced therapeutic effect in these groups after 4 weeks of

human UCMSCs injection. Notably, the DT group showed the most

significant improvements compared to the other three treatment

groups. Notably, Sun et al. demonstrated that human UCMSCs

could also inhibit the occurrence and development of T2DM by

suppressing NLRP3-related proinflammatory cytokines (35).

Previous studies on T2DM patients and T2DM mouse models

have demonstrated poor glycemic control with significantly

elevated levels of proinflammatory cytokines, including TNF-a,
IL-6, and IL-1b (36, 37). Consequently, the reduction in anti-

inflammatory cytokine levels suggests attenuation of in vivo

i n fl amm a t i o n . S om e s t u d i e s d em o n s t r a t e d t h e

immunosuppressive properties of mesenchymal stem cells in the

proliferation of T lymphocytes. This inhibition is expressed in the

modulation of T cell metabolic pathways, fostering T cell tolerance,

and promoting the expansion of regulatory T cell populations (38).
FIGURE 8

Expression of insulin, glucagon, and PDX-1 in pancreases after 0, 1, 2, and 4 weeks of human UCMSCs treatment (*P<0.05, **P<0.01 and ***P<0.001
vs DM Group, with Cohen’s d > 0.8 indicating a large effect size.). IOD: Integrated optical density, PDX-1: Pancreatic and duodenal homeobox 1.
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Additionally, mesenchymal stem cells showed inhibitions to the

proliferation of B cells and suppress various immune cell functions,

including cytokine secretion and cytotoxicity of T and natural killer

cells, B cell maturation, and antibody secretion (39, 40).

In addition, the liver and kidney functions were assessed

through serum and urine analyses. In week 2, the four treatment

groups exhibited a notable elevation in serum HDL levels and a

significant reduction in TC, TG, LDL, and HbA1c levels compared

to the two control (DM and DC) groups (Supplementary Figures S2,

S3). Consistently, the DT group was better than other three

treatment groups. The pancreas, adipose tissue, liver, and

intestines as well as the kidneys also play a significant role in

glycemic level of control, including renal gluconeogenesis and the

reabsorption of glucose within the kidney (41). Previous correlation

studies in T2DM patients indicated that significantly higher serum

levels of TC, TG and LDL-C and significantly lower serum levels of

HDL-C were found in T2DM patients, as well as strong correlations

between HbA1c and TC, TG, and HDL-C (42). In agreement with

others, our results suggest potential liver and kidney function and

the T2DM condition recovery in all four treatment groups by 4

weeks post-treatment.

Furthermore, histopathological examination of pancreatic

tissue revealed that all treatment groups exhibited reduced islet

cell atrophy and vacuolization compared to control groups

(Figures 6, 7). These findings correlate with the improvements

observed in biochemical indicators. It is speculated that the human

UCMSCs intervention in T2DM may improve the symptoms of

diabetes by modulating the immune system and reducing local

inflammation (43). According to previous studies, expressions of

insulin, glucagon, PDX1, e-cadherin, collagen-I, and a-SMA could

demonstrate the development of T2DM conditions (44–46). Our

data showed significant changes in these tested parameters after 2

and 4 weeks of treatment but not in the control groups (Figure 8;

Supplementary Figure S8). Among these groups, the DT group had

a more significant decrease in glucagon, collagen-I, a-SMA, and an

increase in insulin, PDX-1, and e-cadherin. PDX-1 is the most

critical and indispensable not only for the regulation of b-cells but
also for the function of the pancreatic gene regulatory network (47).

For, example, the normal function of the pancreatic cell lineage

requires a high concentration of PDX-1 (48). The increase of PDX-1

was observed after 2 and 4 weeks in all four treatment groups. DT

group had a more significant increase in the expression of PDX-1.

E-cadherin at the surface of islet b-cells secretion is controlled by

secretagogues including glucose (49). E-cadherin correlates with

insulin and can serve as a surface marker of b-cell function (49).

The increase of e-cadherin after 2 and 4 weeks of treatment likely

indicated the meliorate of b-cell in the treatment groups, especially

in the DT group. Glucagon is a key regulator of normal fuel

m e t a b o l i sm , a n d b o t h f a s t i n g a n d p o s t p r a n d i a l

hyperglucagonemia make substantial contributions to the fasting

hyperglycemia and postprandial glucose excursions that

characterize T2DM (44). Patients with T2DM were observed with

higher concentrations of glucagon (50). The decrease in glucagon
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suggests better control of insulin and the development of T2DM.

Besides, the a-SMA is a protein expressed early in vascular smooth

muscle cell differentiation, and the levels of a-SMA increase when

vascular smooth muscle cells become quiescent state (51). The

decrease of a-SMA indicated that the vascular smooth muscle cell is

more active after 2 weeks post-treatment, addressing the recovery of

renal functions with T2DM. On the one hand, collagen-I could

improve the INS-1 cell growth and insulin biosynthesis (52). On the

other hand, inhibition of collagen-I accumulation reduces

glomerulosclerosis in diabetic nephropathy (53). The level of

collagen-I was reduced after 2 weeks of post-treatment, indicating

a better balance of collagen-I in treatment groups, especially in DT

group rats.

Overall, our findings show that human UCMSCs treatment

reduces pro-inflammatory cytokines and promotes histological

recovery in pancreatic and hepatic tissues, supporting its

therapeutic potential for T2DM. However, the proposed

mechanisms, such as oxidative stress, related lipid metabolism

and signaling pathways, require further validation. Future studies

should include biodistribution analyses to track human UCMSCs

homing and engraftment and explore the longer-term effects which

will further clarify why tail vein injection appears most effective and

strengthen our understanding of UCMSCs mechanisms.
5 Conclusion

The human UCMSCs (1×106 cells) were effective in treating

T2DM in rats across all treatment groups to some extent by a short

term of 4 weeks post-treatment. Intravenous injection (DT Group)

was the most effective among the tested routes followed by DPA

Group. A significant decrease in FBG levels and a return toward

normal levels in OGTT was observed in 2 weeks post-treatment.

Changes in various biochemical markers supported the efficacy

observed in FBG and OGTT levels. Moreover, examination of

pancreatic and kidney tissues confirmed histological recovery in

T2DM rats treated with UCMSCs, correlating with the observed

efficacy. Future studies on extending the observation period,

administering repeated infusions, and exploring different doses of

UCMSCs may enhance the efficacy of treatment further.
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