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Introduction: This review examines the evolution of gonadotrophins in ovarian

stimulation (OS) protocols for assisted reproductive techniques (ART). Since the

advent of in vitro fertilisation (IVF) in the late 1970s, the pharmaceutical industry

has played a pivotal role in advancing gonadotrophin production, improving drug

purity and optimising delivery methods. Despite significant progress, questions

remain about the robustness of the evidence supporting the use of different

gonadotrophins and the impact of industry-driven research on clinical practice.

The review critically examines the evolution, evidence and future directions of

gonadotrophin use in ART.

Methods: A comprehensive literature search was carried out in multiple

databases to select articles/reviews on historical developments, manufacturing

and analytical techniques, regulatory frameworks and clinical trials undertaken to

assess gonadotrophin production, formulation processes and their integration

into clinical practice. The analysis included mainly evidence from pharmaceutical

sponsored randomised controlled trials (RCTs) as well as single arm, registration

or post approval studies. Studies on new molecular entities were reviewed.

Systematic reviews and meta-analyses, national registries were consulted.

Laboratory developments, regulatory challenges, economic constraints,

were considered.

Results: Over the past four decades, ART has seen remarkable improvements,

including increased live birth rates in women of advanced ovarian age, reduced

multiple births, and the advent of patient-friendly pen devices. Innovations such

as recombinant FSH (rFSH) and biosimilars have expanded treatment options.

However, the high cost of drug development as well as the complexity of the ART

process have contributed to underpowered trials and reliance on meta-analyses,

which often fail to account for confounding factors.

Discussion: While gonadotrophins have been shown to be effective for OS,

unresolved issues, such as the role of supplementing LH activity in OS protocols,

highlight the need for more robust trials. Collaboration between stakeholders is
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essential to standardise trial designs, define key outcomes and minimise bias.

Emerging technologies, including AI and genetic testing, offer opportunities to

refine embryo assessment and implantation outcomes, thus improving trial design.

A renewed focus on rigorous, transparent trials and interdisciplinary collaboration

is essential to advance patient care and address unmet challenges in ART

treatment. Beyond gonadotrophins, alternative therapeutic avenues to improve

oocyte competence and implantation success warrant exploration.
KEYWORDS

ovarian stimulation, assisted reproductive techniques, IVF, recombinant FSH, urinary
FSH, hMG, gonadotrophins, pharmaceutical industry
1 Introduction

Before 1985, the field of in vitro fertilization (IVF) was beautifully

simple, limited information and choice of drugs for ovarian

stimulation (OS) and luteal phase support, coupled with off the

shelf laboratory equipment and home cooked recipes for the

laboratory reagents. Information was readily exchanged between

clinics, and pharmaceutical companies were themselves learning

about the needs and nature of this exciting new venture. From a

very early stage though, advances and refinements in OS regimens

(Figure 1) and laboratory practices (1) were implemented not only by

pharmaceutical or laboratory companies, but also inquisitive and

brave individuals who were driven by a desire to improve outcomes,

reduce and standardize the complexity of the IVF treatment process.

Forty six years on from the birth of the first IVF baby, Louise

Brown, conceived following oocyte recovery in a natural cycle, our

field of research and patient care continues to evolve at a tremendous

pace; new drug therapeutics, laboratory procedures and innovative

devices have been introduced and treatment is shifting from a single

isolated intervention, covering approximately four weeks to a

longitudinal segmented approach (2) that may occur over

potentially many years, hence providing a viable option for

individuals undergoing cancer therapy (3), as well as those women

who desire to preserve their fertility.

Longitudinal data on live birth rates from the HFEA, the UK

fertility regulator, clearly demonstrates the advancements in ART

that have been made over the last 40 years especially for women up

to the age of 39 as well as a significant reduction in multiple births

from a high of 30% to around 4% in 2022 (4 website).

As for overall drug development, it must be appreciated that

developing and bringing to market new medicines is high risk and

costly. In 2023, it was estimated that European research-based

pharmaceutical companies invested an estimated € 50 billion in

R&D and directly employs 900,000 people (5). There are increasing

challenges, escalating R&D costs and increased regulatory hurdles.

From the development of a new active substance to it reaching the

market takes around 12-13 years and an average of 1-2 out of 10,000
02
new substances successfully pass all stages of development and are

approved. In the fertility therapeutic area, the most recently

launched follitropin product, took around 8 years to reach the

market (Table 1). Additionally, the whole European sector has been

severely hit by the impact of austerity measures introduced by

European governments since 2010 (5).

The decision for a company to undertake any drug, or device

development is highly complex (6). For instance, it involves

assessing multiple factors, including the commercial opportunity,

the level of internal company competition for R&D budget in other

therapeutic developments, the patent landscape and/or patent

protection, the level of external competition, regulatory

requirements as well as the potential burden of proof to achieve

the desired selling price, and reimbursement or insurance coverage.

Finally, the potential clinical interest in the medical community and

the willingness/interest of patients to demand the new treatment

options also must be considered. Alternatively, it is less complex

and less costly, for pharmaceutical companies to sponsor

investigator-initiated studies to either encourage innovation in

clinical practice or just to build customer/brand relationships.

Thus, it is a fine balancing act for a pharmaceutical company to

decide between maintaining a drug development pipeline through

to regulatory approval, as well as investment in post marketing

clinical activities, including scientific journal contributions. This has

led in our therapeutic area to a plethora of small and medium sized

underpowered clinical trials that are then subsequently

incorporated into meta-analyses covering ovarian stimulation

treatment options (e.g. 7).

For ovarian stimulation, how can we effectively keep pace with

our fast-evolving medical discipline; is the body of evidence robust

and communicated with full transparency e.g. are there differences

between FSH preparations? What lessons can we learn from our

relatively short past? In this commentary we will review in detail,

the evolution of the manufacturing, formulation and analytical

processes used in gonadotrophin production as well as discuss

novel development pathways, some of which were adopted by

pharmaceutical companies, leading to new market entrants.
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Finally, we will critically examine the scientific and clinical evidence

for gonadotrophin use, as well as propose the future focus for

gonadotrophin and ART research and development.
2 Pharmaceutical developments in
manufacturing

2.1 Manufacturing processes

The initial manufacturing and testing of animal and human

pituitary gonadotrophins, as well as pregnant mare serum

gonadotrophin (PMSG) was through scientific research

establishments. As the manufacture of gonadotrophins

transitioned into pharmaceutical companies, the processes were

required to follow certain quality standards. This concept of

regulatory control of pharmaceutical manufacturing started with

the FDA in 1938, which was further elaborated in 1968 to require

pharmaceutical companies to demonstrate that drugs were safe and

effective through controlled clinical trials.

The WHO introduced Good Manufacturing Practices (GMP) in

1968 to ensure that medicinal products were consistently produced and

controlled to appropriate quality standards. The need for GMP was

stimulated by several safety issues with marketed drug products in the

US and the EU from as early as 1937 but the establishment of formal

regulations took longer. In the US, GMP was established as a binding

regulation in the USCode of Federal Regulations in 1978. In Europe, an

informal GMP system (PIC, Pharmaceutical Inspection Convention)
Frontiers in Endocrinology 03
was established under the European Free Trade Association (EFTA) in

1970. On a national level, the GermanMedicines Act was established in

1978 but specific GMP requirements were first published in 1985, and

by the European Economic Community (EEC) in 1989. GMPwere also

established for biological products in 1992.

The Regulatory Guidelines in Europe, and other regulatory

authorities, have continued to evolve for biologics to cover all

aspects of process development, analytical testing, non-clinical

and clinical requirements prior to market approval.
2.2 Formulation development

The presentation of commercialised gonadotrophins has

evolved from lyophilised hMG in ampoules, through to vials, and

recently into a ready to use solution in a pen device. This HMG pen

device has limited availability (mainly in Germany) and was

demonstrated to be bioequivalent to powder for reconstitution (8).

Initially hMG was supplied as a 75IU dosage form, but through

extensive product development, the dosage forms available now

include 150IUmonodose, and 300, 450 and 1050IUmultidose formats.

A reusable pen injector for rFSH was first introduced in EU in

2000 by Organon, and a pre-filled pen injector in 2004 by Serono.

