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Background: Postpartum depression (PPD) is a significant mental health 
challenge for new mothers, with diverse and unclear causes. Exosomes 
significantly contribute to the pathogenesis, identification, treatment outcome 
determination, and intervention of PPD. However, the functions of exosome­

related genes (ERGs) in PPD remain to be fully elucidated. This study examines 
the potential impact of ERGs on PPD and develops a set of diagnostic tools based 
on them. 

Methods: We acquired and prepared several gene expression datasets from the 
Gene Expression Omnibus (GEO). Our analysis focused on genes that closely 
interact with the extracellular matrix. Using advanced techniques, including the 
limma package, we identified differential expression and conducted enrichment 
analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Furthermore, we employed logistic  regression, random  forest (RF)

classifiers, and least absolute shrinkage and selection operator (LASSO) 
regression to screen critical genes. 

Results: We identified 44 exosome-related differentially expressed genes 
(ERDEGs) that play key roles in synaptic signal transmission, hormone 
fluctuations, and inflammatory responses. Ten genes, including TPP2, AKR1B1, 
CD59, PARK7, PLXNB2, HLA-B, FAH, NDST1, SCARB1, and HNRNPA2B1, were 
established using logistic regression analysis, RF method, and LASSO regression. 
In these two sets of data, the manifestations of PARK7 and HNRNPA2B1 differed. 
The analysis showed that the significant enrichment of gene sets was strongly 
associated with high-risk scores, particularly in the metabolic (phospholipid 
metabolism) and neural (mitochondrial translation) pathways. Gene set 
variation analysis (GSVA) revealed four prominent pathways: MYC targets V2, 
pancreatic beta cells, unfolded protein response, and oxidative phosphorylation. 
Single-sample gene set enrichment analysis (GSEA) showed that immune cells 
demonstrated different degrees of infiltration among at-risk and low-probability 
risk subsets of immature B cells, regulatory T cells), and T follicular helper cells. 
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Conclusions: ERDEGs significantly contribute to PPD occurrence. Our 
diagnostic model demonstrated high accuracy and potential for use in medical 
practice. Future research with larger samples is warranted to validate these 
conclusions and identify effective targets that may affect these pathways 
during treatment to improve the therapeutic effect. 
KEYWORDS 

exosomes, bioinformatics analysis, immune infiltration, diagnostic model, biomarkers 
1 Introduction 

Postpartum depression (PPD) is a psychological disorder that 
affects many women after childbirth. This condition is characterized 
by intense depressive episodes that emerge within a month of 
delivery and can persist for years without proper intervention (1). 
This condition affects the mother’s well-being and adversely affects 
the infant’s development and the overall family dynamics (2). PPD 
affects approximately 17.7% of the global population and 21% of 
our nation’s population (3, 4). Despite the prevalence of PPD, the 
rate of diagnosis and cure has not advanced. The key reason for this 
is the inadequate clear biomarkers, which has led to the innovation 
of diagnostic methods and treatment plans (5). 

Exosomes are small extracellular vesicles secreted by various cell 
types that have emerged as biomarkers and therapeutic targets, 
showing great potential in numerous diseases such as cancer and 
neurodegenerative and cardiovascular diseases (6). These vesicular 
structures host a diverse array of proteins, lipids, and nucleic acids 
that mirror the physiological state of their mother cells. Recent 
research has highlighted the important role of exosome-related 
genes (ERGs) in manipulating immune responses, cellular 
interactions, and metabolic pathways, making them attractive 
targets for intervention to elucidate the mechanisms of various 
complex diseases, such as PPD. ERGs can directly or indirectly 
affect CD4 + and CD8 + T cells, thus stimulating or inhibiting the 
proliferation and biological activity of these immune cells (7). 

