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Diabetic kidney disease (DKD) is one of the most serious complications of

diabetes mellitus (DM) and the main cause of end-stage renal disease (ESRD).

The number of affected patients is increasing annually worldwide. Therefore, it is

necessary to establish new strategies to treat DKD and improve prognosis. The

Notch signaling pathway is involved in multiple mechanisms in DKD, including

glomerular endothelial dysfunction, filtration barrier damage, podocyte EMT and

dedifferentiation, tubulointerstitial fibrosis, proximal tubule cell dedifferentiation,

macrophage polarization, etc. In addition, Notch signaling interacts with other

pathways involved in DKD progression, such as TGF-b, Wnt/b-catenin, mTOR,

AMPK, autophagy, etc. Therefore, new ideas for the future treatment of DKDmay

be provided through clarification of the role of the Notch signaling pathway and

development of novel drugs.
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1 Introduction

In recent years, the incidence of diabetes mellitus has increased dramatically. According

to estimates, the prevalence of diabetes among people aged 20 to 79 worldwide was 10.5% in

2021 and will increase to 12.2% in 2045, which represents an increase of over 50% compared

to 2017 levels (1, 2). Diabetic kidney disease is one of the most serious complications of

diabetes and the main cause of end-stage renal disease worldwide (3). The typical clinical

course of DKD begins with microalbuminuria, followed by severe proteinuria, which in turn

induces tubular damage, progressing from low-grade renal inflammation to renal fibrosis,

renal sclerosis, and finally to end-stage renal disease (4). When DKD develops to the ESRD

stage, dialysis or kidney transplantation is essential. Diabetic kidney disease is prevalent

worldwide, causing serious health problems and huge economic burdens on global human

society (5). The pathogenesis of DKD involves multiple aspects and multiple signals. Notch

signaling is involved in the pathogenesis of DKD, including vascular endothelial disorders (6),

renal inflammation (7), renal fibrosis and necrosis (8), and podocyte and tubular epithelial

cell damage (9). This article reviews the role of the Notch signaling pathway in DKD and
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discusses the molecular mechanism of Notch signaling pathway

regulation. It is envisioned that analysis of the functional

significance of Notch signaling will be critical to the development

of novel therapeutic approaches for DKD.
2 Notch signaling pathway

Notch signaling has a role in many facets of metazoan life, such

as cell fate determination, embryonic development, tissue repair

and function, and non-cancerous and malignant disorders (10).

Multiple intermediates exist between the nuclear effectors and

membrane receptors in classical Notch signaling pathways, which

are mediated by G protein-coupled receptors (GPCRs) and enzyme-

linked receptors (11, 12). The Notch signal is transmitted between

adjacent cells via the Notch receptor, which undergoes three

cleavages and translocates to the nucleus to regulate the

transcription of target genes (13). Mammals, including humans,

are known to possess four distinct Notch receptors: Notch 1, 2, 3,

and 4 (14). Delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3),

delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2)

are the five recognized Notch ligands in humans (15, 16). Each of

these ligands performs both redundant and distinct roles. DLL1 is in

charge of cell differentiation and cell-to-cell communication (16),

DLL3 induces apoptosis to stop cell growth (17), DLL4 activates

NF-kB signaling to improve tumor metastasis and VEGF secretion

(18), JAG1 stimulates angiogenesis, and JAG2 encourages cell

survival and proliferation (16). Notch signaling are transmitted

via the binding of Notch receptors and ligands, which are likewise

single-transmembrane proteins produced on the cell surface.

In cells receiving signals, Notch receptors are first produced in the

endoplasmic reticulum (ER) and then transported to the Golgi

apparatus. The EGF-like repeat domain of Notch receptors is

glycosylated during transport. The Notch receptors are then split

into heterodimers (S1 cleavage) in the Golgi apparatus and moved to

the cell membrane. Certain Notch receptors on the cell membrane are

incorporated into endosomes with the aid of ubiquitin ligases (19).