The refined method of administration by utilizing pen injection

devices was a tremendous step forward, for patient convenience and

accuracy of doses that can be administered, unlike the practical

challenges of dose delivery following reconstitution and

administrat ion of a lyophil ised ampoule/vial urinary
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Schematic of some of the important timepoints when ovarian stimulation drugs and protocols were described in the literature.
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gonadotrophin formulation. The benefit of pen devices allowed

simple and reliable self-injection at home, and the introduction of

pen injectors for gonadotrophin administration has become the

standard approach of all gonadotrophin manufacturers.

Following the introduction of follitropin alfa where the content

of the formulation is based on the rFSH protein content (9) rather

than just a reliance on the traditional in-vivo bioassay, it encouraged

other manufacturers to consider alternative analytical methods as

an alternative or perhaps a replacement of the in-vivo bioassay (see

section below 2.3.3).

2.3 Analytical development

2.3.1 International gonadotrophin standards
Prior to 1939 there was no uniformity in assaymethods or units for

gonadotrophins. The Health Organisation of the League of Nations

established International Standards and defined International Units for

the gonadotrophins originating from human pregnancy urine and

serum. (10). The WHO Expert Committee on Biological

Standardisation was established in 1947 to provide recommendations

and guidelines for manufacturing, licensing and control of

biotechnology products and the establishment of WHO International

Reference Preparations and International Standards. The consistent

assessment of FSH and LH activity in any of the commercially

produced gonadotrophins requires the use of a validated and

calibrated standard. The WHO Expert Committee on Biological

Standardisation initiated the production and calibration of an

International Reference Preparation for hMG in 1957 which was

introduced in 1959 (1st IRP). A similar exercise was required for the

production and calibration of an International Reference Standard for

rFSH available since 1995. All the international standards rely upon a

secure and representative source of gonadotrophin, and they have

typically been supplied by pharmaceutical companies. International

standards have also been developed for LH and hCG.
Frontiers in Endocrinology 04
2.3.2 Analytical methodology
The analytical methodology suitable to fully assess protein

therapeutics, and especially gonadotrophins, was initially only

applied to rFSH. This was partly due to the very high purity

achieved through superior manufacturing purification processes,

and the availability of analytical methodologies that could effectively

be used to measure impurities, and to characterise the

gonadotrophin molecule in terms of degraded forms (oxidation,

deamidation, truncation) and glycosylation pattern.

Consequently, the Pharmacopeia European has issued

Pharmacopeial Monographs for the active pharmaceutical

ingredient (rFSH) and the final drug product (Ph.Eur.,

Follitropin monograph 2285, Follitropin Concentrated Solution

monograph 2286). The monographs describe the minimum

analytical tests which all manufacturers must use for testing

recombinant FSH prior to market release. In comparison the

pharmacopeia requirements for hMG are limited to standard

analytical tests applicable to all aseptically manufactured

products, plus the use of the in-vivo bioassay for FSH and LH to

assess the biological potency (Menotropins USP29-NF24, BP

monograph 1067).

Some manufacturers of highly purified hMG have introduced

more advanced purification processes and analytical testing.

Increased control of the urine donors, and the introduction of

Anion Exchange Chromatography has provided a more consistent

production process for the hMG and uFSH drug products from

Ferring (11). An improved purification process has also

been reported to produce hMG and uFSH from IBSA using Ion

Exchange, Affinity and Hydrophobic Interaction Chromatographic

steps (12). Although it is possible to improve the purity of any hMG

product the nature and heterogeneity of the FSH glycoforms will

continue to be different to the rFSH products (13). The clinical

impact of these differences may be irrelevant but continues to

be debated.
TABLE 1 Examples of drug development time* in the reproductive medicine therapy area.

Molecule Patent Filed First Scientific
Publication

Clinical Development
Time (Phase I-III)

First Regulatory
Registration

Drug Development Time
(Patent-Registration)

rFSH (follitropin alfa) 1985 1989 1992-1995 (4 yrs) 1995 (Europe) 11yrs

rFSH (biosimilar) Patent for
follitropin alfa
expired 2012

2015 2008-2011 (4yrs) 2013 (Europe) 6yrs+

rFSH (long-acting
fusion CTP)

1989 1992 2001-2008 (8 yrs) 2010 (Europe) 22yrs

rFSH
(follitropin delta)

2009 2014 2014-2016 (3 yrs) 2016 (Europe) 8yrs

GnRH analogue
(antagonist-
cetrorelix)

1980 1986 1991-1997 (7yrs) 1999 (Europe) 20yrs

GnRH Antagonist
(orally active
small molecule)

1987 1989 2010-2017 (8yrs) 2018 (USA) 32yrs
*Calculated from the time of patent filing date.
+Calculated from commencement of clinical development.
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2.3.3 Gonadotrophin Pharmacopoeia
monographs

The Steelman-Pohley FSH bioassay (1953) is the only bioassay

currently published in the US and EU pharmacopeias and continues to

be used today to assess the FSH bioactivity in pharmaceutical products,

whilst the Seminal Vesicle weight bioassay is used for LH (14).

Following the EU Convention for the Protection of Vertebrate

Animals used for Experimental and other Scientific Purposes initiated

in 1986 (86/609/EEC), the European Pharmacopoeia Commission

intensified the review of all animal tests in pharmacopeia

monographs. Directive (2010/63/EU) on the protection of animals

used for scientific purposes, came into full effect in 2013 and replaced

the Directive 86/609/EEC. During the drafting of the follitropin

monographs, the European Directorate for the Quality of

Medicines and Healthcare (EDQM) reviewed suitable alternatives

to the in-vivo potency test. An assessment of isoelectric focusing (IEF)

and capillary zone electrophoresis (CZE) as possible replacements

was coordinated by the European Centre for the Validation of

Alternative Methods (ECVAM) however no correlation to the

potency measurement could be found, and the methods could not

be universally applied to all follitropin products in Europe (15).

Some alternative physiochemical approaches have been proposed

to replace the FSH in-vivo bioassay as a pharmaceutical analytical

method to assess the FSH content (9, 16). A reporter gene assay for

FSH has also been developed (17) at the National Institute for Food and

Drug Control in China. More recently an in-vitro bioassay has been

developed that is being considered as an alternative to the in vivo assay

in the European Pharmacopeia (18). This analytical approach was

approved in 2022 by the EMA to replace the FSH in-vivo bioassay for

the testing of follitropin alfa originator and a combination of follitropin

alfa/lutropin alfa. Whilst this approval signifies a substantial

advancement in adopting in-vitro methods for FSH potency

assessment, the complete integration of the in-vitro bioassay into the

European Pharmacopoeia as a standard replacement for the in-vivo

method has not yet occurred. It will require comprehensive validation

and further consultation within the scientific and regulatory

communities to ensure the new method’s robustness and reliability

across various applications.
3 Ovarian stimulation with
gonadotrophins

Following the scientific discovery of the physiological action of

gonadotrophins in the period between 1925 - 1930, and that both FSH

and LH are secreted from the pituitary, sources of exogenous

gonadotrophins have been used to treat infertile patients (see review 19).
3.1 Animal and pituitary derived
gonadotrophins

3.1.1 Animal pituitary gonadotrophins
The ‘two-step’ ovarian stimulation protocol was first

demonstrated by Mazer and Ravetz (20). They combined treatment
Frontiers in Endocrinology 05
with animal pituitary material and chorionic gonadotrophin to

stimulate the human ovary. Several pharmaceutical companies

started to provide commercially available animal pituitary

preparations (19) until it was discovered that repeated injection of

the animal extracts elicited the production of gonadotrophin

antibodies which decreased the ovarian response (21). The

therapeutic use of animal derived pituitary extracts demonstrated

the role of the pharmaceutical industry to provide larger scale

manufacturing and commercial supply.

3.1.2 Pregnant mare serum gonadotrophin
In 1930, Cole & Hart (22) demonstrated that PMSG had potent

gonadotrophin activity, and it was used soon after to induce

ovulation (as summarised in 19). An international standard was

later established in 1938, and commercially available preparations

were available in Europe and the USA. However inconsistent results

and adverse effects due to the foreign nature of the injected protein

became apparent. Both animal pituitary extracts and PMSG were

continued to be used, in conjunction with hCG extracted from

human pregnancy urine, despite the antibody formation.

