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Predicting central lymph
node metastasis in papillary
thyroid microcarcinoma: a
breakthrough with interpretable
machine learning
Weijun Zhou †, Lijuan Li †, Xiaowen Hao, Lanying Wu, Lifu Liu,
Binyu Zheng, Yangzheng Xia and Yong Liu*

Department of Ultrasound, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
Objective: To develop and validate an interpretable machine learning (ML) model

for the preoperative prediction of central lymph node metastasis (CLNM) in

papillary thyroid microcarcinoma (PTMC).

Methods: FromDecember 2016 toDecember 2023,we retrospectively analyzed 710

PTMC patients who underwent thyroidectomies. Feature selection was conducted

using the least absolute shrinkage and selection operator (LASSO) regressionmethod,

alongside the Support Vector Machine-Recursive Feature Elimination (SVM-RFE)

algorithm in conjunction with multivariate logistic regression. Eight ML algorithms,

namely Decision Tree, Random Forest (RF), K-nearest neighbors, Support vector

machine, Extreme Gradient Boosting, Naive Bayes, Logistic regression, and Light

Gradient Boosting machine, were developed for the prediction of CLNM. The

performance of these models was evaluated using area under the receiver

operating characteristic curve (AUC), decision curve analysis (DCA), sensitivity,

specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV),

and F1 scores. Additionally, the Shapley Additive Explanation (SHAP) algorithm was

utilized to clarify the results of the optimal ML model.

Results: The results indicated that 32.95% of the patients (234/710) presented

with CLNM. Tumor diameter, multifocality, lymph nodes identified via ultrasound

(US-LN), and extrathyroidal extension (ETE) were identified as independent

predictors of CLNM. The RF model achieved the highest performance in the

validation set with an AUC of 0.893(95%CI: 0.846-0.940), accuracy of 0.832,

sensitivity of 0.764, specificity of 0.866, PPV of 0.743, NPV of 0.879, and F1-score

of 0.753. Furthermore, the DCA demonstrated that the RF model exhibited a

superior clinical net benefit.

Conclusion: Our model predicted the risk of CLNM in PTMC patients with high

accuracy preoperatively.
KEYWORDS

machine learning, papillary thyroid microcarcinoma, central lymph node metastasis,
diagnostic imaging, SHapley Additive exPlanation
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• This is a retrospective study to analyze the possibility of the

machine learning (ML) model preoperatively predicting

Cervical lymph node metastases (CLNM) in Papillary

thyroid microcarcinoma (PTMC).

• The model established by combining US image features and

clinical features has high predictive performance in both

derivation cohort and external validation cohort.

• The findings can help clinicians predict CLNM before

surgery and provide a basis for monitoring strategies for

PTMC patients.
Introduction

Papillary thyroid carcinoma (PTC) represents the most

prevalent histological subtype of thyroid malignancy, comprising

over 80%~90% of all thyroid carcinoma cases (1, 2). The incidence

of papillary thyroid carcinoma (PTC) has risen, driven largely by

increased detection of papillary thyroid microcarcinoma (PTMC;

≤10 mm) (3). It is believed that PTMC is a relatively indolent

carcinoma, typically occurring incidentally and occult, with a good

prognosis and a favorable outcome (4–6). According to the 2015

American Thyroid Association (ATA) guidelines, active

surveillance is more appropriate for patient with low-risk PTMC

(7). However, certain cancer cells have the potential to metastasize

to the lymph nodes surrounding the thyroid gland, with a particular

propensity for the cervical lymph node. Cervical lymph node

metastases (CLNM) have been documented to occur in 12.3% to

49.1% of patients with PTMC (8, 9). Moreover, PTMC patients with

both central and lateral nodal metastases showed a significantly

lower survival rate than those who didn’t have lymph nodes

involved and prone to local recurrence or distant metastasis (8).

In patients with PTMC exhibiting CLNM, central lymph node

dissection (CLND) holds significant clinical importance in the

management of the disease. Therefore, it is very necessary to

evaluate CLNM in thyroid cancer patients before surgery. The
eviations: PTC, Papillary thyroid carcinoma; PTMC, Papillary thyroid

carcinoma; ATA, American thyroid association; CLNM, Cervical lymph

metastases; CLND, Central lymph node dissection; ETE, Extrathyroidal

sion; ML, Machine learning; SHAP, Shapley Additive Explanation; T3,

dothyronine; T4, Tetraiodothyronine; FT3, Free triiodothyronine; FT4, Free

odothyronine; TSH, Thyroid-stimulating hormone; TGAb, Thyroglobulin

ody; TPOAb, Thyroid peroxidase antibody; TRAb, Thyrotrophin receptor

ody; ACR, American college of radiology; TI-RADS, Thyroid imaging,

ting and data system; US-LN, Cervical lymph nodes status based on

ound; LASSO, Least absolute shrinkage and selection operator; SVM-

Support vector machine-recursive feature elimination; DT, Decision tree;

andom Forest; KNN, K-nearest neighbors; SVM, Support vector machine;

oost, Extreme Gradient Boosting; NBM, Naive bayes model; LR, Logistic

ssion; LightGBM, Light gradient boosting machine; ROC, Receiver

ting characteristic; AUC, Area under the ROC curve; DCA, Decision

analysis.
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accurate identification of CLNM preoperatively and noninvasively

can improve treatment planning and eliminate unnecessary surgical

intervention. The Japanese Consensus Statement on managing low-

risk PTMC recommends using ultrasound to check for extra-

thyroid invasion and cervical lymph node metastasis (10).