Metalloproteases (ADAMs) and g-secretase are found in an acidic

environment inside endosomes. Endosome notch receptors can be

broken down in lysosomes, returned to the cell membrane, or cleaved

into NICD. The portion of the Notch receptor that remains after S2

cleavage is known as Notch extracellular truncation (NeXT) (20–22).

NeXT can be endocytosed into endosomes or further broken down

by g-secretase on the cell membrane. NICD is released onto the cell

membrane in the former way. In the latter mode, NeXT can be taken

to lysosomes, where it will be degraded, or it can be broken down into

NICD. In general, there are three pathways for the production of

NICD, namely ligand-independent activation, ligand-dependent

endocytosis-independent activation, and ligand-dependent

endocytosis-activated (10). Interactions between NICD and several

signaling pathways, including NF-kB, mTORC2, AKT, and WNT,

are mediated by its translocation into the nucleus or retention in the

cytoplasm. According to the traditional theory, CBF-1/suppressor of

hairless/Lag1 CSL binds to the corepressor and prevents target gene
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transcription in the absence of NICD (23–25). After binding to CSL

and enlisting Mastermind-like proteins (MAML), NICD can reach

the nucleus and promote the transcription of Notch target genes by

releasing co-repressors and enlisting co-activators (Figure 1).
3 Glomerulus dysfunction in typical
DKD and Notch

Diabetic kidney disease is a primary microvascular complication

of diabetes (26, 27). However, the exact pathways mediating

endothelial dysfunction in DKD are poorly understood. Glomerular

endothelial cells (GEnCs) are specialized vascular cells found in the

kidney that serve as the walls of the glomerular tufts and are crucial

for maintaining renal homeostasis. The glycocalyx, a network of

endothelial polysaccharide layers, covers GEnCs. In animal studies,

the loss of the glycocalyx is correlated with the severity of proteinuria

(28). Endothelial cell dysfunction increases endothelial permeability

and apoptosis and can lead to proteinuria. The Notch signaling

pathway is involved in the regulation of the glomerular filtration

barrier. Endothelial Notch1 signaling activation downregulates VE-

cadherin levels through transcription factors SNAI1 and ERG,

reducing glomerular endothelial glycocalyx, thereby leading to

glomerular filtration barrier dysfunction and proteinuria (29). The

Notch pathway plays a crucial role in kidney development, including

guiding the differentiation of various progenitor cells, and abnormal

Notch signaling leads to severe changes in cell fate (30). Endothelial

ADAM10, a key regulator of Notch signaling, promotes the

development and maturation of glomerular vasculature (31).

One of the main characteristics of diabetes complications is

abnormal angiogenesis. Podocyte-released vascular endothelial

growth factor A (VEGFA) attaches to its receptors, VEGFR1 and

VEGFR2, which are expressed on GEnCs. VEGFA stimulates

sprouting angiogenesis and regulates GEnC activity. Notch

signaling interacts with other key factors, such as VEGF-A,

to affect the health status and pathological processes of glomeruli

(32, 33). The increase of Notch1 signaling in renal podocytes treated

with high glucose causes VEGF production, which in turn causes

nephrin inhibition and apoptosis (34). In diabetic kidneys, Notch1

knockdown results in decreased proteinuria, decreased nephrin

expression, and decreased VEGF expression. The pathophysiology

of endothelial dysfunction in diabetic nephropathy and retinopathy

may involve Notch signaling. By modulating the susceptibility

of hemangioblasts to VEGF, Notch signaling does prevent

diabetic extrarenal angiogenesis (35, 36). Activation of Notch

signaling in endothelial cells can promote neovascularization

and increase microvascular permeability, destroy adhesion

junctions between endothelial cells, mediate endothelial cell

dysfunction, and eventually lead to diabetic endothelial cell

dissociation (37). Activation of the Notch1 signaling pathway

can cause endothelial cell leakage, damage the glomerular

filtration barrier, and lead to increased urinary protein (38). Low-

intensity pulsed ultrasound-induced calcium influx promotes the

beneficial effects of angiogenesis, improved renal function, and Akt-
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eNOS phosphorylation in rats with acute kidney injury through

the Notch1-Akt-eNOS signaling pathway, making Notch1

activation a therapeutic strategy for acute kidney injury targeting

angiogenesis (39). Endothelial-mesenchymal transition (EndMT) is

a hallmark of diabetes-related vascular complications. Intermittent

high glucose exposure upregulates H3K4me3 levels in glomerular

endothelial cells of Ob/Ob mice, activates Notch signaling, and

induces some mesenchymal-like features in endothelial cells (40).

