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Hip fractures pose a significant health challenge, particularly in aging

populations, leading to substantial morbidity and economic burden. Most hip

fractures result from a combination of osteoporosis and falls. Accurate

assessment of hip fracture risk is essential for identifying high-risk individuals

and implementing effective preventive strategies. Current clinical tools, such as

the Fracture Risk Assessment Tool (FRAX), primarily rely on statistical models of

clinical risk factors derived from large population studies. However, these tools

often lack specificity in capturing the individual biomechanical factors that

directly influence fracture susceptibility. Consequently, image-based

biomechanical approaches, primarily leveraging dual-energy X-ray

absorptiometry (DXA) and quantitative computed tomography (QCT), have

garnered attention for their potential to provide a more precise evaluation of

bone strength and the impact forces involved in falls, thereby enhancing risk

prediction accuracy. Biomechanical approaches rely on two fundamental

components: assessing bone strength and predicting fall-induced impact

forces. While significant advancements have been made in image-based finite

element (FE) modeling for bone strength analysis and dynamic simulations of fall-

induced impact forces, substantial challenges remain. In this review, we examine

recent progress in these areas and highlight the key challenges that must be

addressed to advance the field and improve fracture risk prediction.
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1 Introduction

Hip fractures are a significant health concern, particularly among older adults, who

often have a high prevalence of osteoporosis, contributing to substantial morbidity,

mortality, and healthcare costs worldwide (1–3). In 2019, there were 178 million new

fractures globally, marking a 33.4% increase since 1990, partly driven by population aging

(2, 3). Hip fractures constituted a significant proportion of these cases. Projections indicate

that the number of hip fractures will nearly double by 2050, underscoring the urgency for
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effective fracture risk assessment to identify high-risk individuals

and implement preventive measures (4, 5). Accurate assessment of

hip fracture risk is crucial, as it enables targeted interventions and

support, thereby reducing the burden of these fractures (6).

The current clinical approach for diagnosing hip fracture risk

and treating pre-fracture conditions relies primarily on risk factors

such as bone mineral density (BMD) and population-based

statistical models (7). Although low BMD is widely regarded as a

key biomarker for bone fractures, this approach has significant

limitations. Studies indicate that approximately 50% of fractures

occur in individuals with BMD values above the established

threshold (8, 9). BMD also serves as the primary target for many

treatment options, particularly those aimed at osteoporosis (10, 11).

FRAX is one of the most widely used tools globally to estimate the

10-year probability of hip fractures and other major osteoporotic

fractures (12–15). It incorporates several key risk factors, including

age, gender, BMD at the femoral neck, prior fractures, parental

history of hip fractures, smoking status, alcohol consumption,

glucocorticoid use, and rheumatoid arthritis. The predictive

accuracy of FRAX has been reported as moderate (16, 17), with

area under the receiver operating characteristic (ROC) curve (AUC)

values ranging from 0.70 to 0.75 for hip fracture prediction. The

tool tends to underestimate fracture risk in certain populations,

such as those with frequent falls or advanced age, where fall risk is

not fully incorporated (14, 18, 19). The primary limitation of the

current tools lies in their reliance on statistical modeling of risk

factors. These tools predict fracture risk by identifying broad

population-level trends and applying them to individual cases (20).

To improve the accuracy of hip fracture risk assessments, there is

a pressing need to develop biomechanical models (21). Image-based

biomechanical approaches are theoretically more reliable and accurate

than statistical models derived from clinical risk factors because they

directly assess the mechanical properties of bone and the forces

contributing to fractures (22, 23). Unlike statistical models, which

rely on population-level data and indirect associations, biomechanical

approaches evaluate individual-specific factors such as bone strength,

geometry, and microstructure. These methods utilize advanced

imaging techniques, such as high-resolution CT and finite element

(FE) modeling, to simulate the mechanical response of bones to

applied forces, providing a direct measurement of fracture risk.

Furthermore, image-based dynamic simulations can model fall-

induced impact forces by analyzing body kinematics, fall

trajectories, and surface interactions (24, 25). These simulations

allow for a detailed assessment of the magnitude, direction, and

distribution of impact forces during a fall (25), which are critical in

determining fracture risk. By integrating subject-specific bone

properties with dynamic fall scenarios (26), biomechanical

approaches can provide a comprehensive and personalized

evaluation of fracture risk, addressing limitations in clinical tools

that overlook the interplay between bone strength and fall mechanics.

This capability highlights their potential to significantly enhance

fracture risk assessment and prevention strategies.

Substantial progress has been made in developing image-based

biomechanical models for predicting hip fracture risk. However,

significant challenges remain, which must be addressed before these

biomechanical models can be integrated into clinical practice. This
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review extensively examines recent advancements and discusses the

key challenges that need resolution. The layout of the remainder of

this paper is as follows: Section 2 outlines the framework of image-

based biomechanical approaches; Section 3 reviews the progress

and challenges in image-based finite element modeling of bone

strength; Section 4 explores the advancements and remaining

obstacles in image-based dynamic simulation of falls; and Section

5 concludes the review with proposals for future research directions.
2 Image-based biomechanical
approach to assess hip fracture risk

Based on engineering material mechanics, hip fracture is

determined by two key variables (Figure 1): femoral strength and

the force applied to the hip, both of which are subject-specific.