The FSH and LH activity of animal pituitary derived

gonadotrophins and PMSG was initially assessed by a range of

bioassays and standardised against a variety of national

gonadotrophin standards. The lack of suitable purification

technologies at that time prevented the development of a highly

purified gonadotrophin and the analytical techniques did not allow

any in-depth assessment of protein impurities, or only limited

characterisation of the gonadotrophins present in the animal-

derived materials.

3.1.3 Human pituitary gonadotrophin
To avoid the problems faced with animal pituitary derived

gonadotrophins, Gemzell & co-workers demonstrated that

gonadotrophins could be extracted from pituitary glands of

human cadavers and used to stimulate ovulation. The

gonadotrophins extracted from this source were termed human

pituitary gonadotrophin (HPG) or human pituitary FSH (HP-FSH)

(23, 24).

A review of the clinical experience of using HPG indicated that

reported studies had used different techniques to extract the

gonadotrophin from the pituitary, different bioassays to assess the

biological activity, and different reference standards, which had

made valid comparisons very difficult. The general observation was

that the incidence of multiple pregnancies was high, with a risk of

ovarian hyperstimulation and other safety issues (25). A later study

from Melbourne, Australia, showed that the cumulative pregnancy

rate of a limited number of patients was similar to that seen in the

general community (26). It was noted that multiple pregnancies and

hyperstimulation could be better managed with the use of sensitive

immunoassays for FSH and LH, as well as the availability

of ultrasonography.

The collection and processing of post-mortem human

pituitaries was largely undertaken by national human pituitary

agencies in providing pituitary derived gonadotrophins. The three

major national agencies included the National Hormone &
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Pituitary Program in the US, the Australian Human Pituitary

Hormone Program and the National Health Service in the UK.

The use of pituitary derived hormones in Australia was

suspended in 1985 (27) when a growth hormone recipient in the

US developed Creutzfeld-Jacob Disease (CJD) (see 28).

Unfortunately, in 1993, multiple cases of CJD were described and

thought to be linked to the use of HPG (29). Further cases of CJD

occurred in patients who had also received preparations produced

by the National Pituitary Agencies in the US, Australia, New

Zealand, UK, and France. The monitoring of patients treated with

hormones extracted from human pituitaries continues at the

National Health Agencies.
3.2 The development of urinary and
recombinant human gonadotrophins

3.2.1 Human menopausal gonadotrophin and
urofollitropin

Human menopausal gonadotrophin (hMG) obtained from

urine, (30), was initially introduced into clinical use in

hypogonadotrophic anovulatory women using a sequential step-

up/step-down regimen by Bruno Lunenfeld in 1961 (31); soon after,

Lunenfeld et al. (32) reported on the use of HMG in males with

gonadotrophic insufficiency. This urinary gonadotrophin eventually

yielded its full potential as an ovarian stimulant following the initial

work on stimulation regimens by the pioneering IVF team, Steptoe

and Edwards (33).

Following the above successful reports of ovulation induction in

women, the first HMG (called Pergonal®, from the Italian-for the

gonads ‘per gonadi’) was a crude protein extract, containing about

5% gonadotrophins (see review; 34, 35). It was registered first for

clinical use in Italy by Serono in 1950 and then in Israel after the

pioneering work of Lunenfeld in 1963. This version of Pergonal®

75, contained 75 IU of FSH and 75 IU of LH as measured by

standard in vivo bioassays (19).

Subsequently Serono chemists developed a method to remove

most of the LH activity from HMG (36) to make available an FSH

only gonadotrophin (though with similar levels of impurity). This

was achieved by including an additional immuno-chromatography

extraction step which used an hCG polyclonal antibody, that also

binds LH. This led to the clinical availability in the 1970’s, of a

urinary FSH (Metrodin®) registered initially for use in treatment of

PCOS anovulation.

In the late 1980’s some pharmaceutical companies focused all

efforts into developing and promoting the use of FSH only

gonadotrophins in parallel to the dramatic increase in demand

for gonadotrophins fuelled by the surge in IVF treatments. Around

the same time, the UK MHRA, was the first regulatory agency to

approve urinary gonadotrophins for ovarian stimulation in IVF

treatment cycles. Registration was based on a summary of clinical

experience and no dose finding studies were conducted.

To provide clinical experience with a subcutaneous

administered gonadotrophin before the launch of recombinant

FSH across continents, Serono developed a process using FSH

monoclonal antibodies as one of the purification steps on HMG
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bulk solution. This led to the first (and only) highly purified urinary

FSH (urofollitropin, u-FSH HP) with a specific activity of at least

10,000 IU FSH/mg protein, containing not less than 95% FSH and

with negligible LH content (37). This preparation was first

commercialized in 1993 in Europe (38). Since then, there have

been other companies bringing to market urinary products (both

HMG and FSH) claiming to be highly purified (HP), however none

of them meet the above specifications (35, 39, 40).

The development of highly purified urofollitropins marked the

transition from intramuscular to subcutaneous injections which

supported the self-injection of gonadotrophins at home rather than

administration by a health care professional at the fertility clinic.

This transition was supported by phase 1 comparative

bioavailability studies showing that u-FSH and u-FSH-HP were

equivalent (41).

The manufacture of more purified gonadotrophins from human

menopausal urine posed significant supply issues for the various

pharmaceutical companies involved. Very large volumes of urine

are required, and consequently very large numbers of donors are

needed to maintain a secure commercial supply. The move from

HMG to urinary FSH and urofollitropin, produced using more

rigorous manufacturing processes and regulatory guidelines

(described below), placed even greater demands on an adequate

supply of human menopausal urine. The supply challenge resulted

in a phasing out of the first generation hMG’s, and product

shortages during the late 1990’s.

However, during this period there were some interim attempts

to address the increasing challenge of supplying hMG commercially

as a 1:1 FSH: LH product. The LH activity had been reported to be

preferentially lost during the manufacturing process (11).

Subsequent analysis of the HMG (Menopur® , Ferring)

demonstrated that 95% of the LH bioactivity is due to the

presence of hCG (39, 40) perhaps to compensate for the loss of

LH during the manufacturing process. Serono commercialized, for

a short time, an HMG variant with the brand name Pergogreen®

that contained a 2:1 FSH: LH ratio (42). With a similar approach

Organon launched Normegon® (3:1 FSH: LH ratio) in some EU

countries, in which no hCG was present. (43, 44).

Although HMG has proved to be a successful source of

gonadotrophins for the treatment of infertility, the collection and

processing of urine from multiple donors could not be considered

a controlled process and any safety issues related to the quality

of the urine collected from donors could not be assured. The

pharmaceutical gonadotrophin products derived from human

menopausal urine have been considered safe (45), but several

studies have demonstrated the presence of non-gonadotrophin

contaminants in HMG and urinary FSH products (35, 37, 39). A

later analytical study from Van Dorsselaer et al. (46) using

proteomics, did demonstrate the presence of protease-sensitive

prion protein in HMG and HMG-HP pharmaceutical products.

Although not seen in other markets, the UK Medicines Control

Agency announced the withdrawal of Metrodin HP as a precaution

in 2003, even though that risks associated with its use were

‘incalculably small’, further advising patients to switch to

recombinant human FSH (rFSH), (47).
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The early experiences of preparing therapeutic proteins from

animal and human sourced materials has dramatically changed the

regulatory requirements for the development of therapeutic proteins

(EMA Guideline on the use of starting material and intermediates

collected from different sources in the manufacturing of non-

recombinant biological medicinal products, (48)). For urine derived

hormones, exclusion criteria for selection of donors are encouraged,

and manufacturers are required to estimate the potential of their

manufacturing processes to reduce potential infectivity (EMA

Position Statement on Creutzfeldt-Jakob Disease and Plasma-

Derived and Urine-Derived Medicinal Products, first published

in 2003).

In October 2022, it became apparent that issues had arose with

the supply and manufacture of one marketed HMG, due to

unapproved changes made by a third-party supplier in the drug

substance’s manufacturing process. The company temporarily

halted shipments to the UK and paused manufacturing at the

supplier, leading to shortages in the UK (49). Shortages of the

product are still apparent today across some EU countries and UK.

However, after receiving feedback from the U.S. FDA, the company

resumed shipments to the U.S. market in November 2022 (50).