Through Notch activation, matrix metalloproteinase-9 causes the

endothelium-mesenchymal transition in human glomerular

endothelial cells (41).
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Podocytes are terminally differentiated cells that are unable to

proliferate. Foot process effacement and podocyte hypertrophy are

observed in early and middle stages of DKD, while late stages of the

disease are characterized by podocyte death and dedifferentiation.

An irreversible stage in the pathophysiology of DKD is the loss of

more than 20% of podocytes, which results in glomerular scarring

and the onset of end-stage renal disease (42, 43). In DKD, podocyte

injury is a key event leading to proteinuria, nephropathy,

glomerulosclerosis, and loss of renal function (44). The Notch

signaling pathway plays an important role in glomerular cells,

especially podocytes (32). Studies have shown that activation of
FIGURE 1

Overview of the Notch signaling pathway and pivotal targets.
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Notch signaling can promote glomerular lesions and albuminuria

by regulating TGF-b expression and activity (45). High-

level activation of the Notch1 signaling pathway weakens

the improvement effect of islet transplantation on kidney

damage and the recovery of podocytes. The use of N-[N-(3,5-

difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester

(DAPT) can inhibit the excessive activation of the Notch1

pathway and improve podocyte damage under high glucose

conditions (46). A study done in a lab setting found that

microencapsulated islet transplantation reduced the levels of Jag-

1, Notch1, and Hes-1 proteins in rat glomeruli. It also stopped

Notch signaling and improved damage to podocytes in a high

glucose environment (47). Abnormal activation of the Notch1

signaling pathway may affect the therapeutic effect of islet

transplantation in diabetic nephropathy by changing the balance

of podocyte apoptosis and autophagy (46). Under high glucose

conditions, the reduction of Sirt6 leads to overactivation of Notch

signaling, resulting in damage to podocytes, including

inflammation, apoptosis, and reduced autophagy levels. Sirt6

deacetylates H3K9, inhibiting the transcription of Notch1 and

Notch4 genes, thereby protecting podocytes from damage (48).

Under hyperglycemia, MAD2B expression is upregulated in

diabetic glomeruli and cultured podocytes. Upregulated MAD2B

expression can lead to Numb loss and activation of the Notch1

signaling pathway during the progression of DKD, ultimately

leading to podocyte injury. Podocyte-specific deletion of MAD2B

can alleviate podocyte injury and renal function deterioration in

diabetic nephropathy mice (49). High glucose-induced CDKN2B-

AS1 promotes apoptosis and fibrosis in human podocytes and

human tubular cells through the TGF-b1 signaling pathway

mediated by the miR-98-5p/NOTCH2 axis (50).

Research revealed that removing the histone methylating

enzyme EZH2 from podocytes reduced the levels of H3K27me3

and made animals more susceptible to glomerular illness.