Femoral strength refers to the maximum force the femur can

withstand before fracturing and is primarily determined by the

bone’s material composition—such as inorganic minerals, organic

proteins, and water—along with its macroscopic geometry and

microstructural integrity. Since the majority of hip fractures result

from falls (27–30), the impact force generated during a fall from

standing height is considered in assessing hip fracture risk. This

force is influenced by variables such as body height, body mass, and

fall orientation and can vary significantly depending on the

dynamics of the fall and the compliance properties of the

impacted surface. When the fall-induced force exceeds femoral

strength, a hip fracture occurs. Accurately determining femoral

strength, fall-induced impact force, and their interplay is essential
FIGURE 1

Image-based biomechanical approach to assess hip fracture risk.
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for developing precise and predictive models of fracture risk,

enabling more effective prevention and individualized

treatment strategies.

Given the necessity for non-invasive approaches in assessing

hip fracture risk, determining both femoral strength and fall-

induced impact force must be conducted safely and without

invasive procedures. Medical imaging offers an essential solution

to this challenge, as illustrated in Figure 1. Advanced imaging

technologies, such as dual-energy X-ray absorptiometry (DXA)

and quantitative computed tomography (QCT), enable subject-

specific assessment of bone structure, geometry, and tissue

composition within the body. These imaging modalities provide

critical data on bone mineral density, and material composition,

which are essential for estimating femoral strength. Information

about trabecular architecture can be partially inferred from QCT

data, as it provides 3D volumetric imaging capable of analyzing

parameters such as trabecular thickness, separation, and number.

However, DXA, being a 2D imaging modality, lacks the resolution

to capture detailed trabecular architecture. For more precise

insights into individual trabecular microstructure, higher-

resolution imaging modalities such as micro-CT or HR-pQCT are

required, although these are typically limited to in vitro studies or

extremities in vivo. Furthermore, imaging can capture patient-

specific anatomical and kinetic properties, which can then be

used in dynamic simulations to predict fall-induced impact

forces. The integration of imaging data into biomechanical

models ensures a personalized and accurate evaluation of

fracture risk.

Significant advances have been made in the development of

image-based finite element (FE) modeling for predicting femoral

strength and dynamics simulations for analyzing fall-induced

impact forces. While these advancements offer promising

opportunities to assess subject-specific fracture risk more

accurately, challenges and obstacles remain. The following

sections provide a detailed review of these advancements,

highlighting the progress achieved and the critical barriers

that must be addressed to facilitate their integration into

clinical practice.
3 Image-based finite element
modeling of bone strength

To construct a finite element (FE) model of the femur for

determining its strength, several key pieces of information are

required. First, accurate geometry of the femur is essential,

typically derived from high-resolution medical imaging modalities

such as computed tomography (CT). These images provide detailed

spatial data that allow for the reconstruction of the femur’s shape

and structural features, including cortical thickness, trabecular

architecture, and overall bone dimensions. Second, the material

properties of the bone must be specified, including the elastic

modulus, yield strength, and density of both cortical and

trabecular bone. These properties are often determined from CT-

derived Hounsfield units, which can be mapped to bone density and

subsequently used to estimate the material properties. Additionally,
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boundary conditions and loading scenarios must be defined to

replicate physiological or fall-related forces acting on the femur,

such as compressive loads during standing or oblique forces during

a fall. Together, these inputs enable the FE model to simulate stress

and strain distributions within the femur and predict its failure

point under applied loads.

While DXA and QCT are the primary imaging modalities

discussed in this paper due to their clinical relevance for

biomechanical modeling, other advanced imaging technologies

also hold promise. High-resolution peripheral QCT (HR-pQCT)

offers detailed insights into bone microarchitecture but is limited to

extremities due to its field of view. Dual-energy CT (DECT) enables

improved material characterization by distinguishing between bone

mineral density and other components, such as collagen and water.

Magnetic resonance imaging (MRI) can provide complementary

information on bone marrow composition and trabecular structure

but lacks the spatial resolution necessary for finite element

modeling of bone strength. Although these techniques have

significant potential, their high cost, limited availability, and

practical constraints currently limit their widespread application

in hip fracture risk assessment.

Numerous finite element (FE) models have been developed for

the femur, with most falling into two primary categories: those

based on dual-energy X-ray absorptiometry (DXA) and those based

on quantitative computed tomography (QCT).
3.1 DXA-based finite element models

DXA-based FE models are particularly attractive due to the

merits of DXA over QCT, including lower cost, wider availability,

and reduced radiation exposure. These models leverage two-

dimensional (2D) DXA images to estimate femoral strength and

fracture risk by incorporating simplified assumptions about bone

geometry and material properties, as illustrated in Figure 2. First, a

plane stress model (31) or engineering beam model (32) is adopted,

representing the femur by projecting all the bone material along the

DXA scanning direction, thereby reducing the complex 3D

geometry of the femur to a simplified 2D model with uniform

thickness. Second, the areal bone mineral density (aBMD) derived

from DXA is correlated with key material properties (33), such as

bone elasticity and yield stress, enabling the estimation of bone

strength in the medial-lateral plane.