International regulatory guidelines also now require the process

characterisation of critical pharmaceutical drug substances (EMA

Guideline on process validation for the manufacture of

biotechnology-derived active substances and data to be provided

in the regulatory submission, 2016), the assessment of potential

immunogenicity (EMA Guideline on immunogenicity of

therapeutic proteins, first published in 2007), the identification

and quantification of all impurities and the qualification of all

manufacturing processes and the analytical methods used to release

the drug product onto the market (ICH Guideline Q8, 2006).

3.2.2 Recombinant human FSH
With the exponential growth of global IVF in the 1990’s, linked to

increasingly strict regulations on the industrial production of urinary

gonadotrophins that limited the supply of high-quality menopausal

urine, it became imperative to secure a controlled and consistent

source of gonadotrophins by implementing recombinant DNA

technology to produce recombinant human gonadotrophins (51),

the first being rFSH, the primary gonadotrophin used in OS.

Table 2 presents the characteristics of urinary and recombinant

derived gonadotropins.

The race to market a rFSH, resulted in the introduction of

follitropin alpha in 1995 and follitropin beta in 1996. The clinical

dossiers for registration of these two follitropins were based upon a

comparison to urinary human FSH to which they had similar

elimination half-lives and pharmacodynamic properties (52–55).

In an opinion article Zwart-van Rijkom et al. (56) examined the

diffusion of rFSH into Dutch medical practice. In this article they

succinctly described the dilemma facing the Pharmaceutical

Industry, purchasers and the prescriber. In the case of rFSH like

many other biotech drugs, it is just an alternative option for already

existing medicines obtained by extracting gonadotrophins from

human menopausal urine. The introduction of rFSH demonstrated

superior batch to batch consistency, was highly pure and free from
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urinary protein contaminants. However, what are the benefits from

a clinical perspective? These latter points have been the focus of

numerous trials, meta-analyses, systematic reviews and pharmaco-

economic assessments for almost the last 30 years and relevant

strands of the arguments will be included below. In their paper,

Zwart-van Rijkom et al. (56) highlighted the main issue; although

there was a perceived quality improvement in using the

recombinant follitropins, there were major impacts on drug prices

and levels of reimbursement in some markets that led to adoption

resistance, keeping the need for cheaper (urinary) alternatives.

The first two rFSH preparations were produced using different

mammalian Chinese Hamster Ovary (CHO) cell lines and methods to

insert the alpha and beta human FSH subunit genes, as well as having

different downstream production processes (51, 57). For these reasons,

the two FSH preparations had significantly different FSH isoform

profiles (follitropin beta having more basic FSH isoforms than

follitropin alfa which in vitro have a higher affinity for the FSH

receptor, resulting in higher production of cyclic adenosine

monophosphate (cAMP) and other second messengers involved in

the follicular response). Various erroneous claims were made based on

in-vitro study results, and the initiation of clinical trials and subsequently

symposia that promoted one being superior to the other (57–62).

The battle for market dominance of the recombinant FSH

segment continued unabated for about 5 years; subsequently,

through real world clinical experience of the two ‘significantly

different’ FSH isoform preparations, ART specialists, academic

scientists and congress organizers eventually realized that the two

preparations had the same safety and efficacy profiles, including

pregnancy and live birth rates (63–65).

Further gonadotrophin research and development however

continued, leading to the commercialization of recombinant LH

(rLH) and hCG (discussed below), as well as the use of follitropin

alfa for other indications (e.g., female hypogonadotrophic

hypogonadism; 66).

There were also some attempts, to develop a new generation of

rFSH preparations based on selected FSH isoforms that could more

closely mimic the changes observed in the normal menstrual cycle
TABLE 2 Characteristics of urinary and recombinant gonadotrophins.

Gonadotrophin Purity Mean specific
FSH activity
(IU/mg protein)

Injected
protein per
75 IU (mg)

hMG < 5% ~100 ~750

u-FSH < 5% ~150 370–750

hMG HP < 70% 2000–2500 ~18

u-FSH HP
(urofollitropin)

> 95% ~9000 6–11

r-hFSH
Follitropin beta

> 99% 10,000 8.1

Follitropin alfa > 99% 13,636 6.1

Follitropin delta > 99% NA Dosed in mg (If
AMH <15pmol/l,
12mcg daily*)
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(67, 68). These FSH preparations were proposed to have a use in

ovulation induction protocols to reduce the incidence of multiple

follicular development. Pilot studies were conducted comparing two

enriched FSH isoform pools, a more acidic (pI= 3.9-4.6) and a more

basic (pI= 4.2-5.1) follitropin originating from follitropin alfa bulk

material, which were separated by chromatography. (69). These were

administered s.c. in a daily dose of 150 IU (acidic-8.7 mg vs basic-

23.8mg FSH/vial), based on the in vivo rat bioassay, in down-

regulated women and follicular development was compared.

Administration of a pool of more acidic FSH isoforms resulted in

a lower metabolic clearance, and at day 10, in the development of

significantly more follicles (mean n=28) compared to the pool of

basic FSH isoforms (n=16). The findings clearly demonstrated that

the type of FSH isoform can have a profound effect on follicle

development and supports the need for careful regulation of the FSH

isoform content of pharmaceutical preparations. The results also

demonstrated the limitations of the rat in-vivo bioassay for assigning

the FSH potency of commercially available gonadotrophins and

validates the use of filling by mass protein (70). However, as far as

leading to potential new product opportunities, the results did not

support a progression to a full development program as there was

not a clear clinical benefit over what could be achieved with clinically

available rFSH used at low doses in a pen device.

Organon, on the other hand, continued to invest in a long acting

FSH, which was based on a patent from Irvine Boime’s group in the

USA (71- discussed in next section). The company also commenced

the development of a small orally bioactive LH peptide mimetic

(Org 43553). This product was trialled in a human clinical study,

which demonstrated ovulation (by transvaginal ultrasound and

elevated serum progesterone levels) following single dose

administration. However, it never reached the market (72),

probably because of the clinical profile (same efficacy and

presumed safety to current therapy) compared to the significant

development costs that would be required. As it stands now,

potential revenue from orally active gonadotrophic mimetics is

low, given the huge financial investment needed to develop them

and the limited cost-benefit potential in terms of efficacy and safety

of an acute therapy compared to registered products. However,

there are still attempts to progress the clinical development of an

orally active FSH receptor agonist (discussed in Section 3.2.4).

3.2.3 Long-acting recombinant human FSH
Since the approval of the first recombinant protein, insulin, in

1982 (73), many manufacturers recognised the opportunity to

develop extended-release formulations, to increase the drug half-

life, reduce the frequency of injections, and potentially improve

patient compliance (74). Hence, there have been several attempts to

develop and commercialise a modified r-FSH formulation that

provided an extension of the molecule’s half-life.

In the early 2000’s, a hyperglycosylated recombinant FSH

(AS900672) was developed with multiple N-linked glycosylation

sites (75), which demonstrated an extended half-life in female rats.

A phase II study was planned in oligo-anovulatory infertile women

undergoing ovulation induction but was later abandoned.
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A sustained release recombinant FSH was also developed by

encapsulating rFSH into small polymeric microspheres which

demonstrated a dose-dependent effect on follicular development

and oestradiol production in healthy female volunteers (76).

However further development was also terminated.

The approach that led to the first to market of a modified long

acting FSH, was based on the work of Fares et al. (71), and involved

the coupling of the carboxyl terminal peptide (CTP) of hCG to the

FSH molecule (rFSH-CTP, corifollitropin alfa), which naturally

extends the half-life of FSH in human serum to around 70 hours,

compared with that of follitropin alfa or beta of around 36-40 hours.

Because of the extended absorption and longer half-life of

corifollitropin alfa, the frequency of FSH administration is

reduced to once every 6 days, resulting in several injection-free

days for most patients undergoing OS.

The first live birth after OS using rFSH-CTP was reported by

Beckers et al. (77) and the molecule was registered in the EU for use

in ART in 2 dosages in 2010 (78). However, following its

commercial introduction in the EU, corifollitropin alfa did not

quite live up to initial expectations, and commercialization in the

USA was abandoned after multiple large US-based clinical studies

had been completed.