However, ultrasound is highly specific for diagnosing cervical

lymph nodes but less sensit ive for paratracheal and

retropharyngeal nodes in the central region (11). Its accuracy for

detecting CLNM is also affected by inter-operator variability,

highlighting the need to improve preoperative prediction

precision. This may result in an inability of the required thermal

ablation therapy effect and leading to higher rates of recurrence. To

improve the accuracy of CLNM evaluation in thyroid cancer, many

scholars analyzed the ultrasonic morphological features of thyroid

cancer. Studies revealed that ultrasonic features such as

microcalcification, extrathyroidal extension (ETE), ill-defined

margin and internal heterogeneous low-enhancement were

significant independent predictors for CLNM (12, 13).

Recently, there has been growing interest in applying machine

learning (ML) for lymph node metastasis prediction from cancer

imaging data. However, preoperative prediction of lymph node

metastasis is challenging. Compared to other statistical models, ML

makes no assumptions. Furthermore, ML has demonstrated utility

in predicting lymph node metastasis in patients with thyroid cancer,

with certain ML models exhibiting high predictive accuracy (9). As

we know, besides accuracy, interpretability is also vital in ML.

Regrettably, the majority of algorithms lack transparency, rendering

the relationship between variables and outcomes indiscernible to

users. Consequently, most predictive models lack interpretability in

identifying high-risk features. To implement model interpretability,

the Shapley Additive Explanation (SHAP) method was proposed,

which is based on game theory and has been applied to tree-based

algorithms to understand the predictions based on the model. In

this paper, we developed and validated an interpretable ML model

to predict cervical CLMN risk in PTMC and to highlight the most

important sequence features.
Materials and methods

Participants

Data from 2450 patients who had lobectomy or total

thyroidectomy with CLND between December 2016 and

December 2023 at Beijing Shijitan Hospital were retrospectively

collected. This retrospective study received approval from the

Institutional Review Board of Beijing Shijitan Hospital (IIT2024-

078-001), with a waiver of informed consent granted due to its

retrospective design. The scope of thyroid surgery adhered to the

ATA management guidelines (7).

Inclusion Criteria: ① Postoperative pathology confirmed the

presence of PTC; ② Lesion sizes were less than 10 mm in the

greatest dimension. Exclusion criteria: ① A prior history of thyroid

surgery; ② Incomplete postoperative pathological results of CLNM;

③ Absence of ultrasound results and thyroid function tests
frontiersin.org

https://doi.org/10.3389/fendo.2025.1537386
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2025.1537386
conducted within one month prior to surgery; ④ Patients with other

primary malignant tumors. A total of 710 PTMC patients were

screened from 2450 patients for model development and randomly

split into a training set (496 patients) and a validation set (214

patients) in a 7:3 ratio (Figure 1). The analytical workflow is

illustrated in Figure 2.
Data acquisition

The clinical, laboratory, and preoperative ultrasound characteristics

of patients with PTMC were retrospectively analyzed. The primary

clinical indicators for this study encompassed age, gender, and the

presence of Hashimoto’s thyroiditis. The laboratory parameters

evaluated included triiodothyronine (T3), tetraiodothyronine (T4),

free triiodothyronine (FT3), free tetraiodothyronine (FT4), thyroid-

stimulating hormone (TSH), thyroglobulin antibody (TGAb), thyroid

peroxidase antibody (TPOAb), and thyrotrophin receptor antibody

(TRAb). According to the American College of Radiology Thyroid

Imaging, Reporting and Data System(ACR TI-RADS) (14), our study

focused on key ultrasound features: multifocality, tumor diameter,

lesion location (isthmus, upper, middle, lower), composition (solid,

spongiform, mixed, cystic), echogenicity (very hypoechoic, hypoechoic,

isoechoic, anechoic), margin (smooth, ill-defined, irregular, ETE),

shape (wider-than-tall, taller-than-wider), echogenic foci (none, large

comet-tail artifacts, punctate foci, peripheral calcification,

macrocalcification), and cervical lymph nodes status based on

ultrasound (US-LN). For cases involving multifocal lesions, we

documented the ultrasonographic characteristics of the lesion

exhibiting the highest ACR TI-RADS classification.
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Tumor diameter was defined as the maximum diameter in long

axial section. ETE was defined as gross extrathyroidal extension,

suspicious minor ETE, and capsule contact. Microcalcification is

defined as calcification with a diameter ≤1 mm. Two experienced

sonographers, each with over 10 years in thyroid ultrasound,

evaluated the images. In case of differing opinions, they discussed

to reach a final decision.
Feature selection

A comprehensive set of 21 variables encompassing clinical

characteristics, thyroid function parameters, and ultrasound

features were meticulously selected for analysis. Feature screening

is an important part of model construction. To pick out a

representative set of composite features, we used a two-stage

feature-selection procedure (15). First, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) with fivefold cross-

validation and the Least Absolute Shrinkage and Selection

Operator (LASSO) were employed as preliminary feature

selection methods (16, 17). Subsequently, features that received

the majority of votes from both methods were included in the

optimal feature set. SVM-RFE is a ML methodology that employs

SVM to discern the most pertinent variables through an iterative

process of feature elimination from the feature vector produced by

the SVM algorithm (18). LASSO regression identifies pertinent

variables by optimizing the parameter l to minimize classification

error (19). The features of SVM-RFE and LASSO regression were

analyzed using multivariate logistic regression, leading to the

identification of the most significant features. This technique is
FIGURE 1

Patient flowchart for this study. CLND, central lymph node dissection; PTC, papillary thyroid carcinoma; PTMC, papillary thyroid microcarcinoma;
CLNM, central lymph node metastasis.
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primarily employed for feature selection and the construction of an

optimal classification model.
Model development and evaluation

Using the optimal feature set, eight ML algorithms were

employed to construct models based on the training data set. The

algorithms encompassed in this study include (https://scikit-

learn.org/stable/):
Fron
1. Decision Tree (DT): A rule-based model that splits data

hierarchically using feature thresholds to make predictions.