In DXA-based finite element analyses, material models

primarily assume linear elastic behavior due to the simplicity and

computational efficiency required for clinical applicability (36, 37).

For instance, the Young’s modulus is often estimated based on

empirical relationships with areal bone mineral density (aBMD)

(36, 37). Some studies incorporate piecewise linear models to

account for yield points and post-yield behavior, though these are

less common due to the limitations of 2D projections in capturing

detailed material heterogeneity. Non-linear models, which consider

failure criteria or plasticity, have been less frequently applied in

DXA-based FE analyses due to the challenges in accurately

representing complex bone material using 2D data (38). DXA-

based finite element studies commonly employ simplified yet
frontiersin.org

https://doi.org/10.3389/fendo.2025.1538460
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Luo 10.3389/fendo.2025.1538460
clinically relevant loading and boundary conditions to simulate

scenarios associated with hip fractures. The most frequently used

loading scenario involves a sideways fall, which reflects the most

common fall mechanism leading to hip fractures in older adults. In

these simulations, the femoral head is typically subjected to oblique

forces, representing the impact of the greater trochanter against the

ground during a fall. These assumptions and correlations strike a

practical balance between prediction accuracy and simplicity,

positioning DXA-based FE models as a promising patient-specific

tool for assessing hip fracture risk in clinical settings.

The development and improvement of DXA-based finite

element models for hip fracture risk assessment have significantly

advanced, driven by the need for more accurate and individualized

predictions of bone strength and fracture risk. Early studies

demonstrated the feasibility of integrating finite element analysis

(FEA) with DXA imaging to estimate femoral strength (31, 34, 39).

Luo et al. (35) investigated the precision of DXA-based finite

element models, identifying body positioning during DXA

scanning as a critical factor influencing model accuracy. Further

advancements focused on automation and clinical applicability, as

illustrated by Luo et al. (40) and Yang et al. (41), who developed

fully automated DXA-based FEA tools that not only stratified

fracture risk more effectively than femoral neck bone mineral

density (BMD) but also streamlined workflows for routine clinical

use. Validation efforts, such as those by Dall’Ara et al. (42),

confirmed the accuracy of DXA-based FEA models against

experimental data, reinforcing their reliability. Simplified 2D FEA

models derived from DXA images were also validated against more

complex 3D models by Terzini et al. (38), highlighting their

practicality with reasonable predictive accuracy. These continuous

improvements have established DXA-based FEA as a robust and
Frontiers in Endocrinology 04
clinically viable approach to addressing the limitations of traditional

BMD-focused fracture risk assessments. DXA-based finite element

models are increasingly being utilized for hip fracture risk

assessment. Yang et al. (43) demonstrated the effectiveness of

this approach in the Osteoporotic Fractures in Men (MrOS)

study, where femoral strength estimates derived from FEA

showed a strong association with incident fractures. Sarvi and

Luo (44) investigated sex differences in hip fracture risk

using biomechanical modeling and identified significant

distinctions that traditional BMD measurements failed to capture.

Additionally, Ferdous et al. (31) underscored the value of patient-

specific FEA models in evaluating individualized fracture risk,

further highlighting the adaptability and clinical potential of this

technique. In addition to risk assessment, DXA-based FE models

have been used to monitor the effectiveness of osteoporosis

treatments. Mochizuki et al. (45) employed DXA-based hip

structural analysis to evaluate changes in bone strength during

teriparatide treatment, demonstrating significant improvements in

femoral strength over 24 months.

Despite their advantages, DXA-based FE models have several

limitations. DXA only provides 2D projections of the femur, which

limits the model’s ability to capture the 3D geometry and

microstructural details essential for accurate stress and strain

predictions. DXA-based FE models often rely on oversimplified

assumptions about the relationship between aBMD and bone

material properties. These assumptions may overlook variations

in the spatial distribution of bone mass, including differences in

cortical and cancellous component densities, which are critical for

capturing the anisotropic nature of femoral strength. Additionally,

the 2D nature of DXA imaging restricts its capacity to evaluate

trabecular architecture and cortical porosity, both of which are
FIGURE 2

DXA-based finite element modeling of femoral strength [modified from (34, 35)].
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essential determinants of bone strength and fracture risk.

Anatomical geometry reconstruction from DXA images models

the entire femur as a single entity (46, 47), assigning subject-specific

material properties based on areal bone mineral density (aBMD)

values derived from DXA images. This method simplifies the

geometry and computational requirements but inherently lacks

the ability to distinguish between cortical and trabecular

compartments, which are critical for accurately capturing the

heterogeneity of bone properties. DXA-based FE models often use

simplified loading scenarios to estimate femoral strength, which

may not accurately represent the complex, multidirectional forces

experienced during real-world falls. DXA-based FE models

primarily reflect changes in BMD, making them less sensitive to

other critical factors, such as improvements in bone collagen quality

and the integrity of collagen crosslinks (48, 49), which play

a significant role in bone strength and may result from

osteoporosis treatments. Variations in DXA scanner calibration

and software algorithms (50) can introduce inconsistencies in

BMD measurements, affecting the reproducibility of FE

model predictions.
3.2 QCT-based finite element models

QCT-based finite element models are constructed from three-

dimensional data acquired through quantitative computed

tomography (QCT). While the process of creating QCT-based

finite element models shares similarities with that of DXA-based

models, as illustrated in Figure 3, the key differences lie in the three-

dimensional representation of femur geometry and the use of

volumetric bone mineral density (vBMD) instead of areal BMD
Frontiers in Endocrinology 05
(51). The process begins with acquiring high-resolution QCT