The reasons for corifollitropin alfa’s disappointing performance

within the ART therapeutic area are probably numerous, the first

being that longer-acting drugs are more suited for chronic disease

conditions. A course of OS typically takes a median of 11 days. The

impact of reducing the number of injections during an OS cycle is

limited, as other injections (e.g., GnRH analogue injections) are still

necessary. Additionally, as an injection of corifollitropin alfa was

developed to sufficiently elevate FSH for approximately 7 days,

supplementary daily FSH injections maybe required thereafter

in some patients if the appropriate follicular response has not yet

been achieved. This leads to an FSH naïve patient having to

potentially learn two FSH injection techniques during the same

treatment cycle.

However, in 2022, corifollitropin alfa combined with hCG

was registered by EMA to treat adolescent boys aged 14 years and

older who have delayed or absent puberty due to hypogonadotropic

hypogonadism. Here FSH is given for around 64 weeks to increase

testicular volume, thus supporting the medical need for a long-

acting FSH to reduce injection frequency and improve compliance.

Alternative fusion protein candidates have also been reported.

An FSH Fc fusion protein was developed by fusing an Fc/Fc

heterodimer to the beta chain of FSH (79). An extended half-life

was seen in both rats and cynomolgus monkeys. It is reported that

the fusion protein is currently in phase III trials in China. Another

FSH Fusion protein was developed (80) using genetic engineering to

create an FSH-IgG4 Fc fusion protein. The fusion protein

demonstrated a longer half-life in Sprague-Dawley rats when

compared to follitropin alfa. Phase 1 clinical trials are planned to

examine the pharmacokinetic and pharmacodynamic properties of

this molecule.

The development of another long-acting r-FSH has been

recently published (81), which has been proposed as a potentially
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important treatment of patients with hypogonadotropic

hypogonadism. However, with the registration of corifollitropin

alfa in such an indication and considering the rarity of the condition

it would seem unlikely that this product will advance to a further

stage of development.

3.2.4 Additional development approaches
Although oral administration of therapeutic proteins is usually

disregarded due to low bioavailability, a study of orally

administered rFSH in a PCOS rat model (82), demonstrated some

attenuation of the characteristics associated with PCOS, however,

the mechanism of action was not apparent.

In another development, researchers at Syntonix developed an

FSH-Fc fusion protein by linking the intact FSH molecule, or the

alpha and beta subunits of FSH, with the Fc domain of

immunoglobulin G1. The two fusion proteins were used to

examine carrier-mediated transport via the Fc receptor across

intestinal epithelia in neonatal rats, and lung epithelia in

cynomolgus monkeys (83). The FSH-Fc proteins demonstrated

increased blood stability and improved bioactivity. The authors

proposed that the FSH-Fc fusion proteins may offer the potential for

oral or pulmonary delivery of FSH.

The research efforts related to finding a small molecule able to

induce ovarian stimulation via the FSH receptor have been

presented in a review (84) and individual research efforts on

developing specific FSH receptor agonists have been published

(85–88), but despite the numerous publications few have been

actively pursued into clinical development. However, Cellmatix

have announced in 2024 that they have nominated a lead

compound in its world’s first oral FSH receptor agonist drug

development program (www.celmatix.com Press Release, 2024).

Another novel approach being developed by IGYXOS, involves

the use of a monoclonal antibody that binds to both the a and b
subunits of FSH, stabilizing the dimer and enhancing FSH receptor

interaction. This increased FSH activation could potentially treat

infertility in men and women more effectively and simplify

treatment regimens, either alone or with standard gonadotrophin

treatments (89, 90). Currently this humanised monoclonal antibody

is entering Phase I in healthy male and female volunteers (90, 91).

3.2.5 Alternative dosing regimens and
administration sites

As with other therapeutic proteins administered primarily by

intra-muscular or subcutaneous routes, alternative methods of

administration have been proposed for gonadotrophins.

Following numerous studies going back to the 1980’s with

alternative day, every third day injections of gonadotrophins (92–

94), an intermittent vaginal injection approach has also been

reported (95–97) with outcomes not inferior to daily conventional

abdominal administration. The studies suggest faster absorption,

slower elimination, and a larger systemic exposure via the

intermittent vaginal route. However, it should be noted that

vaginal injection is not conducive to self-administration by

the patient.
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The same group has also investigated abdominal mesotherapy

injection which provided a prolonged elevation of serum FSH and

could reduce the number of rFSH injections or lower the rFSH dose

needed (98).

3.2.6 Recombinant human LH and hCG
Recombinant LH (rLH) has met some challenges in

demonstrating benefit in women undergoing ovarian stimulation

for IVF/ICSI and in 2000, rLH was registered by EMA in

combination with rFSH, for ovarian stimulation in women with

severe gonadotrophin deficiency such as hypogonadal

hypogonadism (99, 100).

The 1998 study suggested that increasing exposure to LH

during the follicular phase reduces the number of growing

follicles, providing clinical evidence for the ‘LH ceiling effect’,

(101–103).

Further studies supported that 75 IU of LH activity/day is

sufficient for normal follicular development and luteal phase

function in hypogonadal hypogonadism (HH) (104). Subsequent

studies confirmed these findings using 75 IU rLH/day in

combination with 150 IU rFSH in HH patients (105, 106).

Eventually, a lyophilized combination of follitropin alfa/lutropin

alfa (150IU FSH:75IU LH) was launched in the EU in 2007 for this

indication (see next section 3.2.7).

The clinical utility of the LH ceiling effect was further explored in a

series of studies. Subsequent findings from a pilot study demonstrated

that high doses of rLH in the late follicular phase suppressed follicular

development both in HH as well asWHO II anovulatory women (100).

This observation was similar to that reported by Filicori (107) when

utilising hCG-supplemented HMG.

Hugues et al. (108) further investigated if rLH could be used to

achieve mono ovulation for conception in vivo. In this elegant

placebo-controlled, double-blind study, four doses of rLH (150, 300,

660, 1325 IU) were given daily in the late follicular phase (in

combination with a fixed dose of 37.5IU FSH) to find the optimal

dose that could maintain growth of a dominant follicle, whilst

leading to atresia of secondary ones. The study was conducted on

WHO II anovulatory women who were experiencing an excessive

ovarian response to FSH treatment. The results demonstrated that

doses up to 660 IU rLH/day increased the proportion of patients

developing a single dominant follicle compared to placebo.

However, despite these promising findings, clinical development

was not continued, again mainly due to the projected development

costs for a limited clinical indication.

Additionally, in a randomised, double-blind, double-placebo

study, the use of rLH (5,000, 15,000, 30,000, or 15,000 + 10,000 IU

with the second injection administered 3 days after the first) was

also explored as a substitute for a 5000 IU hCG injection, to trigger

follicular and oocyte maturation (109). rLH was well tolerated and

no moderate or severe OHSS was reported following a single dose of

30,000 IU. There was however a consistent non-significant trend

toward lower numbers of oocytes, clinical pregnancies and live birth

rates in patients treated with lower doses of rLH. The project was

halted due to manufacturing constraints as a large dose of rLH and
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possibly two injections, would be needed to obtain the most optimal

results (between 15’000 – 30’000 IU rLH) compared to the

established 5000IU uhCG trigger dose. Strong pharmaco-

economic arguments would also be needed.

In contrast, recombinant hCG (rhCG) registration was simpler, as

a follow-on substitute for urinary hCG used as the final trigger for final

oocyte maturation in infertile women undergoing IVF/ICSI (110, 111).

3.2.7 rLH/rFSH combination for assisted
reproductive techniques

In the late 1990’s a development plan was proposed for a

recombinant combination product which could compete head-to-

head with HMG and any future threat of FSH biosimilars. This led

to the commercialisation in women with severe gonadotrophin

deficiency (hypogonadotrophic hypogonadism), of a product with a

2:1 FSH: LH preparation – in effect a recombinant ‘Pergogreen’. A

small dose-finding study performed in women aged 38-42 years

undergoing IVF suggested that a fixed ratio of 2:1 or 3:1 FSH: LH

was beneficial in terms of the number of oocytes retrieved and

pregnancy rates (112).