2. Random Forest (RF): An ensemble of DTs trained with

bootstrapped data and random feature subsets, aggregating

outputs to reduce overfitting.

3. k-Nearest Neighbors (KNN): A lazy learner that classifies

instances based on majority votes or averages from the k

closest training samples.

4. Support Vector Machine (SVM): A margin-maximizing

classifier that separates classes using hyperplanes, aided

by kernels for non-linear data.

5. Extreme Gradient Boosting (XGBoost): A gradient-boosted

DT framework optimizing loss functions with regularization

and sequential error correction.

6. Naive Bayes Model (NBM): A probabilistic classifier

assuming feature independence, applying Bayes’ theorem

for likelihood estimation.

7. Logistic Regression (LR): A linear model predicting class

probabilities via sigmoid-transformed weighted feature sums.

8. Light Gradient Boosting Machine (LightGBM): A high-

efficiency boosting algorithm growing tree leaf-wise with

histogram-based speed optimizations.
Subsequently, the performance of each ML model was assessed

utilizing the internal validation set. Postoperative pathological results

served as the gold standard for comparison. Metrics such as area under

the curve (AUC), sensitivity, specificity, recall rate, accuracy, and F1

scores were employed to evaluate and compare the performance of the

ML models. The model demonstrating the highest AUC was

determined to be the optimal model. The performance of this
tiers in Endocrinology 04
optimal ML model was compared to the efficacy of ultrasound in

assessing lymph node metastasis. Furthermore, the net benefit in

clinical utility of the ML models was evaluated in the validation set

using decision curve analysis (DCA).
Interpretable ML models

To deepen our comprehension of the individual contributions

of features to the classification process, we apply the SHAP

algorithm. This algorithm leverages a game-theoretic framework

to elucidate the outputs of ML models, thereby enabling a rigorous

evaluation of feature importance within these methodologies (20).
Statistical analysis

Data normality was assessed with the Kolmogorov-Smirnov

test. Data conforming to a normal distribution were expressed as

mean ± standard deviation, and comparisons between two groups

were conducted using the independent t-test. For data that did not

conform to a normal distribution, the median and interquartile

range (M [Q1, Q3]) were employed. Comparisons between groups

were performed using the Mann-Whitney U test. Categorical

variables were represented as percentages (%), and intergroup

comparisons were conducted utilizing Pearson’s chi-square test or

Fisher’s exact test. The DeLong test was employed to compare the

AUC across various models. The statistical analyses and modeling

processes were performed using the R software package (version

4.2.1) and DCPM (version 4.01, Jingding Medical Technology Co.,

Ltd.). A two-sided P-value of less than 0.05 was considered to

indicate statistical significance.
Results

Baseline characteristics

A total of 710 patients (Median age (IQR), 43.0 years (35.0-

54.8); 198 men) diagnosed with PTMC were included in this study,

with 496 patients (70%) allocated to the training set and 214
FIGURE 2

Artificial intelligence workflow and study flowchart. DT, decision tree; RF, random forest; SVM, support vector machine; XGBoost, Extreme Gradient
Boosting; KNN, k-nearest neighbors; LR, logistic regression; LightGBM, light gradient boosting machine; NBM, naive bayes model; SHAP, Shapley
Additive Explanation.
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patients (30%) designated as the internal validation set (Figure 1,

Table 1). The comprehensive baseline clinical characteristics of the

training and validation cohorts are presented in Table 1. No

significant differences were observed in clinical features between

the two groups (all P > 0.05).

Out of 710 patients in the study, 234 (32.95%) were confirmed

to have CLNM. This study revealed that patients with CLNM

metastasis were significantly younger than those without

metastasis (P = 0.03) and presented with larger lesion diameters

relative to their non-metastatic counterparts (P < 0.001).

Furthermore, the prevalence of multifocal lesions and ETE was

significantly higher in male patients with metastasis (P < 0.05). In

the training set of 496 patients, 162 individuals (32.66%) developed

CLNM. Within this subgroup, the proportions of male patients,

multifocal lesions, tumor diameter, ETE, and abnormal US-LN

were higher compared to patients without CLNM. Similarly, in the

validation set of 214 patients, 72 individuals (33.64%) developed

CLNM. Among these patients, the proportions of multifocal lesions,

tumor diameter, and US-LN were elevated relative to those without
Frontiers in Endocrinology 05
CLNM. A comparative analysis of clinical, laboratory (Table 2), and

ultrasonic characteristics (Table 3) between CLNM-positive and

CLNM-negative patients in the training and validation sets. Our

findings indicate that male patients, presence of ETE, and

suspicious US-LN are linked to a higher risk of CLNM.

Furthermore, a positive correlation has been observed between

lesion diameter and the incidence of CLNM. Conversely, the

presence of Hashimoto’s thyroiditis appears to be negatively

correlated with the occurrence of CLNM.
Feature selection

The 21 recruited features, encompassing clinical characteristics,

thyroid function metrics, and ultrasound attributes, underwent

feature selection utilizing LASSO regression in conjunction with

the SVM-RFE algorithm. The criterion used is one standard error

from the minimum mean squared error (lambda.1se). The LASSO

method chose the penalty parameter l at 0.069, based on one
TABLE 1 Baseline characteristics of PTMC patients in the training and validation sets.