images of the femur. These datasets are segmented to differentiate

bone tissue from surrounding structures, enabling the extraction of

cortical and trabecular bone regions (52). The image data are then

converted into 3D finite element meshes, typically composed of

tetrahedral or hexahedral elements, to accurately approximate the

femoral geometry (53). Tetrahedral elements are more versatile in

conforming to complex geometries, making them suitable for

irregular structures like the femur. In contrast, hexahedral

elements offer higher accuracy and computational efficiency for

simpler, structured geometries but are less adaptable to irregular

shapes. The choice between the two depends on the trade-off

between geometric fidelity and computational efficiency in the

modeling process. Bone densities are obtained from QCT image

intensities through calibration with phantoms, which provide

reference values for converting Hounsfield units into equivalent

bone density measures. Material properties are assigned based on

the density values using empirical relationships that link density to

Young’s modulus and other mechanical parameters (51, 54).

Boundary and loading conditions are applied to simulate

physiological or traumatic scenarios, such as normal gait or

sideways falls (52). Finally, these models are solved using

numerical methods to estimate stress, strain, and overall femoral

strength (53). Overall femoral strength is typically defined as the

maximum load the femur can withstand before failure, as

determined by the finite element simulation. This definition

depends on the material model used; for linear elastic models, it

is based on yield stress, while for non-linear models, it may

incorporate ultimate stress or fracture criteria. The choice of

strength definition varies depending on the specific study

objectives and modeling assumptions.
FIGURE 3

QCT-based finite element modeling of femoral strength [modified from (55)].
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QCT-based finite element models have emerged as a robust tool

for studying femoral strength and hip fracture risk. By integrating

3D imaging with advanced computational modeling, these models

provide detailed insights into the mechanical behavior of the femur

under different loading conditions. Below, we review key research

applications of QCT-based FE models in this domain. QCT-based

FE models have been widely used to evaluate the structural integrity

of the femur under simulated loading conditions. Dragomir-Daescu

et al. (56) developed robust models to predict femoral stiffness and

fracture load during a sideways fall, demonstrating strong

correlations with in vitro experimental data. Mirzaei et al. (57)

applied QCT-based FE analysis to analyze strength and failure

patterns in the human proximal femur, revealing critical

mechanical insights that aid in fracture prediction. Dall’Ara et al.

(58) validated nonlinear QCT-based FE models using in vitro

human femur, showing their reliability across multiple

experimental configurations. These studies highlight the utility of

QCT-based FE models in quantifying femoral strength and

identifying high-risk individuals.

QCT-based FE modeling has also been employed to study

variations in femoral strength across different populations. Shen

et al. (59) investigated the relationship between body mass index

(BMI) and QCT-derived hip strength in older men, providing

biomechanical explanations for the effects of BMI on fracture

risk. Black et al. (60) conducted a large prospective study to

assess the relationship between proximal femoral structure, as

derived from QCT, and hip fracture risk in men, establishing the

clinical relevance of QCT-based measurements. Faisal and Luo (55)

examined differences in fracture risk between left and right femora

using QCT-based FE models, identifying asymmetries that may

inform individualized treatment strategies. Several studies have

focused on evaluating hip fracture risk under specific mechanical

or pathological conditions using QCT-based FE models. For

example, Kheirollahi and Luo (61) used cross-sectional strain

energy derived from QCT-based FE models to assess hip fracture

risk, demonstrating the sensitivity of this method to variations in

bone density and geometry. Carpenter et al. (62) emphasized the

importance of fall orientation on femoral neck strength, showing

that certain fall directions substantially increase fracture risk. Such

studies underline the versatility of QCT-based FE models in

replicating realistic fracture scenarios.

Traditional metrics for monitoring treatment effects typically

include changes in areal bone mineral density (aBMD) as measured

by DXA. Treatments such as bisphosphonates or anabolic agents

like teriparatide are commonly assessed using these metrics. These

methods focus on improving bone density and strength over time,

offering a baseline for evaluating therapeutic outcomes. QCT-based

FE models are employed to examine the contributions of cortical

and trabecular compartments to overall femoral strength.

Christiansen et al. (63) used these models to explore age-related

changes in bone strength, showing how the cortical and trabecular

components contribute differently to mechanical stability in men

and women. These findings have enhanced the understanding of

how age and sex influence fracture risk. QCT-based FE models have

been applied to evaluate the impact of osteoporosis treatments and

other clinical conditions on femoral strength. Engelke et al. (64)
Frontiers in Endocrinology 06
used these models to monitor regional changes in bone mineral

density after ibandronate treatment, demonstrating how such

treatments improve hip strength. Similarly, Black et al. (60)

showed how QCT-based parameters could predict treatment

outcomes more effectively than traditional metrics, emphasizing

the potential of these models in clinical decision-making.