Under the conditions of PPD, studying the ERG hypothesis may 
reveal unknown molecular pathways, which may point to the early 
discovery of biomarkers for tailoring medical protocols. Exosomal 
microRNAs (miRNAs) and proteins are involved in the 
EGs, exosome-related 
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pathophysiological processes of major depressive disorder (MDD) 
and other psychiatric disorders, suggesting that they may have 
similar functions in PPD (8). For example, exosomal miR-139-5p 
has been implicated in the regulation of neuroinflammation in 
MDD, highlighting the relevance of exosomal components in mood 
disorders (9). 

We chose PPD as a disease model because of its high incidence, 
profound effects on maternal and infant health, and the current lack 
of objective molecular diagnostics. In addition, the etiology and 
pathogenesis of PPD have not been fully elucidated, and new 
biomarkers and therapeutic targets are urgently needed. Recent 
evidence suggests that exosomes and their related genes play a key 
role in neuropsychiatric disorders, but their function in PPD has 
not been fully explored. Therefore, focusing on PPD can help fill 
important clinical gaps and open up the possibility of new 
diagnostic and therapeutic approaches based on exosome biology. 

Although exosomes-associated genes (ERGs) have been shown 
to play a role in immune regulation and neuropsychiatric disorders 
such as major depressive disorder (MDD), the relevant studies 
focusing on postpartum depression (PPD) are extremely limited. To 
date, there are few systematic reports on the specific molecular 
mechanisms and extracellular vesicle-derived biomarkers of PPD, 
and only sporadic studies have provided indirect evidence. This 
significant research gap highlights the need for systematic screening 
and identification of PPD-specific exosome gene signatures. This 
study aimed to examine the potential effects of ERGs on PPD and to 
construct diagnostic systems based on them. 
2 Materials and methods 

2.1 Data download and preprocessing 

Using the GeoQuery toolkit in R, we obtained the gene 
expression dataset of patients with PPD (10) using the R package 
GEOquery (11) When studying the GSE45603 dataset, we 
specifically selected the patient population that exhibited PPD 
traits and compared them with individuals with normal 
performance on the normal postpartum mood index. In total, 43 
data samples were collected: 16 and 27 from women in the PPD and 
normal postpartum mood categories, respectively. 
frontiersin.org 

https://doi.org/10.3389/fendo.2025.1542327
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2025.1542327 

 

The data platform for GSE45603 was the GPL10558Illumina 
HumanHT-12 V4.0 expression beadchip. A microarray GPL 
platform file was used to annotate probe names in the dataset 
(Supplementary Table S1). 

GeneCards (12) database (https://www.genecards.org/) presents 
detailed data on human genetic codes. In order to obtain exosome­

related genes, the search term “exosomes” was used to search from 
genecards, we selected exosomes as the query code and further 
screened out ERGs that only encoded proteins and had a correlation 
score exceeding 2. Cumulatively, 778 ERGS of energy units 
were obtained. 

Overall, 121 ERGs were retrieved from the published literature 
(13) We obtained 880 ERGs by combining all the ERGs obtained 
and removing duplications; the detailed data are presented in 
Supplementary Table S1. 
 

2.2 Differential expression analysis 

To discern potential mechanisms and associated biological 
characteristics and routes of genes participating in PPD, we first 
used the limma package (14) to perform differential analysis on the 
postpartum depression dataset GSE45603 to obtain Differentially 
expressed genes (DEGs) between different groups (PD/Control) of 
the postpartum depression dataset. A threshold of |logFC| > 1 was 
used in the preliminary analysis, but at the stage of identifying 
ARDEGs, the choice of threshold for fold change in the differential 
analysis was appropriately relaxed in order to include as many 
differentially expressed genes as possible. Finally, the genes with | 
logFC| > 0 and p value < 0.05 were selected as the differentially 
expressed genes (DEGs) for further study. genes with logFC > 0 and 
p value < 0.05 were up regulated genes. genes with logFC < 0 and p 
value < 0.05 were down regulated genes. 