Characteristic ALL (n=710) Training set (n=496) Validation set (n=214) P-value

Age, Median (IQR) 43.0 (35.0-54.8) 43.0 (35.0-55.0) 42.5 (33.0-53.0) 0.217

Gender, n (%) 0.607

Female 512 (72.1) 361 (72.8) 151 (70.6)

Male 198 (27.9) 135 (27.2) 63 (29.4)

Hashimoto’s thyroiditis, n (%)

No 530(74.7) 369(67.7) 161(75.2) 0.887

Yes 180(25.4) 127(25.6) 53(24.8)

Multifocality, n (%) 0.318

No 472 (66.5) 336 (67.7) 136 (63.6)

Yes 238(33.5) 160(32.3) 78 (36.5)

Diameter (mm), median (IQR) 6.9 (5.1-8.7) 6.9 (5.1-8.7) 6.9 (5.3-8.6) 0.644

Extrathyroidal extension, n (%) 0.853

No 576 (81.1) 401 (80.9) 175 (81.8)

Yes 134 (18.9) 95(19.2) 39 (18.2)

Thyroid function, median (IQR)

T4(ug/dl) 7.2 (6.3-8.1) 7.2 (6.3-8.1) 7.4 (6.3-8.1) 0.402

T3(ng/dl) 107.7(94.3-119.0) 107.5(94.2-118.7) 108.9(95.4-119.9) 0.266

TSH (uIU/ml) 1.9 (1.3-2.6) 1.8 (1.3-2.6) 1.9 (1.4-2.5) 0.561

FT3(pg/ml) 2.9 (2.6-3.2) 2.9 (2.6-3.1) 2.9 (2.7-3.2) 0.052

FT4(ng/dl) 1.2 (1.1-1.4) 1.2 (1.1-1.4) 1.2 (1.1-1.4) 0.221

TPOAb (IU/ml) 11.5 (8.1-17.5) 11.6 (8.1-18.5) 10.8 (8.1-16.4) 0.522

TGAb (IU/ml) 15.4 (12.8-34.1) 15.4 (12.8-34.1) 15.3 (13.0-33.9) 0.661

TRAb (IU/L) 0.80 (0.67-1.14) 0.80 (0.67-1.13) 0.81 (0.67-1.17) 0.739
IQR, Interquartile range; T4, tetraiodothyronine; T3, triiodothyronine; TSH, thyroid-stimulating hormone; FT3, free triiodothyronine; FT4, free tetraiodothyronine; TPOAb, thyroid peroxidase
antibody; TGAb, thyroglobulin antibody; TRAb, thyrotrophin receptor antibody.
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standard error from the minimal mean squared error, yielding 4

non-zero coefficients. Dotted vertical lines mark the optimal values

in Figure 3A. The LASSO regression identified four non-zero

coefficient features: US-LN, multifocality, ETE, and diameter, as

shown in Figures 3A-C. The feature selection outcomes based on

the SVW-RFE algorithm were depicted in Figure 3D. Here, the top

five variables, ranked by parameter importance, were US-LN,

multifocality, ETE, diameter, and TSH. The multivariate logistic

regression analysis revealed that the presence of US-LN (odds ratio

[OR] = 3.77, P < 0.001), ETE (OR = 2.47, P = 0.001), multifocality

(OR = 3.27, P< 0.001), and tumor diameter (OR = 1.22, P < 0.001)

were significant predictors of CLNM. In contrast, TSH was not

found to be significant (OR=1.011, P= 0.609) (Table 4). Finally, the

optimal features we selected were US-LN, multifocality, ETE,

and diameter.
Model performance comparison and
clinical practicality

In this study, eight ML models were utilized to develop a

predictive model for CLNM in patients with PTMC. The

predictive model incorporated variables including US-LN,
Frontiers in Endocrinology 06
multifocality, ETE, and tumor diameter. Table 5 illustrates the

predictive performance of eight models in forecasting CLNM in

patients with PTMC for both the training and validation sets.

Notably, the RF model exhibits superior performance in both

datasets. As shown in Figure 4A, the validation set showed that

the RF model had the best predictive performance for CLNM in

PTMC patients (AUC = 0.893), followed by KNN (AUC = 0.860),

XGBoost (AUC = 0.797), LR (AUC = 0.765), SVM (AUC = 0.765),

NBM (AUC = 0.750), LightGBM (AUC = 0.739), and DT (AUC =

0.711). Notably, the US-LN achieved an AUC of 0.635 (95% CI:

0.577-0.693) in the validation set (Figure 4B). The Delong test

indicated that the diagnostic efficiency of the RF model was

significantly superior to that of the other seven models and the

US-LN, with a statistically significant difference (P < 0.05). The RF

model demonstrated better performance metrics, with accuracy at

0.832, specificity at 0.866, positive predictive value at 0.743, and F1-

score at 0.753. The RF model exhibited robust discriminative

performance on the training set (n=496), accurately classifying 334

out of 496 cases (67.3%) as CLNM-negative (true negatives) and 162

out of 496 cases (32.7%) as CLNM-positive (true positives). Analysis

of the confusion matrix indicated a balanced error distribution, with

no discernible systematic bias toward either class (refer to

Figures 4A, B). Figures 5A–C shows that uncertainty in the RF
TABLE 2 Baseline characteristics of patients in the training and testing datasets.