It wasn’t until 2012 that clinical development for an ART

indication was initiated for rLH. At this time a Phase IIIb trial

was initiated, to examine the utility of LH supplementation

(2FSH:1LH ratio) vs FSH alone, in the late follicular phase of IVF

patients aged 36-40 years (113). The primary objective was

equivalence in number of oocytes retrieved per patient. However,

less oocytes were retrieved with LH supplementation and therefore

the study did not reach the predefined limit of equivalence. Thus,

again this study supported the LH ceiling hypothesis and previous

findings from ovulation induction of also a modulatory role for LH

on the follicle cohort in ART.

Around the same time, a meta-analysis (114), in women with a

poor ovarian response to stimulation suggested that rLH

supplementation resulted in a reverse finding- an increase in the

number of oocytes retrieved. However, that meta-analysis also

included what are defined as Poseidon Group 1 and 2 patients

(115, 116). These were patients with an adequate ovarian reserve

who unexpectedly exhibited a poor ovarian response to stimulation

with FSH-only preparations, but who were reported to respond

adequately if supplemented with rLH.

On the other hand, a real-world evidence observational study on

over 9000 low prognosis patients classified according to the

POSEIDON criteria (117) did not demonstrate a benefit of LH

activity supplementation on outcomes. A logistic regression analysis

revealed that the POSEIDON grouping, number of embryos obtained,

number of ET cycles per patient, number of oocytes collected, female

age, duration of infertility and BMI were relevant predictors for

Cumulative Delivery Rate (CDR; P < 0.001). Gonadotrophin type,

total gonadotrophin dose, type of GnRH analogue and ovulation

trigger were all not significantly associated with CDR.

Even though the findings of the Lehert et al. (114) meta-analysis

were not aligned with previous research demonstrating LH’s impact

on follicle atresia, it prompted the initiation of a large Phase IIIa IVF

trial to compare FSH/LH in a 2.1 ratio to FSH-only in women with

poor ovarian reserve, aligned with the Bologna ESHRE criteria.
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However, despite being powered to show a difference of one oocyte

in favour of the FSH/LH group, the study failed to demonstrate this

(118), as well as no improvement in live birth rates. The Bologna

POR classification is widely acknowledged to encompass a

heterogeneous population. The patients included in the study can

be retrospectively divided into three basic severity scores, known as

PROsPer score (mild, moderate, and severe), based on age, ovarian

reserve, and the number of oocytes retrieved during a previous

stimulation (119). Patients with a moderate and severe score had a

higher live birth rate and a lower pregnancy loss rate when treated

with FSH/LH compared to FSH-only, according to this

retrospective analysis.

Another study, which also used the same system and included

9667 Bologna criteria POR cycles, reported that moderate and

severe PROsPer groups had a significantly higher cumulative live

birth rate when treated with FSH/LH as compared to FSH-only

(120). It was concluded that FSH/LH treatment is more effective

than FSH-only treatment for patients with moderate and severe

scores on the PROsPeR system. However, the role of LH in

moderate and severe PROsPer groups remains hypothetical until

appropriate randomised clinical trials are completed.

Conforti et al. (121) conducted a meta-analysis which found

that although fewer oocytes were retrieved in women aged 35 or

older who received rFSH/r-hLH compared to rFSH alone, the

clinical pregnancy rate was higher in the rLH supplemented

groups. In a very recent analysis of the German IVF register, it

was confirmed that patients 35-40 years who received r-FSH/r-LH

treatment instead of r-FSH had significantly less oocytes (-1.74

(95% CI -2.00 to -1.48) but with no difference in the live birth

(absolute difference +2.3% (95% CI: 0.2-3.9) or cumulative live birth

rate (absolute difference -1.2% (95% CI: -3.4-0.9) (122).

In physiology, LH plays a dominant role from the mid to late

follicular phase (123). Studies on rodent models have consistently

shown that FSH inhibits granulosa cell apoptosis and follicular

atresia in a dose-response manner (124), while also promoting

granulosa cell proliferation (125). In contrast, LH/hCG have been

found to be less effective in suppressing apoptosis (126, 127). These

in vitro findings were encapsulated in the LH ceiling hypothesis

(102) and demonstrated in a clinical model described earlier, where

administration of rLH through the period of FSH stimulation as

well as in the mid to late follicular phase led to suppression of follicle

development (100, 113). This development related ‘LH ceiling’,

when breached resulted in several effects such as complete follicular

growth arrest to impaired ability of a follicle to luteinize. Thus, there

is a clear modulatory role on follicular development.

Apart from the above-mentioned retrospective studies and

meta-analyses (128), an RCT in patients stimulated with different

FSH starting doses, but similar total IU’s of FSH+LH activity,

demonstrated no differences in ongoing clinical pregnancy rates

in women aged 36-39 years and in those <36 years (129). More

recently other small studies failed to find any difference (130, 131).

Thus, the LH supplementation saga continues and the cohort of

patients who may benefit is still elusive. This reflects a typical

conundrum for pharmaceutical companies: a developed drug

looking for a wider indication.
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3.2.8 FSH biosimilars
Following the introduction of EMA guidelines on biosimilar

development in 2004 and specific rFSH biosimilar guidelines in

2013, new players have entered the field with the introduction of

biosimilar follitropin alfa preparations.

In a commentary, de Mora and Fauser (132) described the

background of a biosimilar registration. According to the regulatory

definition, a biosimilar is a biological medicine that has been

demonstrated, through a series of physico-chemical, in-vitro, in-

vivo tests, and confirmatory Phase I and Phase III studies to be

similar/equivalent in quality, safety, and efficacy to the reference

medicinal product. However, this definition is only valid if

registration is by one of the Strict Regulatory Agencies (now

termed WHO- Listed Authorities), including those of US FDA,

Japan, Canada, Australia, European Economic Area (EEA) and UK

MHRA (133). It is incorrect therefore, to assign the term biosimilar

(as defined and regulated by the WHO-Listed Authorities) to a

rFSH product developed and trialled only for example in China

(134). Since the launch of the first biosimilar in 2006, the EMA has

approved a total of more than 90 biosimilars and evidence acquired

to date suggests that these biosimilars can be used as safely and

effectively in their approved indications as other biological

medicines (135). Additionally, the EMA & Heads of Medicines

Agencies (HMA), have recently issued a statement confirming that

biosimilar medicines approved in the EU are interchangeable with

their reference medicine or with an equivalent biosimilar (136).

Despite the rigorous scientific basis for registration of

biosimilars adopted by the WHO- Listed Authorities, there is

some ongoing confusion within the reproductive medicine

community on what actually is a biosimilar, leading to resistance

in their use. The suggested differences reported in early meta-

analyses and associated reviews between biosimilars, and the

originator seem to revolve around subtle variations in the FSH

isoform (glycan) composition, (137, 138). These are minor

compared to those between follitropin alfa and beta (62, 139) and

urinary gonadotrophins (40). A retrospective study (data from

2013-2018 that contained only 5% of treatments utilising a FSH

biosimilar) using the French payments database (SNDS) suggested

that biosimilar rFSH (and also HMG) were not as effective as the

originator follitropin alfa (140). There are, however, numerous

issues with this database, notably there is no information on

important biological parameters such as ovarian reserve markers

or oocytes retrieved. However, other data from a large European

multicentre comparative post approval trial required by the EMA

(141), comparing a biosimilar to originator follitropin alfa,

demonstrated that the OHSS incidence proportion and severity,

as well as pregnancy and live birth rates were similar. Overall, real

world evidence published to date, including another French

multicentre analysis of over 6500 treatment cycles with a

follitropin alfa biosimilar (142) and an analysis of over 7000

oocyte donor– recipient cycles (143) using FSH biosimilars versus

the originator, confirmed that the 2 biosimilar FSH preparations

available in the EEA, UK and Australia are the same quality

replacements for the originator follitropin alfa (144).
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Unfortunately, there is still within the ART community, a

repetitive misunderstanding of the core scientific principles laid

down by the EMA of biosimilarity (145). In reply, de Mora and

Howles (133) clearly described in the words of EMA experts, the

foundation of demonstrating biosimilarity ‘it is undisputed that a

comprehensive analytical and functional comparison of the

biosimilar candidate and the reference product are the mainstay

for establishing biosimilarity’. The argument put forward by Venetis

and Mol (145) that RCT’s are the best way to evaluate effectiveness

for a biosimilar is erroneous as it would be the least sensitive way to

pick up differences. These two co-authors have again been involved

in recently published systematic review and meta-analysis (146)

comparing ‘biosimilars’ vs the originator follitropin alfa. The

fundamental flaw of this meta-analysis again lies in incorporating

four rFSH products that have not been registered by a WHO-Listed

Authority, and thus biosimilarity is not certain. Additionally,

another rFSH product included was not registered as a biosimilar.