To screen out DEGs with | log FC | > 0 and p < 0.05, the 
GSE45603 PPD dataset was processed using ERGS; ERDEGs and 
Wayne diagrams were produced by comparative analysis. These 
analysis results are presented in the form of a volcano map using the 
ggplot2 package of R language and in the form of a heat map using 
the pheatmap package. 
2.3 Functional enrichment analysis using 
gene ontology and pathway enrichment 
analysis using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) 

GO (15) analysis is frequently used for performing extensive 
functional enrichment research on biological process (BP), 
molecular functions (MF), and cellular component (CC). KEGG 
(16) is widely used to store genomes, biological pathways, diseases, 
and drug information databases. ERDEGs were subjected to GO 
annotation and KEGG pathway enrichment analysis using the R 
package clusterProfile (17). The criteria for initial screening were set 
as p < 0.05 and a false discovery rate value (q.value) < 0.25 was to be 
considered significant. 
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2.4 Screening of key genes 

Initial analysis of the  ERDEGs  was conducted  using univariate

logistic regression to identify the important genes and establish the 
prediction model. The results showed that the p-value was < 0.05, which 
was used as the benchmark for screening. The ERDEGs that met the 
criteria were included in the subsequent random forest analysis. The 
integrated decision tree classifier (18) is a method that combines several 
PPD decision trees based on the principle of ensemble learning. This 
method belongs to the bagging technology category within the 
framework of ensemble learning and involves the combination of 
various algorithms. Random forest is another common modeling 
technique. A series of decision trees are used to form a decision 
forest. When predicting specific data points, the prediction data 
provided by each tree are summarized, and the final prediction value 
is extracted from many predictions through a voting mechanism. After 
screening, the ERDEG expression levels in the dataset GSE45603 were 
identified using univariate logistic regression. Subsequently, using the 
random forest toolkit, a model was built (19), with the parameters 
set.seed (234) and ntree = 500. The median decrease in the Gini 
coefficient represents an average reduction. The purity of a node was 
measured using the Gini index. When the value of the Gini coefficient 
increases, the purity decreases accordingly, which means that the 
proportion of harmful components increases. Meandecreasegini 
represents the average reduction in the impurities of the variable 
separating the nodes for all trees, and a larger Meandecreasegini 
represents more important variables for our grouping. We then cross-
validated the data 10 times by performing five iterations and integrating 
the cross-validation curves to determine the appropriate number of 
variables. The function of the cross-validation method is to use different 
training sets or validation set partitions to perform multiple groups of 
different training or validation sets on the model to address the problem 
of the individual test results being too one-sided and the training data 
being insufficient. We used our training set to perform cross-validation 
to screen out the relevant variables with low error and employed the 
Meandecreasegini criterion to select the key variables for further study. 

Consequently, we used the R package glmnet (20) to  perform
LASSO (Least absolute shrinkage and selection operator) (21) 
regression analysis based on random forest screening with set.seed 
(500) as the parameter. To avoid overfitting, the loop number was set to 
200. By introducing a penalty factor (the multiplication of lambda and 
the magnitude of the slope) into the traditional linear regression 
framework, LASSO regression analysis effectively alleviates the 
overfitting problem of the model, thereby enhancing its universal 
adaptability. The effectiveness of LASSO regression analysis was 
demonstrated through visualization using diagnostical model layouts 
and variable track diagrams. ERDEG was the pivot for subsequent 
analysis in the final draft of the LASSO regression model. 
2.5 Key genes to construct the diagnostic 
logistic regression model 

A logistic discriminant analysis model is often used to explore 
the correlation between independent and dependent variables when 
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the dependent variable exhibits two states. We collected all the 
important genes and built a logistic regression model with multiple 
variables to calculate the weight of each important gene by 
multiplying the expression level of the gene by a specific 
coefficient. After adding these products, we obtained a risk profile 
score for each sample. According to the median value of the 
RiskScore, the disease classifications within the dataset were 
categorized into two risk strata: high and low. Patients in the 
dataset were segregated into elevated- and reduced-risk categories. 
The RiskScore was calculated using the following formula: 

RiskScore  = Coefficient genei*mRNAExpression geneio 
i 

A nomogram (22) A calibration curve was constructed through 
calibration analysis to assess the precision and discriminability of 
the  model  derived  from  the  outcomes  of  multivariate  
logistic regression. 