Training set Validation set

Characteristics CLNM (-) (n=334) CLNM (+) (n=162) P-value CLNM (-) (n=142) CLNM (+) (n=72) P-value

Age, Median (IQR) 44.0(36.0-55.0) 42.0(34.0-54.8) 0.127 44.0(34.3-54.8) 38.0 (32.8-51.3) 0.115

Gender, n (%) 0.043 0.465

Female 253 (75.8) 108 (66.7) 103 (72.5) 48 (66.7)

Male 81 (24.3) 54 (33.3) 39 (27.5) 24 (33.3)

Hashimoto’s thyroiditis, n (%) 0.031 0.577

No 241 (72.2) 128 (79.0) 103 (72.5) 58 (80.6)

Yes 93 (27.8) 34 (21.0) 39 (27.5) 14 (19.4)

Laboratory test, Median (IQR)

RBC, 109/L 4.3(4.1-4.5) 4.4(4.0-4.8) 0.011 4.3(4.1-4.5) 4.4(4.0-4.8) 0.276

PLT, 109/L 116(81-128) 119(83-156) 0.025 103(80-129) 117(89-143) 0.215

Thyroid function, Median (IQR)

T4, (ug/dl) 7.2 (6.2-8.0) 7.3(6.4-8.2) 0.588 7.4 (1.4) 7.1 (1.3) 0.126

T3, (ng/dl) 107.0(95.7-116.7) 108.1(92.8-120.8) 0.619 107.6(95.8-119.9) 111.3 (94.3-119.3) 0.686

TSH, (uIU/ml) 1.8 (1.3-2.6) 1.9 (1.4-2.6) 0.239 2.0 (1.4-2.6) 1.8 (1.4-2.4) 0.378

FT3, (pg/ml) 2.9 (2.6-3.1) 2.9 (2.6-3.2) 0.155 2.9 (2.7-3.2) 2.9 (2.7-3.2) 0.916

FT4, (ng/dl) 1.2 (1.1-1.4) 1.2 (1.1-1.4) 0.906 1.3 (1.1-1.4) 1.2 (1.2-1.4) 0.491

TPOAb, (IU/ml) 12.0 (8.2-18.6) 10.6 (8.1-17.5) 0.236 11.6 (8.3-15.9) 10.2 (8.1-17.1) 0.333

TGAb, (IU/ml) 15.5 (13.0-32.6) 14.7(12.3-43.6) 0.521 15.1(13.2-39.3) 15.4(13.0-21.0) 0.997

TRAb, (IU/L) 0.8 (0.7-1.1) 0.8 (0.7-1.2) 0.703 0.9 (0.7-1.2) 0.8 (0.7-1.0) 0.169
CLNM, central lymph node metastasis; IQR, Interquartile range; RBC, red blood cell; PLT: platelet; T4, tetraiodothyronine; T3, triiodothyronine; TSH, thyroid-stimulating hormone; FT3, free
triiodothyronine; FT4, free tetraiodothyronine; TPOAb, thyroid peroxidase antibody; TGAb, thyroglobulin antibody; TRAb, thyrotrophin receptor antibody.
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TABLE 3 Ultrasonic characters of the patients with papillary thyroid microcarcinoma.

Training set Validation set

Characteristics CLNM (-) (n=334) CLNM (+) (n=162) P-value CLNM(-) (n=142) CLNM (+) (n=72) P-value

Median diameter
(IQR), (mm) 6.2(4.6-8.5) 7.8(6.5-9.2) <0.001 6.8(4.9-8.5) 7.4(6.4-8.8) 0.016

Tumor number, n (%) <0.001 <0.001

Single 257 (77.0) 79 (48.8) 105 (73.9) 31 (43.1)

Multiple 77 (23.1) 83 (51.2) 37 (26.1) 41 (56.9)

Location, n (%) 0.759 0.166

Isthmus 22 (6.6) 11 (6.8) 8 (5.63) 9 (12.50)

Upper portion 79 (23.7) 43 (26.5) 29 (20.4) 19 (26.4)

Middle portion 97 (29.0) 50 (30.9) 39 (27.5) 14 (19.4)

Lower portion 136 (40.7) 58 (35.8) 66 (46.5) 30 (41.7)

Composition, n (%) 0.097 1.000

Nonsolid 7 (2.1) 8 (4.9) 3 (2.1) 2 (2.8)

Solid 327 (97.9) 154 (95.1) 139 (97.9) 70 (97.2)

Echogenicity, n (%) 0.720 0.178

Isoechoic 8 (2.4) 2 (1.2) 2 (1.4) 4 (5.6)

Very hypoechoic 163 (48.8) 75 (46.3) 75 (52.8) 31 (43.1)

Hyperechoic 1 (0.3) 0 (0.0) 1 (0.7) 0 (0.0)

Hypoechoic 162 (48.5) 85 (52.5) 64 (45.1) 37 (51.4)

Margin, n (%) 0.184 0.615

Smooth and ill-defined 135(40.4) 75(46.3) 65(45.8) 37 (51.4)

Irregular 199 (59.6) 87 (53.7) 77 (54.2) 35 (48.6)

Extrathyroidal extension, n (%) <0.001 0.205

No 294 (88.0) 107 (66.1) 120 (84.5) 55 (76.4)

Yes 40 (12.0) 55 (34.0) 22 (15.5) 17 (23.6)

Shape, n (%) 0.993 1.000

Wider-than-tall 146 (43.7) 70 (43.2) 64 (45.1) 32 (44.4)