H3K27me3 was enriched at the promoter region of the Notch

ligand Jag1 in podocytes, and derepression of Jag1 by EZH2

inhibition facilitated the activation of Notch signaling and

podocyte dedifferentiation (51). METTL3 affects the stability of

TIMP2 mRNA by regulating the m6A modification level, thereby

enhancing the expression of TIMP2. The increase in TIMP2 further

activates the Notch signaling pathway, promoting the expression of

inflammatory factors and podocyte apoptosis. TIMP2 participates

in the progression of diabetic nephropathy by regulating the Notch

signaling pathway (52). A CARM1-AMPKa-Notch1-CB1R

signaling axis mediates the high-glucose-induced podocyte

apoptosis. In DKD, podocyte loss may be avoided by employing

techniques to maintain CARM1 expression or lower the enzymatic

activity of a ubiquitin ligase specific for CARM1 (53). In DKD,

advanced glycation end products (AGEs) can damage podocytes

through the Notch1 signaling pathway. AGEs directly damage

podocytes through the RAGE-Notch1 signaling pathway and

cytoskeletal remodeling, promoting epithelial-mesenchymal

transition (EMT) and functional loss of podocytes. Notch1 signals

activated by AGEs also promote podocyte mesenchymalization,

leading to collagen deposition, disappearance of foot processes, and
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renal tubular lesions, which in turn induce proteinuria (54). Notch

signaling plays a pivotal role in podocyte EMT and is intricately

connected with other pathways like Wnt and TGF-b. Under

hyperglycemia, Notch activation crosses with TGF-b, Wnt, and

other pathways to promote the EMT process of podocytes, causing

podocytes to lose their unique epithelial properties, leading to

proteinuria and the progression of glomerular diseases (55).

Notch signaling promotes the initiation of the cell cycle by

transmitting short-range signals between cells. GH and TGF-b1
induce podocytes to re-enter the cell cycle from the quiescent phase

(G0 phase) by activating the Notch signaling pathway, but these

cells are abnormal when completing mitosis, showing that only

karyokinesis but not cytokinesis is completed, causing the cells to

become binuclear and eventually undergo mitotic catastrophe,

ultimately causing podocyte death (56). Inhibition of JAK2,

TGFBR1, or Notch signaling pathways can prevent re-entry of the

cell cycle and protect cells from cell death associated with mitotic

catastrophe (Figure 2).
4 Renal tubular injury in typical DKD
and Notch

Common features of fibrosis-related renal function decline in

DKD include tubular epithelial cell dedifferentiation, immune cell

influx, and myofibroblast activation (57). The early manifestations

of DKD are hyperfiltration and renal hypertrophy, and proximal

tubule cell (PT) loss is the main cause of renal hypertrophy and

hyperfiltration (58). The late stage of DKD is characterized by PT

cell dedifferentiation, and the loss of renal PT cells is associated with

a decrease in eGFR. Under high glucose stimulation, the expression

of Polo-like kinase 2 (PLK2) increased in the kidney tissue of DKD

mice. Silencing PLK2 significantly inhibited the activation of the

Notch1 signaling pathway and reduced the expression of renal

fibrosis-related markers, while overexpression of HES1 rescued the

downregulation of markers induced by si-PLK2. PLK2 can mediate

tubulointerstitial fibrosis in DKD by activating the Notch1 signaling

pathway (59). Renal tubular fibrosis is considered to be a complex

and irreversible metabolic change and one of the key signs of disease

progression (60, 61). In the study of diabetic renal tubular fibrosis,

multiple signaling pathways interact, including TGF-b, Wnt/b-
catenin, MAPK, Notch, etc., forming a complex signal

transduction network (61). The TGF-b pathway is considered to

be the key to renal fibrosis, inducing extracellular matrix (ECM)

accumulation by activating Smad proteins and non-Smad pathways.

In renal fibrosis, the interaction between the TGF-b and Notch

signaling pathways is essential (55). Notch signaling is activated

through ADAM10-mediated proteolytic reactions, and the

ADAM10-Notch signaling axis is associated with renal fibrosis

(62). Ligand-receptor binding triggers Notch signaling, which

results in the release of NICD. NICD translocation to the nucleus

controls the expression of target genes, which includes involvement

in the creation of the extracellular matrix (ECM) and EMT. In renal

cells, the TGF-b pathway can upregulate Notch ligands, including

Jagged1, which increases Notch activation. Notch target gene Hes-1
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is also a direct downstream gene of the TGF-b pathway. The degree

of tubulointerstitial fibrosis is strongly associated with NICD, which

has the ability to directly affect downstream Smad3 (63). The

Jumonji domain containing-3 (JMJD3) reduces the level of

H3K27me3 and inhibits the activation of TGF-b and NOTCH

signaling, thereby exerting an anti-renal fibrosis effect (64).