QCT-based finite element models provide a more detailed and

robust approach than DXA-based models for assessing femoral

strength and hip fracture risk. QCT offers greater detail compared

to DXA by providing 3D volumetric imaging, allowing separate

analysis of cortical and trabecular compartments. Additionally,

QCT measures volumetric bone mineral density (vBMD), which

is not influenced by bone size or projection errors, and enables

assessment of bone geometry, microarchitecture, and material

properties with higher spatial resolution. However, QCT-based

models are not without limitations. A major challenge lies in the

high radiation dose associated with QCT imaging, which restricts its

routine clinical use, especially for longitudinal studies (65).

Additionally, constructing and solving QCT-based finite

element models require advanced computational resources

and expertise, which can be a barrier to widespread adoption

in clinical practice (56). Variability in imaging protocols and

finite element modeling assumptions, such as mesh density and

material property assignment, can introduce inconsistencies and

limit reproducibility across studies (58, 63). Furthermore, the

use of density-based material property assignment often

oversimplifies bone’s heterogeneous and anisotropic mechanical

behavior, potentially reducing the accuracy of predictions (57).

Finally, these models generally do not account for dynamic

biological processes, such as bone remodeling or microdamage

accumulation, which are critical for understanding changes in

bone strength over time (61). Addressing these limitations

through advancements in imaging, modeling, and computational

techniques is essential to enhance the clinical utility of QCT-based

finite element models.
3.3 Challenges in image-based finite
element modeling of femoral strength

Finite element modeling of femoral strength based on medical

imaging, such as QCT or DXA, has advanced significantly in recent

years, offering valuable insights into bone mechanics and fracture

risk. However, despite these advancements, and alongside the

limitations discussed in the previous subsections, several critical

challenges persist, hindering the accuracy, reliability, and clinical

utility of these models. One major issue lies in the challenge of

accurately characterizing bone material properties, such as Young’s

modulus, yield stress, and toughness, frommedical images. Another

significant challenge is capturing the anisotropic behavior of

femoral strength, which varies with loading orientation and is

influenced by the direction of impact forces during a fall. Bone

anisotropy has been studied in vertebral bones (66), where

transverse isotropy is modeled by scaling Young’s modulus

according to directional properties. Application of a similar

approach to the femur requires experimentally derived scaling
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factors. Addressing these complexities requires advancements in

imaging technologies, image-based material characterization

algorithms, and modeling techniques, as these elements are

pivotal for enhancing the predictive accuracy and reliability of

image-based finite element models.

3.3.1 Image-based characterization of bone
material properties

Accurately characterizing bone material properties, such as

Young’s modulus, yield stress, and toughness, from DXA or QCT

images remains a significant challenge due to the composite nature of

bone. Bone is a hierarchical material composed of inorganic minerals

(primarily hydroxyapatite), organic proteins (mostly collagen), and

water. Each of these components contributes distinct mechanical

properties to bone, and their interplay determines the overall strength

and toughness of the tissue. However, medical imaging modalities

like DXA andQCT are limited in their ability to quantify or assess the

quality of these individual components, which hinders precise

material characterization.

DXA and QCT provide information about bone density, which

is a proxy for the amount of mineral content in bone. However, this

metric alone does not capture variations in the organic matrix or

water content, both of which critically influence mechanical

properties. Studies have shown that the organic matrix,

particularly collagen cross-linking, plays a pivotal role in bone

toughness and resistance to fracture (67–69). Similarly, bound

and free water in bone contribute to its viscoelastic and fatigue-

resistant properties (70). Limited by their working principles, both

DXA and QCT can measure only mineral density, while the

characterization of organic proteins and water remains

challenging with these imaging modalities. As a result, the

contributions of organic proteins and water to bone strength,

particularly toughness, are not accounted for in DXA- and QCT-

based models (71, 72). Further complicating the issue is

the heterogeneity of bone mineralization. The degree of

mineralization varies across individuals and regions within the

bone, affecting stiffness and brittleness. QCT-based finite element

models often rely on empirical density-elasticity relationships

derived from bone properties, which may not account for inter-

individual variability in the inorganic-organic composition or

regional differences within the same bone (54, 73). This limitation

undermines the ability to predict mechanical properties accurately

under diverse physiological or pathological conditions.

Another critical challenge lies in accurately determining the

stress-strain curves for the individual components of bone,

particularly minerals and proteins, which are dependent on the

sub-compositions and sub-microstructure in the components.

These curves are fundamental for understanding bone behavior

under impact forces but are highly subject-dependent, adding

complexity to their precise characterization. For instance, the

mechanical behavior of hydroxyapatite, the primary mineral in

bone, depends on its crystal size, orientation, and substitutional

chemistry, all of which can vary significantly among individuals

(74). Similarly, the organic matrix, predominantly composed of

type I collagen, shows variability in structure and cross-linking

patterns among individuals, directly influencing its mechanical
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response under load (75). Factors such as age, sex, ethnicity, and

health status further modulate the quality and quantity of these

bone components, resulting in significant differences in their

mechanical properties (67). For example, aging reduces collagen

quality while increasing mineral crystallinity, leading to stiffer but

more brittle bones (76). Imaging modalities like QCT and DXA

currently lack the capability to capture these subtle yet critical

changes in bone composition and quality. Furthermore, the absence

of standardized methods for characterizing these properties either

in vivo or ex vivo complicates their integration into finite element

models, underscoring a significant limitation in current

biomechanical assessments.