Of the two EU approved biosimilars, pooling the respective

data did not reveal a significant difference in live birth rates.

The non-biosimilarity of two of the FSH products incorporated

into the above meta-analysis has been clearly demonstrated by

Manzi et al. (147). They identified differences in N-glycosylation

occupancy, antennarity, sialylation and oxidation between the

reference follitropin alfa and the other FSH preparations

analysed, none of the latter having been registered by any of the

WHO-Listed Authorities.

3.2.9 Follitropin delta and epsilon
Within the last 10 years, a new rFSH (follitropin delta) with

different pharmacokinetic properties compared to the existing rFSH

and u-FSH products was launched. To produce follitropin delta, a

different cell line (PER.C6 of human foetal retinal origin) was used

to those for follitropin alfa and delta, and due to its higher

proportion of complex carbohydrate structures and hence higher

overall sialic acid content, it has a significantly longer elimination

half-life (30h vs 24h for follitropin alfa, 148; the EPAR summary for

the public, Rekovelle follitropin delta 2017). Consequently, the

product is dosed according to an algorithm in µg based on a

recent determination (within the last 12 months) of serum Anti-

Mullerian hormone (AMH) concentration, (measured by one of 3

specific assay systems) and weight (kg) of the IVF patient (Rekovelle

summary of product characteristics).

Follitropin delta, dosed according to the algorithm, aims to

avoid extremes in ovarian response (149). The conclusion from the

Committee for Medicinal Products for Human Use (CHMP) was

that follitropin delta was as effective as follitropin alfa at stimulating

the ovaries and that its “safety profile was considered acceptable and

like that of the comparator, follitropin alfa” (150). However, due to

the significant longitudinal and intra-cycle variations in AMH

levels, independent of age, concerns have been raised that a single

AMH measurement may be insufficient for determining the FSH

dose (151). Additionally, the lack of an international standard for

AMH limits comparison between AMH assays (152) and whilst a

purified human AMH preparation (code 16/190) was evaluated by
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the WHO, it showed inconsistent commutability across different

commercial assays (153).

One of the major criticisms of the clinical data published for

follitropin delta is that the product was compared against the

comparator, follitropin alfa, administered at a fixed starting dose

and adjustable on day 5, irrespective of age or ovarian reserve.

Another trial using the same approach (154), as well as an

individual meta-analysis (155), has perpetrated the message that

follitropin delta reduces safety risks and is more effective regarding

gonadotrophin dosage vs conventional dosing. However, this is not

routine clinical practice (156).

Other companies (Glycotope GmbH, Berlin Germany) have been

active in the development of yet another injectable FSH (FSH-GEX®;

follitropin epsilon) which also has different pharmacodynamic

properties from follitropin alfa. Follitropin epsilon has undergone

Phase I, and II trials (157, 158).

Following the experience to date with follitropin delta, the

question could be raised whether entry of yet another follitropin

with different pharmacokinetics compared to tried and tested

follitropin alpha and beta, as well as urinary FSH, will yield any

important clinical advantages.
4 Use of gonadotrophins in ovarian
stimulation protocols

This section will review and discuss how perceived differences

have developed between FSH alone and LH/hCG combinations

when combined with a GnRH agonist (GnRHa) and the subsequent

impact of the introduction of GnRH antagonists into OS protocols.
4.1 Which gonadotrophin to use in the
long GnRHa down-regulation protocol?

The use of GnRHa preparations in combination with

gonadotrophins for fertility treatment were first proposed in the

early 80’s (159, 160) and specifically in IVF by Porter et al. (161). At

that time, the most common stimulation protocols used a

combination of clomiphene citrate and HMG or HMG alone.

However, there were multiple problems associated with their use,

in particular the deleterious effects of a premature LH surge prior to

hCG triggered follicular maturation, oocyte maturity and luteal

phase advancement (162).

These GnRHa products were quickly incorporated into OS

protocols (163) and first approved for pituitary down regulation

in IVF in the late ‘80’s early ‘90’s. The “long GnRHa down-

regulation” protocol which involves a pre- treatment phase of

typically 6-10 days before starting ovarian stimulation, swiftly

became the gold standard for ovarian stimulation in IVF, in spite

the higher total dose of FSH required compared to the existing

regimens. This rapid swing in practice was because a virtually

eliminated cycle cancellation due to spontaneous ovulation,
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leading to significantly improved success rates and facilitating

scheduling of the IVF treatment. However, it has been clear from

early studies that the recommended daily dose of GnRHa, utilized

in an ovarian stimulation protocol was generally higher than the

minimal effective dose (164). Additionally, due to the different

amino acid substitutions used by manufacturers at position 6 and

10, the potency of different agonists varies, as well as due to the

formulation, daily (injection or intranasal) vs. depot administration

(165). This complicates the comparison of results obtained across

studies using different GnRHa compounds, moreover, these

product characteristics certainly impacted the outcome of

stimulation when comparing FSH only to FSH/LH (HMG)

preparations (166) as aptly illustrated in women with complete

gonadotrophic deficiency (167).

With the long GnRHa down-regulation protocol well

established, the need for LH activity supplementation during

ovarian stimulation was questioned and re-explored. Urinary FSH

preparations were reported to be equal, or even better, than HMG

products (168–171).

On the other hand, a wide range of Phase IV clinical trials emerged

suggesting another paradigm: “when coupled to uFSH, hCG driven LH

activity is actually more effective than rFSH”. This theory was ably

supported by clinical trials that used a potent GnRHa and a fixed FSH

dosing regimen (The European and Israeli Study Group on highly

purified hMG versus rFSH 2002; 172). Concerns about themerit of these

studies were described and dissected by Trew (173), who concluded that

‘‘some of the pharmacodynamic differences alluded to in this trial

(MERIT) may be protocol-driven rather than LH-activity derived’’.

However, all such concerns were buried by the clinical community

who wanted a wider choice of gonadotrophins, particularly one with an

LH containing alternative for ovarian stimulation, which in some

markets was less expensive than rFSH or rFSH/rLH.

In fact, a potential protocol driven effect was apparent in the

Cochrane systematic review including 42 trials on recombinant

versus urinary gonadotrophins for ovarian stimulation. Within this

analysis the authors noted that the live birth rates were borderline

lower for rFSH vs urinary gonadotrophins in the sponsored trials (6

trials, N=2817; OR 0.84, 95% CI 0.71-1.00). This was probably

influenced by the type of GnRHa used in the long protocol and the

fixed dose FSH regimen. However, the overall conclusion

demonstrated that if calculating the fresh transfer cycle only, and

not exploring the cumulative live birth rate (LBR)- there was no

differences in clinical pregnancy, ovarian hyperstimulation

syndrome (OHSS), or live birth when rFSH was compared to

urinary gonadotrophins within any of the down regulation groups

(7). The ESHRE Guideline on ovarian stimulation for IVF/ICSI

(2019), also equally recommended the use of rFSH or HMG.

There has recently been an updated Cochrane systematic review

and network meta-analysis providing the most comprehensive

summary of ovarian stimulation protocols for ART (174). In

summary, they reported an uncertainty of a difference between

gonadotrophins in long GnRH agonist protocols for LBR and

OHSS. GnRH antagonist with HMG (vs rFSH) probably reduces
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OHSS in high responders and in normal/high responding patients,

and in line with the LH ceiling hypothesis, LH may reduce oocyte

number, but effect on frozen embryo number is yet uncertain.

The hCG driven, LH activity ‘story’, in several publications has

suggested a positive association with mid-follicular concentrations

of exogenous hCG and live birth rates in women co-treated with a

long GnRHa protocol (175). This long-standing “mantra” delivered

in publications and at congresses for more than 15 years, is now

under scrutiny following publication of a pharmaceutical sponsored

dose finding trial (176) using r-hCG (choriogonadotropin beta

expressed in a human cell line). In this well designed (placebo

controlled, double blind) randomised clinical trial, a range of

choriogonadotropin beta doses (0,1,2,4,8,12 ug) were combined

with individualized follitropin delta doses for ovarian stimulation in

a long GnRH agonist protocol. The primary endpoint was the

number of good quality blastocysts. Not surprisingly if we consider

physiology, fewer oocytes were observed in all groups receiving r-

hCG. Additionally, and maybe more concerning, less good quality

blastocysts were obtained and the ongoing pregnancy rate per

started cycle was 43% in the follitropin delta comparator, but

lower (33% on average) across all choriogonadotropin beta

dosing groups.