Strategies that target either process (e.g., g-secretase inhibitors or

particular pathway inhibitors) have demonstrated potential for

ameliorating renal fibrosis in experimental animals (65, 66). In

rats with tissue fibrosis, TGF-b inhibitors decrease the expression of

Notch and its target genes, Notch1, Hes1, and Hes5. By suppressing

TGFbRII and Smad3, epigallocatechin gallate (EGCG) blocks the

Notch pathway in renal cells (67, 68). By blocking the Notch

pathway’s activation, TGF-b production, and Smad2 and Smad3

phosphorylation, Notch inhibitors can markedly lessen the severity

of renal fibrosis.

Numb is downregulated in diabetic nephropathy tissues and

high glucose-stimulated endothelial cells, while Notch1 and Hes1

are upregulated. Numb affects endothelial-mesenchymal transition

(EndoMT) by negatively regulating the Notch signaling pathway,

which leads to a decrease in the expression of endothelial cell

markers (such as E-cadherin and CD31) and an increase in the

expression of mesenchymal cell markers (such as a-SMA and

vimentin), thereby participating in the pathological process of

DKD and mediating renal fibrosis and disease progression (69).

In addition, studies have found that the Wnt/b-catenin signaling

pathway is an upstream mediator of the Notch signaling pathway.

Inhibition of Wnt reduces JAG1 expression, while Wnt10b can
Frontiers in Endocrinology 05
promote the activation of Wnt and Notch signals (70–73).

Downregulation of A cluster-Homeobox genes encoding a5

protein (HOXA5) by DNA methylation induces NOTCH

activation and promotes renal fibrosis. HOXA5 inhibits the

transcription of Jag1 by directly binding to its gene promoter,

inhibiting Notch signaling and alleviating renal tubular fibrosis

(74). Therefore, understanding the interplay between Notch

and multiple signaling pathways could help inform potential

therapeutic interventions for the management of fibrotic kidney

diseases (Figure 3).

In the development of diabetic nephropathy, a variety of

inflammatory cells participate and play an important role,

especially in the process of renal fibrosis (75). Damaged intrinsic

renal cells in diabetic nephropathy attract monocytes and

macrophages to the site of tissue injury in order to prevent and

remove cell damage. Polarization of macrophages in diabetic

nephropathy was caused by interaction between the Notch system

and NF-kB signaling in macrophages. Numerous inflammatory

cytokines are secreted by M1 phenotype macrophages, which

further worsened the intrinsic kidney cells’ fibrosis, necroptosis,

extracellular matrix production, and inflammatory response (8).

Inhibition of the macrophage Notch pathway can alleviate the

pathological changes of renal cells. In addition to being a key

regulator of kidney development and being silenced afterwards,

Notch signaling is reactivated in kidney injury and is involved in

acute and chronic kidney injury. In vivo studies have shown that

Notch activation is associated with interstitial fibrosis and

glomerulosclerosis (76). In the glomeruli and tubules of patients
FIGURE 2

Role of Notch signaling in regulating DKD-associated endothelial cell dysfunction, podocyte dedifferentiation, and death.
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with chronic kidney disease, expression of both Notch receptors

and ligands increases renal injury.
5 Roles of Notch-related miRNA in
DKD

miR-124a can promote the differentiation of bone marrow

mesenchymal stem cells into islet-like cells. Bone marrow

mesenchymal stem cells combine with miR-124a to regulate

specific transcription factors and genes and inhibit the activity of

Notch signaling, exerting significant anti-fibrosis and repair effects,

thereby effectively alleviating the progression of diabetic

nephropathy (77). By blocking the Notch pathway, miR-135a

inhibition can lessen renal fibrosis in DKD rats (78). Through its

targeting of MAML1 and inactivation of the Notch signaling

pathway, miR-133a-3p reduces the damage caused by high

hyperglycemia to human renal tubular epithelial cells and

prevents the progression of DKD (79). In podocytes exposed to

high hyperglycemia, overexpression of miR-34c suppresses Notch

signaling by specifically targeting Notch1 and Jaggged1 (80).