Decision curve analysis (DCA) is a straightforward technique 
used to assess the performance of clinical forecasting models, 
diagnostic examinations, and molecular biomarkers. The R 
package ggDCA was used to generate DCA (23) 

The receiver operating characteristic (ROC) (24) serves as a 
visual analytical instrument that can identify the optimal model, 
reject the runner-up model, or determine the most suitable cutoff 
within the same model. The ROC curve is a comprehensive 
indicator of the relationship between two continuous variables of 
sensitivity and specificity, and the interaction between both is 
revealed by the combined method. The area under the curve 
(AUC) is typically between 0.5 and 1. Finally, using the R 
language package pROC, a logistic discriminant analysis was 
fitted to the dataset GSE45603, and the corresponding ROC curve 
was plotted to estimate the AUC to explore the efficacy of the 
logistic risk score in the risk assessment of PPD diagnosis. In 
statistics, an AUC value close to 1 indicates a superior diagnostic 
efficacy. AUC scores ranging from 0.5 to 0.7 suggest low accuracy, 
whereas those falling between 0.7 and 0.9 denote moderate 
accuracy. An AUC exceeding 0.9 indicates high accuracy. 
2.6 Validation of gene expression 
disparities and analysis of functional 
homology among pivotal genes 

The Mann–Whitney U test, alternatively referred to as the 
Wilcoxon rank-sum test, was employed to investigate substantial 
variations in the expression levels of key genes between each group 
(PPD vs. control) within the GSE45603 dataset. Using the ggplot2 
toolkit of R, an intergroup comparison chart was then constructed 
to present the final effect of the difference test. 

Furthermore, the Spearman method was used to explore the 
correlation between the expression of important genes in the 
GSE45603 dataset. Visual analysis was performed using the 
PheatMap package in the R software. Correlation coefficients with 
an absolute value < 0.3 imply a weak or negligible relationship. 
Those ranging from 0.3 to 0.5 indicate a faint correlation. Values 
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between 0.5 and 0.8 suggest a moderate degree of correlation, and 
coefficients exceeding 0.8 denote a robust correlation. 

The semantic comparison method provided by GO annotation, 
a means of evaluating the similarity between genes and genomes, 
occupies a central position in many bioinformatics studies, and its 
analysis technology is widely used. The GOSemSim software suite 
was used to estimate the GO semantic similarity of important genes 
(25) The ggplot toolkit was used to graphically display the results of 
the functional correlation studies, aiming to uncover the correlation 
between functionally linked genes. Finally, the software package R-
Circos (26) 
2.7 Gene set enrichment analysis 

GSEA (27) The first step was to arrange the logFC values of the 
genes in descending order. Subsequently, we assessed the clustering 
of all genes associated with the logFC values using the 
ClusterProfiler tool. In the GSEA, the key parameter values 
included seed setting based on 2022, 5000 times of calculations to 
ensure that each gene set contained at least 10 genes, and the upper 
limit of the number of genes in the gene set was set to 500. The BH 
method was adopted for correction. We derived from the Molecular 
Signatures Database (MSigDB) (28) The criterion for screening out 
a significant concentration was based on an adjusted p-value of < 
0.05 and a false discovery rate values (q-value) of < 0.25. The BH 
method was the adopted p-value adjustment strategy. 
2.8 Gene set variation analysis 