Whilst the impact of choriogonadotropin beta on follicle and

oocyte number are similar to that reported previously using HMG,

the additional observations from this placebo controlled double

blind trial demonstrating generally less good quality blastocysts,

raises further questions to those discussed above on the benefit of

supplemental LH-like activity during ovarian stimulation in the

general IVF population (see review by 177).
4.2 The switch to GnRH antagonists in
ovarian stimulation protocols

The first GnRH antagonist, cetrorelix was introduced to the

market in 1999 followed a year later by ganirelix. It took a rather

prolonged gestation (almost 10 years) before this group of GnRH

analogues became established in IVF protocols. This was despite

there being important advantages for patients of using GnRH

antagonists in terms of less injections, overall shorter treatment

duration, lower FSH consumption, significantly lower risk of OHSS

(178) and the possibility to trigger final oocyte maturation effectively

with a bolus of GnRH agonist (179, 180). Generally, less oocytes were

reported from the early studies to be collected vs GnRH agonist

protocol and some of the early supporting clinical data suggested

lower pregnancy rates, as well as there being some concern as to the

most appropriate daily dose (181). This concern of lower ongoing

pregnancy rates in the general IVF population continued up until

2017 (182) as reported in a meta-analysis comprising 50 studies.

However, in the most recent systematic review and network analysis

(174), the evidence demonstrated that in women with predicted

normal or high response, the use of GnRH antagonist protocols may

result in little to no difference in live births and a reduction in OHSS

vs long GnRH agonist protocol. Additionally, in predicted poor

responders, the overall evidence suggests no differences in terms of
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safety or efficacy between the GnRH agonist and antagonist protocols

(183). It seems therefore that the clinical community has now learnt

how best to use the GnRH antagonist protocol.
5 Discussion and future
recommendations

The Pharmaceutical Industry has significantly shaped the way

we practice ovarian stimulation in ovulation induction and ART

(see summary Table 3).

The immense pressure on drug development often results in

practical considerations that take the path of least resistance to

market entry and to maximise returns for future research and

development. As discussed in the introduction and illustrated in our

medical field (Table 1), development of a gonadotrophin drug (e.g.

long acting FSH) or a GnRH analogue is NOT a rapid process and

may result in commercialisation after therapeutic protocols have

advanced, leaving the newly registered product seemingly outdated.

There have been several brave attempts to bring new molecules/

indications to our field (e.g., development phase: lutropin alfa as

follicular trigger or to suppress secondary follicle development, an

LH small molecule mimetic for oral administration) but they did

not continue to be developed for possible regulatory submission.

There are still insufficient randomised controlled trials (RCT)

that are double blind and placebo-controlled to truly address

unanswered questions. Open, even ‘assessor blind’ trials, suffer

from a high risk of bias. Until then we will continue to be often

misguided by erroneous meta-analyses. An important element that

is not always considered when analysing a trial design, compiling

a meta-analysis or systematic review is to ask the question,

‘how much of the result is influenced/explained by basic

physiology’. For example, the type of GnRH agonist used in a

comparative HMG vs FSH only trial can influence the total

gonadotrophin dose, oestradiol output, days of stimulation (184)
TABLE 3 Summary Impact of Pharmaceutical Industry on Fertility
therapeutic area.

Development Activity Outcome

Gonadotrophin Supply Since the early 1970’s, increasingly secure
supply, improved purity

HMG Quality Improved with evolving regulatory guidelines

Recombinant DNA
(rDNA) Technology

Introduction of originator rFSH, rLH, rhCG
drug products and subsequently
FSH biosimilars

Administration Formulations More patient friendly (liquid) and
pen devices

Long Acting FSH Preparations Harnessing rDNA technology has provided
the framework to develop novel FSH
molecules with longer half-life.

GnRH Antagonists Introduction of shorter, flexible OS protocols,
lower OHSS risk

Training and Education Advance medical knowledge and
best practices
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as well as late follicular progesterone levels and pregnancy rates

(166, 172). Additionally, the 114 meta-analysis demonstrated that

LH supplementation increased the number of oocytes retrieved in

ART cycles.

The Pharmaceutical industry is the only player today that can

consider the cost of any statistically powered (for registration

purposes 90%), double-blind RCT, and ultimately, it is in their

interest to design rigorous studies to demonstrate the clinical value

of their drug product following the high cost of development.

Inevitably such an RCT will have strict inclusion and exclusion

criteria to limit the patient variables which will not necessarily

reflect the patient demographics of a typical IVF clinic. However, it

is vitally important in a complex treatment process such as ART to

have a well-defined patient population as a basis for any RCT.

Whilst there are now excellent initiatives to develop a core outcome

set of variables for future fertility research, (185), consensus documents

on the development of ART laboratory performance indicators (186),

performance indicators for clinical practice in ART (187) and both

clinical and laboratory key performance indicators (188), there is a

need to translate and apply these recommendations into clinical trial

protocols. It is to this point that reproductive specialists, associated

societies and the pharmaceutical industry work to develop clear,

unambiguous guidelines on study design, inclusion and exclusion

criteria, incorporation of key treatment performance indicators, and

stricter control of pivotal variables (e.g., embryo development and

assessment as well as embryo transfer procedure), including a

standardized luteal phase support regimen, (a research area that has

recently been under intense scrutiny, see 189, 190). Such guidelines

would better ensure truly balanced randomised clinical trials where

ongoing clinical pregnancy rate is the primary endpoint.

When considering ovarian stimulation and the use of different

commercialised FSH gonadotrophins within a complex treatment

process such as ART, we advocate a cessation of comparative

studies unless there is a focus on answering core questions that

may lead to improved treatment outcomes. There is a renewed need

for the Pharmaceutical Industry to collaborate with the clinical

community to address the unanswered questions such as ‘does LH

activity supplementation’ deliver unequivocally better outcomes,

especially in women of advanced maternal age. The medical

community have been involved in trying to answer this for more

than 30 years and we do not seem to be any closer to an answer,

especially with the increased acceptance and use of GnRH

antagonist protocols (see review 177).

Gonadotrophins from either human urine or recombinant

technology have adequately demonstrated that ovarian

stimulation can be effective and safe, leading to successful

pregnancies and live births in most categories of female and male

infertility. Today, the evidence clearly demonstrates from single IVF

units, multicentre analyses or national databases, that the number

of oocytes retrieved from OS is a critical predictor of a patient’s

chance (linked to their age) to pregnancy and the cumulative live

birth rate (191–195). Hence, the pivotal role that personalised FSH

dosing, based on ovarian biomarkers such as AMH, plays in an ART

treatment. Over the last 15 years, further significant efforts have

been directed at assessing the quality of the embryo for
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implantation in IVF (e.g. preimplantation genetic testing for

aneuploidy, time lapse imaging, use of AI in aiding the

discrimination of embryo viability). The use of machine learning

models to assist in decision making for the FSH starting dosing and

time of follicular trigger, may also contribute to optimizing the

number of mature oocytes retrieved and hence ART outcomes

(196–198). The above tools should also be considered for

supporting the validity of any further randomised studies

comparing drug regimens or other technologies introduced into

the ART treatment process.

One major challenge remains largely unsolved, and that is to

improve the implantation of a viable embryo, resulting eventually in

a live birth. There are also numerous, non-gonadotrophin pathways

for the pharmaceutical industry to investigate potential therapeutic

options to improve oocyte competence, embryo viability and assist

implantation. New technologies on the far horizon may well

dramatically reduce/replace injectable gonadotrophin use, e.g., in-

vitro follicular maturation and growth (199), the reprogramming of

somatic cells to produce gametes (200) and new in-vitromaturation

techniques (201). However, as of today, gonadotrophins are

well and firmly established as a cornerstone of successful

fertility treatment.
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