Increased expression of miR-34a reduced podocyte damage and
Frontiers in Endocrinology 06
NICD, Hes1, Hey1, Jagged1, and Notch 1 protein expression under

high glucose circumstances (81). MiR34a further enhances the effect

of mesenchymal stem cell microvesicles on mouse renal fibrosis by

regulating EMT and Notch pathways (82). miR-34a may be a

candidate molecular therapeutic target for the treatment of renal

fibrosis. Loss of miR-146a in renal tubular cells is associated with an

increased risk of DKD. miR-146a normally inhibits the expression

of Notch1 and ErbB4 mRNA by binding to their 3’ UTR region.

When miR-146a expression is reduced or absent, this inhibitory

effect is lost, resulting in increased transcription levels of Notch1

and ErbB4. Upregulation of Notch1 and ErbB4 leads to activation of

the EGFR pathway, which further promotes tubular cell damage

and disease progression (83).

Exosomal miR-30a-5p significantly promoted the proliferation

and migration, and reduced apoptosis of glomerular endothelial

cells under high glucose conditions and reduced the mRNA and

protein expression levels of Notch1 and VEGF. Exosomal miR-30a-

5p inhibits EMT and abnormal angiogenesis of glomerular

endothelial cells by regulating the Notch1/VEGF signaling

pathway. One possible therapeutic approach for DKD treatment

might be miR-30a-5p (84). Targeted administration of miRNA-30a

via engineered nanoplexes to save dying podocytes in DKD.
FIGURE 3

Crosstalk between notch signaling and DKD-related signals and their role in regulating renal inflammation and fibrosis.
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miRNA-30a is primarily responsible for podocyte homeostasis. In

DKD, miRNA-30a is directly and predominantly inhibited by

hyperglycemic kidney-induced Notch signaling, leading to

podocyte damage and apoptosis. The nanocomplex can

upregulate the expression level of miRNA-30a in high glucose-

exposed podocytes, significantly inhibit Notch1 signaling in diabetic

C57BL/6 mice, and reduce glomerular expansion and glomerular

fibrosis (85).
6 Clinical use of Notch signaling in
DKD

In diabetic nephropathy, high concentrations of glucose

promote fibrosis through the Notch1 pathway. Natural flavonoid

ombuin significantly down-regulated the expression of TGF-b1,
Notch 1, and Hes 1 and up-regulated the expression of peroxisome

proliferator-activated receptor g (PPAR g), significantly improved

renal function and pathological damage in DKD rats, and improved

renal interstitial fibrosis. Ombuin may exert anti-inflammatory and

anti-fibrotic effects by inhibiting Notch 1 activity and activating

PPARg (86). Under the Danggui-Shaoyao-San (DSS) treatment

group, there were substantial decreases in the protein and mRNA

levels of Jagged1, Notch1, Hes5, and NICD and significant increases

in the protein and mRNA levels of E-cadherin. By blocking Notch

signaling, DSS inhibits renal tubular EMT and prevents diabetic

nephropathy (87). Trichostatin A (TSA) does not affect the

phosphorylation levels of Smad2, Smad3, p38, and ERK but

significantly reduces the phosphorylation of JNK, thereby

inhibiting the activation of the Notch-2 signaling pathway.

This effect leads to the downregulation of fibrosis markers such

as a-SMA and fibronectin stimulated by TGF-b1, thereby

alleviating the occurrence and development of renal fibrosis. By

interfering with the JNK/Notch-2 signaling pathway, TSA shows

potential therapeutic effect in the treatment of renal fibrosis

(–).-Epigallocatechin gallate (EGCG), as a natural antioxidant,

can inhibit the expression of Notch1 and reduce the activation of

the TGF-b/Smad3 signaling pathway, thereby alleviating renal

fibrosis in diabetic mice (88). In addition, EGCG treatment can

significantly reduce the levels of Notch1 and TGF-bRII in HEK293

cells stimulated by high glucose, further supporting the potential of

EGCG in the treatment of diabetic nephropathy. Therefore, the

Notch signaling pathway is an important target for the treatment of

fibrosis, and EGCG may alleviate related diseases by regulating the

Notch pathway (67).