Furthermore, the interaction between the inorganic and organic

components introduces non-linearities that are not easily captured

by existing imaging techniques. For example, the role of collagen in

resisting crack propagation and maintaining post-yield behavior is

critical for bone toughness, but current imaging modalities cannot

quantify the functional quality of collagen or its integration with the

mineral phase (49, 77). Advances in techniques like Raman

spectroscopy and nanoindentation have provided insights into

these interactions in vitro, but these are not yet translatable to

clinical imaging settings. Raman spectroscopy, including methods

like surface-enhanced Raman scattering (SERS) and tip-enhanced

Raman scattering (TERS), offers detailed molecular information

and high spatial resolution (78). Nanoindentation, on the other

hand, allows for precise measurement of mechanical properties at

the nanoscale (79). Despite their potential, these techniques face

challenges in clinical translation due to issues like signal

interference and the complexity of in vivo environments.

Addressing the challenges of characterizing bone material

properties from medical images requires significant advancements

in imaging technologies and computational modeling. Techniques

that integrate imaging with compositional analysis, such as dual-

energy CT (DECT) or high-resolution peripheral QCT (HR-

pQCT), hold promise but remain in early stages of application

(80). HR-pQCT is currently limited to extremities due to hardware

and radiation constraints, making their use for larger regions like

the proximal femur impractical. Empirical data from cadaveric

studies could enhance finite element models, and future research

could explore hybrid approaches combining high-resolution data

with clinical imaging. Balancing radiation exposure with the need

for detailed imaging is critical. Leveraging already-acquired clinical

images for biomechanical modeling can reduce the need for

additional scans. Standardizing imaging protocols in advance can

further minimize radiation dose and costs while maintaining the

necessary level of detail for accurate finite element analyses.

Expanding our understanding of the material behavior of bone’s

components and improving the resolution and functionality of

medical imaging will be critical for advancing finite element

models and their clinical utility (81).

3.3.2 Anisotropy in bone mechanical properties
and femoral strength

Anisotropy in bone mechanical properties refers to the

variation in mechanical characteristics, such as Young’s modulus

and ultimate stress, depending on the orientation of the bone test
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sample, even when taken from the same site. Similarly, anisotropy

in femoral strength indicates that the maximum force the femur can

sustain before fracturing varies with the direction of the applied

force. This anisotropy arises from bone’s hierarchical structure and

composition, including the alignment of collagen fibers, the

distribution of hydroxyapatite crystals, and the trabecular

architecture within the femoral head and neck (75, 82, 83).

Cortical bone in the femoral shaft, for instance, is stiffer and

stronger along the longitudinal axis, making it particularly

effective at resisting axial loads during activities like walking and

running (84). In contrast, the trabecular bone in the femoral head

and neck features a highly complex, orientation-specific

architecture designed to distribute stresses arising from multi-

directional loading scenarios (85).

The majority of QCT-based finite element models employ

simplified isotropic material assumptions for bone mechanical

properties; however, they can still demonstrate the anisotropic

nature of femoral strength due to the influence of bone geometry

and heterogeneous material distribution. These models reveal that

bone is more resistant to compression and tension in certain

orientations while being more susceptible to shear forces in others

(52, 86). Studies have shown that the femur’s ability to withstand

impact forces is highly dependent on the direction and magnitude

of the force applied during a fall (24, 87, 88). For example, sideways

falls, which are the most common fall scenario in elderly

individuals, generate impact forces that are poorly aligned with

the femur’s primary axis of strength, significantly increasing the risk

of fracture (24). Conversely, frontal or posterior falls may exert

forces along directions that the femur is better adapted to withstand,

reducing fracture risk (87, 88).

However, the isotropic models of bone mechanical properties

inherently overlook the directional dependence of these properties,

limiting their accuracy in simulating real-world loading conditions.

To address this limitation, finite element models must incorporate

anisotropic mechanical properties that reflect the true directional

behavior of bone material. Achieving this level of precision requires

advanced imaging and material characterization techniques, such as

those capable of capturing collagen fiber orientation and mineral

distribution, which are not yet widely accessible. This presents a

significant barrier to advancing modeling accuracy and

clinical applicability.

Current imaging modalities, such as QCT and DXA, are limited

in their ability to comprehensively characterize bone composition,

including inorganic minerals, organic proteins, and water, let alone

provide detailed orientation-specific data on bone strength (89, 90).

Incorporating composition- and microstructure-dependent

mechanical properties and anisotropy into finite element models

requires a deeper understanding of the hierarchical structure of

bone, particularly the trabecular and cortical microstructures.

Advanced imaging techniques, such as dual-energy computed

tomography (DECT), offer promising avenues for distinguishing

and quantifying bone components with greater specificity (91, 92).