Taller-than-wider 188 (56.3) 92 (56.8) 78 (54.9) 40 (55.6)

Calcification, n (%) 0.109 0.430

No calcification 157 (47.0) 60 (37.0) 67 (47.2) 28 (38.9)

Microcalcification 145 (43.4) 83 (51.2) 57 (40.1) 37 (51.4)

Peripheral calcification 1 (0.3) 2 (1.2) 1 (0.7) 0 (0.0)

Macrocalcification 31 (9.3) 17 (10.5) 17 (12.0) 7 (9.7)

US Lymph nodes, n (%) <0.001 <0.001

Nonsuspicious 305 (91.3) 112 (69.1) 133 (93.7) 48 (66.7)

Suspicious 29 (8.7) 50 (30.9) 9 (6.3) 24 (33.3)
F
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CLNM, central lymph node metastasis; IQR, interquartile range; US, ultrasound.
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model coefficients was assessed using 1,000 Bootstrap iterations. The

standard deviation (SD) of feature importance scores indicated

strong stability for the top predictors (US-LN: 0.0147; diameter:

0.0174; multifocality: 0.0160; ETE: 0.0125), while TSH showed more

variability (SD = 0.12), warranting cautious interpretation. This

analysis confirms the reliability of the key clinical and imaging

features in predicting CLNM. To evaluate the models’ clinical

benefit, we used DCA to plot net benefit against risk threshold.

The pastel purple dashed line represents the projected net benefit

associated with ‘no intervention,’ whereas the solid purple dashed

line illustrates the anticipated net benefit corresponding to ‘full

intervention’. Given that threshold probabilities differ among

patients, the net benefit is assessed across a spectrum of

probabilities. Decision curve analysis (Figure 4C) revealed the RF

model provided the highest net benefit across the clinically relevant

threshold probability range of 30-80%, outperforming both extreme
Frontiers in Endocrinology 08
strategies (‘treat all’ and ‘treat none’) and all other ML models. This

supports its utility for preoperative CLNM risk assessment in

PTMC patients.
Model interpretability

We employed the SHAP to enhance the interpretability of the RF

model. The feature importance ranking, as illustrated in Figure 6A,

revealed that multifocality (mean absolute SHAP value = 0.103), tumor

diameter (0.101), US-LN (0.052), and ETE (0.043) were the four most

significant contributors to the prediction of CLNM. These findings align

with the variables identified through LASSO and SVM-RFE selection

methods. The directional impact of these features is further illustrated in

SHAP force plots. In Figure 6B, a CLNM-positive patient’s prediction is

driven by multifocality (yellow bar), larger tumor diameter, suspicious
FIGURE 3

Feature selection was performed by the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Support Vector Machine Recursive
Feature Elimination (SVM-RFE). (A) Coefficients derived from LASSO regression. (B) The range of optimal values was identified by the LASSO model.
(C) Four optimal features were chosen by the LASSO. (D) Five optimal features were chosen by the SVW-RFE. US-LN, cervical lymph nodes status
based on ultrasound; ETE, extrathyroidal extension; TSH, thyroid-stimulating hormone.
TABLE 4 Multivariate logistic regression results of predictors of cervical lymph node metastasis.

Characteristics B SE OR 95%CI Z-value P-value

US_LN 1.327 0.27922 3.77 3.769 (2.191-6.569) 4.752 0

ETE 0.905 0.26432 2.471 2.471 (1.472-4.159) 3.423 0.001

Multifocality 1.186 0.22103 3.275 3.274 (2.128-5.068) 5.367 0

diameter 0.197 0.05292 1.218 1.217 (1.098-1.352) 3.72 0

TSH 0.011 0.02191 1.011 1.011 (0.970-1.065) 0.511 0.609
US-LN, cervical lymph nodes status based on ultrasound; ETE, Extrathyroidal extension; TSH, thyroid-stimulating hormone; B, Coefficient of regression; SE, Standard error; OR, odds ratios; CI,
confidence intervals.
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US-LN, and ETE, all pushing themodel output above the base value (f(x)

> 0). Conversely, Figure 6C shows a CLNM-negative case where the

absence of these features (purple bars) reduces the risk score (f(x) < 0).

The RF model’s capability to quantify the contributions of individual
Frontiers in Endocrinology 09
features significantly enhances its applicability for personalized risk

stratification. Furthermore, the visual clarity provided by SHAP plots

facilitates clinicians’ comprehension of model decisions, eliminating the

necessity for expertise in ML.
TABLE 5 Diagnostic efficacies of seven machine learning methods and US-LN.