Baicalin inhibits the activation of the Notch1-Snail axis in

podocytes, alleviates glomerular structural destruction and

dysfunction, and reduces proteinuria. Baicalin is a new renal

protective agent against podocyte EMT (89). Under a high

glucose environment, C-peptide significantly reduces EMT and

renal fibrosis by reducing the expression of Snail, Vimentin, a-
SMA, and CTGF. C-peptide also inhibits the activation of Notch1

and Jagged1 in the Notch signaling pathway and TGF-b1 in the
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TGF-b signaling pathway, thereby alleviating the progression of

diabetic nephropathy (90). Gliquidone inhibits the expression of

proteins associated with the Notch signaling system, including

Jagged1, Notch1, Hes1, and Snail1, hence delaying the EMT

process of renal tubular epithelial cells. Gliquidone has high

therapeutic promise and slows the evolution of diabetic

nephropathy by inhibiting the activation of the Notch/Snail

signaling pathway (91). Glucagon-like peptide-1 agonist

combined with crocin treatment can inhibit Notch signaling and

mesangial growth in animal models of diabetic kidney disease and

significantly improve renal function (92). In the kidney tissue of

model rats, the Traditional Chinese medicine (TCM) capsule for qi

replenishment, yin nourishment, and blood activation can lower

Hes1, CD34, and CD144, safeguard kidney function, and postpone

the onset of DKD (93). By triggering autophagy and blocking the

Notch pathway to reduce podocyte dedifferentiation, dasatinib and

quercetin prevent DKD (94).

High glucose environments activate the Notch pathway, leading

to oxidative damage of renal tubular epithelial cells and renal

interstitial fibrosis. Studies have shown that the Notch pathway

affects cell apoptosis by regulating mitochondrial function and

related genes (such as Drp1 and PGC-1a) under high glucose

conditions. Inhibitors of the Notch pathway, such as DAPT, can

reduce these negative effects. GH treatment will trigger an increase

in the expression of EMT markers (vimentin, SMA, etc.), while

DAPT effectively prevents these changes induced by GH (95).

DAPT treatment not only reduced the release of cytokines but

also prevented the thickening of the renal tubular basement

membrane, proteinuria, and decreased renal function caused by

GH (96). Therefore, DAPT significantly improved GH-induced

EMT and its related renal injury by blocking the Notch1 signaling

pathway. Following therapy with DAPT, blood urea nitrogen and

creatinine levels were dramatically lowered. By inhibiting the Notch

signaling system, DAPT dramatically lowers the expression of

Notch signaling components in renal tissue, including Jagged1,

Notch1-3, and Hes1. This lessens kidney damage in diabetic rats.

With its ability to suppress the Notch signaling system, DAPT offers

fresh promise as a therapy for kidney damage caused by diabetes.

Trichosanthes kirilowii lectin (TKL) can prevent macrophage

polarization from the M2 (anti-inflammatory) to the M1 (pro-

inflammatory) phenotype by inhibiting the Notch signaling

pathway, reducing the expression of Notch1, NICD1, and Hes1 to

inhibit Notch signaling activity, and reducing kidney damage in rats

with diabetic nephropathy (97). SIRT1 promotes macrophage

polarization toward the M2 phenotype by inhibiting the NOTCH

signaling pathway (98). Regulating macrophage polarization

through Notch signaling is an important direction for treating

diabetic nephropathy.