However, these techniques are still under development and face

challenges such as resolution limitations and the accurate extraction

of anisotropic mechanical properties. Overcoming these barriers is
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essential to achieving more precise and clinically relevant models

for fracture risk assessment.
4 Image-based dynamics modeling of
falls to predict impact forces

Falls are the leading cause of hip fractures, with over 95% of hip

fractures attributed to falls from standing height (93). The forces

generated during a fall frequently exceed the strength of the femur,

resulting in fractures even in young, healthy individuals—let alone

older adults, who often have compromised bone strength due to

age-related changes or conditions like osteoporosis (94). However,

only 2% of falls result in fractures (95, 96), highlighting the complex

interplay between individual biomechanics, fall dynamics, and

environmental factors. This low percentage underscores the

importance of understanding how variables such as bone

strength, fall-induced forces, body orientation during impact, and

surface compliance collectively influence fracture outcomes. Fall

experiments, even controlled fall testing, are neither ethical nor safe

for elderly individuals. Image-based dynamics modeling offers a

promising alternative for simulating falls and predicting impact

forces by integrating subject-specific anatomical and biomechanical

data derived from advanced medical imaging techniques.

This section explores the necessity and potential of subject-

specific dynamics modeling for fall simulations to predict impact

forces. It discusses the importance of incorporating whole-body

imaging data, such as DXA or QCT, to create accurate models,

reviews the progress made in simulating falls from standing height,

and examines the challenges that must be addressed to replicate

real-world fall scenarios. By leveraging these advancements, the goal

is to improve fracture risk prediction and develop more effective

prevention strategies.
4.1 Subject-specific dynamics modeling
of falls

Subject-specific factors, such as body height, weight, mass

distribution, and flexibility, play a crucial role in determining the

dynamics of a fall and the resulting impact forces (97). Generic

models often fail to account for this variability, leading to

inaccuracies in predicting impact forces and assessing fracture

risks. For instance, a taller individual falling sideways may

experience distinct dynamics and higher impact forces compared

to a shorter individual under similar conditions. This variability

underscores the need for personalized modeling. Subject-specific

dynamics modeling of falls provides a more accurate approach by

integrating individual characteristics, such as body dimensions,

weight distribution, and flexibility, which significantly influence

the trajectory and forces of a fall. Such precision is essential for

reliably predicting impact forces and evaluating fracture risk.

Whole-body medical imaging techniques, such as DXA or QCT

scans, offer valuable data on bone geometry, body composition, and

soft tissue distribution, which are key parameters for developing
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subject-specific dynamics models of falls. For example, DXA scans

provide detailed estimates of regional fat and muscle distribution, as

illustrated in Figure 4, which directly influence body mass properties

and thus the dynamics of a fall. These parameters play a critical role in

determining how the body interacts with the ground during impact

and how forces are absorbed and transmitted through various tissues.

By integrating this personalized information, subject-specific models

can more accurately simulate fall mechanics, enhancing the prediction

of impact forces and the evaluation of fracture risks. Substantial

progress has been made in the development of subject-specific

dynamics models for simulating falls. For instance, Luo et al. (25)

developed and validated a method for constructing subject-specific

dynamics models using whole-body DXA images. These models

demonstrated improved accuracy in predicting impact forces during

sideways falls, showing better agreement with experimental data

compared to traditional empirical functions (98). Similarly, Fleps

et al. (99) introduced a dynamic inertia-driven sideways fall protocol

that tested full cadaveric femur-pelvis constructs under realistic fall

conditions. This approach aimed to enhance the prediction of impact

loads and fracture risk by replicating the dynamics of real-world falls,

thereby bridging the gap between laboratory testing and clinical

relevance. Studies using finite element models combined with

dynamics simulations have demonstrated the potential to predict

impact forces and their distribution during falls. For instance,

researchers have utilized whole-body musculoskeletal models derived

from DXA and QCT data to simulate falls and calculate site-specific

impact forces (26, 44, 100). Some of these models have been validated

using experimental data, such as motion capture systems and force

plates, providing evidence of their predictive accuracy (25, 101).

Furthermore, machine learning approaches have been integrated into

fall dynamics modeling to enhance the efficiency and accuracy of
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simulations. Algorithms trained on large datasets can optimize model

parameters, such as fall orientation and joint motion, based on subject-

specific input (102). These approaches have improved the ability to

predict real-world fall scenarios and their associated forces (103).

Dynamic fall models estimate forces that are subsequently used as

boundary and loading conditions in finite element simulations.While

these forces provide critical inputs, simplifications—such as assuming

uniform force distribution or neglecting soft tissue effects—may

introduce translational losses. These approximations can affect the

accuracy of fracture risk predictions. Future research should focus on

improving the fidelity of force translation and accounting for

individual-specific factors to enhance prediction reliability.
4.2 Challenges in simulating real-
world falls

Simulating real-world falls presents significant challenges due to

the inherent complexity and variability of fall dynamics and subject-

specific physiological factors (105, 106). Unlike controlled fall

simulations, real-world falls are triggered by unpredictable and

random events, such as tripping, slipping, or sudden loss of

balance. These triggers introduce substantial variability in the

initial conditions of the fall, including body posture, velocity, and

the direction of movement at the onset of imbalance. Accurately

replicating this randomness is crucial for realistic modeling but

remains a significant hurdle.