Classifier AUC (95%CI) P-value Accuracy Sensitivity Specificity PPV NPV F1-Score

Training set

DT 0.760(0.715~0.805) <0.001 0.826 0.734 0.863 0.681 0.890 0.734

RF 0.957(0.941~0.973) – 0.887 0.858 0.901 0.808 0.929 0.832

XGBoost 0.854(0.821~0.887) <0.001 0.734 0.914 0.647 0.556 0.939 0.692

SVW 0.770(0.727~0.813) <0.001 0.268 0.327 0.240 0.173 0.423 0.226

KNN 0.920(0.896~0.943) 0.001 0.821 0.907 0.778 0.665 0.946 0.768

LR 0.777(0.735~0.820) <0.001 0.759 0.652 0.807 0.600 0.839 0.625

LightGBM 0.765(0.722~0.808) <0.001 0.746 0.636 0.799 0.606 0.819 0.621

NBM 0.767(0.724~0.810) <0.001 0.710 0.735 0.698 0.541 0.844 0.623

US_LN 0.611(0.572~0.650) <0.001 0.716 0.633 0.731 0.309 0.913 0.415

Validation set

DT 0.711(0.637~0.786) <0.001 0.740 0.667 0.768 0.529 0.855 0.590

RF 0.893(0.846~0.940) – 0.832 0.764 0.866 0.743 0.879 0.753

XGBoost 0.797(0.737~0.856) <0.001 0.682 0.889 0.578 0.516 0.911 0.653

SVW 0.765(0.699~0.831) <0.001 0.266 0.319 0.239 0.176 0.410 0.227

KNN 0.860(0.811~0.909) 0.121 0.743 0.875 0.676 0.578 0.914 0.696

LR 0.765(0.699~0.831) 0.002 0.771 0.647 0.839 0.688 0.813 0.667

LightGBM 0.739(0.670~0.808) <0.001 0.729 0.681 0.754 0.583 0.823 0.628

NBM 0.750(0.682~0.817) <0.001 0.692 0.736 0.669 0.530 0.833 0.616

US_LN 0.635(0.577~0.693) <0.001 0.734 0.727 0.735 0.333 0.937 0.457
US-LN, cervical lymph nodes status based on ultrasound; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; DT, decision
tree; RF, random forest; XGBoost, Extreme Gradient Boosting; SVW, support vector machine; KNN, k-nearest neighbors; LR, logistic regression; LightGBM, light gradient boosting machine;
NBM, naive bayes model.
FIGURE 4

Presents a comparative analysis of various machine learning models employed for the prediction of cervical lymph node metastasis (CLNM) in
papillary thyroid microcarcinoma (PTMC) patients. (A) ROC curves of the eight model in the validation set. (B) ROC curves evaluate the RF model
and US-LN through AUC scores. (C) Decision curve analysis in the validation set. ROC, receiver operating characteristic; AUC, area under the ROC
curve; DT, decision tree; KNN, k-nearest neighbors; LightGBM, light gradient boosting machine; LR, logistic regression; NBM, naive bayes model; RF,
random forest; SVW, support vector machine; XGBoost, Extreme Gradient Boosting.
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FIGURE 5

Effectiveness evaluation of RF prediction models (A) Confusion matrix of RF in the training set. (B) Confusion matrix of the RF model in the validation
set. X-axis represents the model prediction, y-axis represents the real situation, and the values in the box are the number of samples. (C) Standard
deviation of feature importance in the RF model.
FIGURE 6

Shapley Additive Explanation (SHAP) of the model. (A) Summary plots for the validation sets with associated SHAP values. Each point represents a
SHAP value for a patient’s characteristic. (B) SHAP force plot for a PTMC patient without CLMN. (C) SHAP force plot for a PTMC patient with CLMN.
US-LN, cervical lymph nodes status based on ultrasound; ETE, extrathyroidal extension.
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Discussion

In this retrospective study, we identified US-LN, multifocality,

ETE, and tumor diameter as preoperative predictors of CLNM in

PTMC patients. We developed and validated eight ML models with

four parameters, evaluating their predictive performance and

clinical utility using the receiver operating characteristic (ROC)

curves and DCA curves, followed by a comparative analysis of their

performance. We verified the performance of our newly developed

the interpretable RF model for predicting CLNM in PTMC patients,

which achieved a higher AUC of 0.893 (95% CI:0.846, 0.940) than

other ML models, consistent with previous research (21, 22). The

RF algorithm excels in resisting overfitting, handling both

continuous and categorical data, estimating error rates, and

ranking variable importance. Additionally, we use SHAP scores

for visual model interpretation to distinguish between CLMN and

non-CLMN patients, allowing for personalized risk assessments and

detailed insights into individual predictions.

This study found that ultrasound detected CLNM in 47.9% of

PTMC cases confirmed by pathology, with suspicious ultrasound

lymph nodes being the key preoperative indicator. Ultrasound

shows high specificity for assessing cervical lymph node

metastasis in PTMC patients. Some researchers have utilized

ultrasound features of cervical lymph nodes to predict N1b PTC

metastasis pre-surgery, aiding surgical decisions (23). For example,

microcalcification and diameter have been identified as key

predictors of lymph node metastasis in PTC patients (21).

Generally, most abnormal cervical lymph nodes detected by

ultrasound were in the lateral neck region. Ultrasound struggles

to detect central cervical lymph nodes behind the trachea and

pharynx. However, the central cervical lymph nodes is the most

common site for lymph node metastasis from PTC. Our findings

indicate that metastatic features in lateral cervical lymph nodes

suggest CLNM, highlighting ultrasound’s importance in evaluating

lymph node metastasis risk in PTMC patients. Previous studies

have pinpointed multifocality, ETE, and tumor size as key risk

factors for predicting CLNM in PTMC patients (22, 24, 25). ETE

involves invasion into nearby muscles, the trachea, and nerves,

especially the recurrent laryngeal nerve. Criteria for evaluating

external glandular invasion in PTC include disrupted membrane

echo or more than 25% contact between the tumor and the

membrane. Many studies indicate that ETE is a major risk factor

for CLNM. Compared to single lesion, multifocality in PTC patients

raise the risk of local tumor progression and higher CLNM rates

(24, 25). However, the impact of multifocality on recurrence is still

debated, requiring further large-scale studies for clearer evidence.