According to research on animals, the intrauterine diabetes

environment hinders the differentiation of progenitor cells into

nephrons, potentially through interference with the Notch and

Wnt/b-catenin signaling pathways (99). Research has shown that

p66Shc activates the Notch-PTEN-PI3K/Akt/mTOR signaling
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pathway to cause apoptosis and block podocyte autophagy, two

actions that may be useful in the management of diabetic kidney

disease (DKD) (100). The human renal tubular epithelial cells (HK-

2 cells) exhibit a considerable activation of their Notch1 and Hes-1

signaling pathways during high glucose stimulation, which

therefore results in a reduction in autophagy levels. Autophagy

activity was restored when Sirt3 overexpression was achieved using

pCMV-Sirt3 transfection. This resulted in a considerable inhibition

of the Notch1/Hes-1 pathway activation (101). Based on this, it

appears that Sirt3 protects autophagy in HK-2 cells and might be a

target for diabetic nephropathy therapy (Table 1).
7 Discussion

DKD is the main driver of death in diabetic patients.

Controlling blood sugar alone is not enough to eliminate diabetic

complications and improve survival (102). Drug treatment should

focus on preventing complications rather than simply lowering

blood sugar. SGLT2 is only expressed by PT cells, and SGLT2

inhibitors (SGLT2i), drugs targeting PT cells, have achieved good
Frontiers in Endocrinology 08
results. In addition to reducing heart failure mortality and

mortality, they can also reduce comprehensive renal outcomes by

40% (103–105). Combination therapy such as SGLT2i and

angiotensin-converting enzyme inhibitors has non-overlapping

synergistic effects and can reduce PT cell damage, which suggests

that combination therapy is the trend of the future (106). However,

there are currently no approved drugs targeting podocytes. Current

drugs primarily target renal PT cells and have been associated with

GFR preservation. Future research will examine the potential

therapeutic benefits of targeting different cell types, such as

fibroblasts, immune cells, or podocytes.

The Notch signaling pathway regulates kidney development,

angiogenesis, glomeruli, tubules, renal interstitium, macrophage

function, etc. It is involved in multiple processes such as

glomerular endothelial dysfunction, filtration barrier damage,

podocyte EMT and dedifferentiation, tubulointerstitial fibrosis, PT

cell dedifferentiation, macrophage polarization, etc. in DKD and is

closely related to the onset of DKD. Notch signaling is involved in

the entire process of DKD. It may become a reality to develop drugs

targeting different types of kidney cells using NOTCH signaling,

and combined treatment of multiple cell targets may be expected to
TABLE 1 Clinical use of Notch signaling in DKD.

Involved drugs Involved signaling pathway Clinical effect

Flavonoid ombuin TGF-b1↓ Hes1↓ notch1↓PPAR g↑ anti-inflammatory and anti-fibrotic

DSS notch1↓ Hes5↓ inhibits renal tubular EMT

TSA JNK↓ notch2↓ TGF-b1↓ anti-fibrotic

EGCG TGF-bRII↓ notch1↓ anti-fibrotic

Baicalin notch1↓ Snail1↓ inhibits podocyte EMT

C-peptide TGF-b1↓ notch1↓ reduce EMT and renal fibrosis

Gliquidone notch1↓ Hes1↓ Snail1↓ inhibits renal tubular EMT

Glucagon-like peptide-1 agonist
crocin

notch1↓ inhibit mesangial growth
improve renal function

Capsule for replenishing qi, nourishing yin notch1↓ Hes1↓ reduced 24-h urinary albumin
improve renal function

Dasatinib and quercetin notch1↓ activate autophagy and alleviate
podocyte dedifferentiation

DAPT notch1↓ Vimentin↓ SMA↓ inhibits renal tubular EMT
reduce kidney damage

TKL notch1↓ Hes1↓ prevent macrophages from M2 phenotype to M1
phenotype
reduce kidney damage

p66Shc notch1↑ mTOR↑ cause apoptosis and block podocyte autophagy

Sirt3 notch1↓ mTOR↓ protect autophagy and reduce apoptosis
“↑” mean signal upregulation.
“↓” mean signal downregulation.
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improve the future of DKD patients. In summary, although there

are still some issues to be resolved, we believe that correcting notch

signaling abnormalities will become a new therapeutic strategy

for DKD.
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