Another critical factor is the reflexive response of muscles,

which plays a pivotal role in influencing fall dynamics. When an

individual loses balance, muscle reflexes are activated to counteract

the fall, aiming to restore stability or reduce the severity of impact.
FIGURE 4

Construction of subject-specific dynamics model for simulating falls and predicting impact forces [modified from (26, 104)].
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Muscle activation affects joint stiffness (107, 108), a key parameter

in modulating the ability of the body to respond to destabilizing

forces (109). Increased joint stiffness, resulting from heightened

muscle activation, can stabilize the joints, preventing excessive

movement that might exacerbate the fall. Conversely, insufficient

muscle activation or weak muscle may lead to joint instability,

increasing the likelihood of an uncontrolled descent. In addition to

joint stiffness, muscle activation directly influences the actuator

force generated by muscle fibers (110), which determines the

strength and speed of corrective movements. For example, in a

sideways fall, the hip abductor muscles play a crucial role in

resisting lateral displacement of the torso (111), while the

quadriceps and hamstrings stabilize the knees to reduce the

impact force upon ground contact (112). These coordinated

muscle activations help control body posture and orientation

during the descent, potentially shifting the impact away from

vulnerable areas like the hip.

The timing and intensity of muscle reflexes also vary between

individuals, influenced by factors such as age, neuromuscular

coordination, and physical fitness. Older adults, for instance,

often exhibit delayed reflex responses and weaker muscle

activation (113–115), which compromise their ability to mitigate

the effects of a fall. In contrast, younger and physically active

individuals tend to have faster and stronger reflexes, enhancing

their capacity to absorb and dissipate impact energy. Additionally,

muscle activation patterns influence the redistribution of body mass

during a fall (97). For instance, active engagement of the arms and

legs can alter the center of mass trajectory, reducing the likelihood

of a high-impact collision at critical sites such as the hip. However,

excessive or uncoordinated muscle activation can lead to

counterproductive effects, such as increased rotational forces or

misaligned body segments, potentially exacerbating the impact at

the end of the fall (116).

Incorporating the randomness of fall triggers and the variability

in muscle reflex responses into fall simulations requires sophisticated

modeling approaches, along with subject-specific physiological and

biomechanical parameters, which are extremely challenging to

characterize. Current methodologies often rely on simplified

assumptions regarding initial conditions and reflexive actions,

limiting their ability to represent the full complexity of real-world

falls. Advanced techniques, such as stochastic modeling to simulate

random fall triggers and neuromuscular modeling to replicate

reflexive muscle responses, are necessary to address these

limitations. Overcoming these challenges is critical for improving

the accuracy and applicability of fall dynamics models in assessing

fracture risk and developing personalized prevention strategies.
5 Conclusion and future outlook

Recent advancements in image-based approaches for hip

fracture risk assessment have significantly improved our

understanding of the interplay between bone strength and fall-

induced impact forces. Finite element (FE) models derived from

imaging modalities such as DXA and QCT enable individualized

assessments of femoral strength by capturing bone material
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properties, microstructure, and geometry. These models mark a

notable improvement over traditional statistical tools by

incorporating patient-specific risk factors. Similarly, subject-

specific dynamics modeling of falls has advanced the prediction of

forces applied to the hip during real-world falls, offering the

potential for more reliable fracture risk assessments. However,

challenges remain in refining these approaches for improved

accuracy and reliability.

Advancing biomechanical models for hip fracture risk

assessment requires addressing several challenges:
• DXA-based FE models are limited by the projection of

three-dimensional bone structures into two dimensions,

which may introduce inaccuracies in estimating femoral

strength. A significant limitation of DXA-based FE models

is their sensitivity to body positioning during scanning,

which can introduce variability in the estimated femoral

strength and fracture risk. Ensuring consistent and accurate

positioning is critical to improving the reliability of these

models. QCT-based models offer greater anatomical detail

but face barriers such as higher costs, increased radiation

exposure, and limited accessibility. Both approaches require

further improvements in accurately integrating material

properties, such as bone density distribution and

anisotropic strength, to enhance predictive accuracy.

• Characterizing bone mechanical properties based on

medical images presents a significant challenge due to the

difficulty of accurately mapping image-derived parameters,

such as bone density, to mechanical properties like strength,

stiffness, and toughness. Current methods often rely on

empirical relationships that may not fully account for bone

heterogeneity, anisotropy, and microstructural variations.

To address these challenges, there is a need for more robust

methodologies that couple advanced imaging techniques

with experimental validation and multiscale modeling

approaches, enabling more accurate prediction of

mechanical behavior.

• In fall dynamics simulation, the complexity of real-world

falls presents additional obstacles. Randomness in fall

triggers, variability in fall trajectories, and reflexive muscle

responses are difficult to replicate accurately. Current

models often rely on simplified assumptions, limiting

their ability to capture the variability observed in real-life

scenarios. Advanced techniques, such as stochastic

modeling for fall triggers and neuromuscular modeling

for reflex responses, are needed to address these

challenges and improve the reliability of impact

force predictions.

• The integration of these image-based biomechanical models

into clinical workflows remains limited due to technical and

logistical constraints. Despite their detailed insights into hip

fracture mechanisms, these models require further

optimization for practical use in routine healthcare

settings. Collaboration between engineers, clinicians, and

imaging specialists is essential to bridge the gap between

research and clinical practice.
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In summary, image-based hip fracture risk assessment has

made significant progress in offering patient-specific insights into

fracture susceptibility. However, addressing technical challenges,

refining modeling techniques, and facilitating clinical integration

are critical for unlocking their full potential in improving fracture

prevention and patient outcomes.
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