Tumor diameter is the main criterion for T staging in thyroid

cancer and a known independent risk factor for CLNM. Larger

tumor size is linked to higher risk of clinical progression, regardless

of other factors. There is a moderate correlation between tumor size

and the number and percentage of lymph node metastases (26). A

study reported 8,668 cases of PTMC and found that CLNM

occurred in 22.9% of patients with tumors under 0.5 cm and in

38.0% of those with tumors between 0.5 cm and 1 cm (27). This

indicates that the risk of lymph node metastasis increases with
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tumor size in PTMCs, supporting the current study’s findings.

Nevertheless, tumor volume is likely a better predictor of lymph

node metastasis risk than tumor size alone. For patients with

multifocal disease, evaluating the total tumor volume—summed

from the largest diameters of all tumor foci—may more accurately

predict lymph node metastasis risk, offering a clearer picture of

tumor burden compared to assessing a single tumor focus (28).

Moreover, the anatomical location of the tumor plays a critical role

in determining the probability of lymph node metastasis.

Specifically, neoplasms located in the upper pole of the thyroid

gland demonstrate an increased tendency for metastasis to the

lateral cervical lymph nodes (29). Therefore, it is crucial to assess

tumor size, volume, and location to evaluate the risk of lymph node

metastasis in papillary thyroid carcinoma. While tumor size is an

important prognostic factor, tumor volume can provide a

more detailed risk assessment in some cases. Including the

tumor’s location is also vital for developing a personalized

treatment strategy.

The prediction of lymph node metastasis in thyroid cancer has

advanced from using solely clinicopathological models to

incorporating serological, molecular, and imaging markers, and

from traditional algorithms like logistic regression to sophisticated

ML models (11, 21, 24, 25, 30). Unfortunately, these methods still

have limitations. Pathological features could not be obtained

noninvasively before surgery, and traditional radiomics’ high-

throughput features are influenced by imaging parameters,

limiting their clinical application. Although the RF model

constructed in this study demonstrated excellent predictive

performance (AUC=0.893), its clinical decision-making value

requires careful evaluation considering both false-positive and

false-negative results. The model demonstrated a specificity of

97.2% during validation, indicating its potential efficacy in

accurately identifying patients who are unlikely to benefit from

prophylactic CLND. This could lead to a reduction in unnecessary

surgeries by approximately 95%, while only failing to detect 2.8% of

true cases of CLNM. This finding is particularly significant in

addressing a critical clinical need, as emphasized by the ATA

guidelines, which advocate for the avoidance of overtreatment in

patients with low-risk papillary thyroid microcarcinoma (PTMC)

(7). Although the false negative rate of 8.3% necessitates careful

consideration, this performance is superior to that of conventional

ultrasound, which typically exhibits false negative rates of 20-30% in

the assessment of central lymph nodes (31). The 6 missed CLNM

(+) cases in validation all had tumor diameters <5mm and no ETE -

characteristics where conservative management may still be

appropriate. The comparable error distributions between training

and validation sets (Dspecificity <3%, Dsensitivity <5%) confirm the

model’s reliability across populations, a notable improvement over

previous ML approaches that showed greater performance

degradation (30). In the future, it is recommended to adjust

decision thresholds according to the surgeon’s risk tolerance and

to conduct subgroup analyses for borderline cases, such as tumors

measuring 5–7 mm.

The DCA results position our RF model as a clinically useful

tool across the decision spectrum: it could prevent unnecessary
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dissection in low-risk patients (thresholds <30%) while reliably

identifying high-risk cases needing intervention (thresholds 50-

80%). This balanced performance addresses the core dilemma in

PTMC management - avoiding both overtreatment and under-

treatment. Future research should focus on the following directions:

First, the interpretation of ultrasound features (such as US-LN and

ETE) is subjective. Future studies could incorporate AI-assisted

ultrasound image analysis (e.g., deep learning segmentation

algorithms) to reduce human bias (32). Second, the current

model is based on static preoperative data, whereas CLNM risk

may change with tumor progression. For example, rapidly growing

PTMCs may carry a high metastatic risk even if their initial

diameter is small (33). Therefore, developing dynamic risk

assessment tools (e.g., incorporating follow-up ultrasound

parameters) could further refine clinical decision-making.

In addition to its clinical significance, this study introduces

several methodological innovations. First, this study employs two

popular feature selection methods to identify common variables, as

different methods yield varying results and some only indicate

variable importance. This approach aims to select the best

variables effectively. Second, this represents the inaugural

interpretable ML model designed to predict CLNM in patients

with PTMC. Previous ML methods do not provide definitive

prediction accuracy for individuals. Nowadays, SHAP value and

SHAP force plot offer greater convenience. This study presents

interpretability of the ML model and shows accurate prediction for

CLMN in PTMC patient. Although our RF model achieved high

AUC, clinicians should note that predictions for patients with

multifocal lesions (SHAP range: 0.2–0.8) carry higher uncertainty

than those with clear ETE (SHAP range: 0.6–0.9).Utilizing our

model, clinicians can acquire personalized insights regarding the

probability of CLNM prior to surgical intervention.

Our study has limitations, including its retrospective, single-

center design, which may limit the generalizability of the findings.

The sample from one medical center could lead to variability in

model performance when applied to larger, more diverse datasets.

Secondly, feature selection reduces overfitting, noise, and random

errors but might exclude important variables. Additionally, while

the study shows ML could be feasible for CLNM risk stratification,

further research is needed to confirm these results.
Conclusions

This study created and validated a ML model to predict CLNM

risk in PTMC patients, providing a useful tool for precise surgical

decisions. Future work includes multi-center validation, model

optimization, and deployment of a web-based clinical tool.
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