GSVA (29) We used various methods to investigate whether a 
concentration phenomenon existed in different samples. We 
successfully obtained the gene combination “h.all.v7.4. 
symbols.gmt.” Based  on  the  in-depth  mining  of  GMT  
information in the MSigDB database, we performed a 
comprehensive GSVA on each subgroup in Dataset A, aiming to 
reveal the differentiated performance of their functions. The 
screening criteria showed clear enrichment p-value < 0.05. 
2.9 Immune infiltration analysis 

We employed the single-sample GSEA (ssGSEA) method (30) 
to measure the comparative prevalence of various immune-cell 
infiltrates. We identified and labeled various types of permeable 
immune cells, such as T cells with CD8 + markers, dendritic cells, 
macrophages, regulatory T cells (Tregs), and other subtypes of 
human immune cells. The enrichment index calculated using 
ssGSEA revealed a comparison of the infiltration levels of various 
immune cells in each sample. The ssGSEA method implemented in 
the GSVA toolkit of the R language was used to quantitatively 
describe the content of various types of immune cells present within 
individual samples. Box plots revealed the difference in the 
infiltrating abundance of 28 immune cells between the high- and 
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low-risk logistic regression score groups in the GSE45603 dataset. 
Furthermore, we analyzed the gene expression profiles in the 
GSE45603 dataset, explored the association between immune cells 
with significantly different risk scores and key genes in the logistic 
regression model, and constructed a scatter plot using the ggplot2 
package of R to reveal this association. 
2.10 Regulatory network analysis of key 
genes 

The public comparative toxicogenomics database (CTD) (31) To  
enhance the comprehension of health-related human data, we used the 
CTD to forecast possible pharmaceuticals or small molecular 
substances that could engage with pivotal genes, applying a 
“Reference Count” greater than 2 as the filter criterion for identifying 
messenger RNA (mRNA)-drug interaction pairs. The Cytoscape tool 
was used to depict the mRNA-drug interaction network. 

ENCORI database (32) the relationship between RNA binding 
proteins (RBP)-non-coding (ncRNA) and RBP-mRNA was inferred 
from CLIP-seq and decompotome sequencing (for plants) data 
extraction, providing various visualization tools for examining 
miRNA targets. The ENCORI database was employed to forecast 
the miRNAs that engage with essential genes, and the mRNA­

miRNA interaction pairs were filtered based on the criterion of 
pancancerNum exceeding 14. Cytoscape was used to depict the 
mRNA-miRNA interaction network. 

Additionally, we used the EnCORI database to predict RBPs 
that interact with important genes and used ClusterNum > 24 as a 
screening criterion to select mRNA-RBP interaction pairs. The 
Cytoscape tool was used to depict the network architecture of the 
mRNA-RBP interactions. 

Using the CHIPBase database (version 3.0) (33) (https:// 
rna.sysu.edu.cn/chipbase/), after ChIP - seq analysis of DNA-
binding proteins, we detected thousands of base-binding motifs 
along with their respective interaction locations, revealing the 
regulatory links between millions of transcription factors (TFs) 
and genes. As a criterion for screening mRNA-TF interaction pairs, 
the count of TF binding to the key gene observed was required to be 
zero. If the total number of samples collected in the upstream and 
downstream of the gene exceeds ten, this condition is regarded as a 
necessary element in the screening. Cytoscape was used to visualize 
the interaction network between mRNA and TFs. 
2.11 Statistical analysis 

All data manipulations and evaluations were conducted using 
the R programming language (version 4.2.2). Continuous data were 
presented as means and standard deviations. The Wilcoxon signed-
rank test was used to compare the two groups. The Kruskal–Wallis 
test is suitable for the controlled analysis of three or more groups. 
Frontiers in Endocrinology 05 
Spearman rank correlation coefficients were used for data analysis 
unless otherwise specified. The p-values of all statistical analyses 
were bidirectional, and p-values < 0.05 were considered 
statistically significant. 
3 Results 

3.1 Technology roadmap 

The overall workflow of this study is illustrated in Figure 1. 
3.2 Data preprocessing 

In the first step, the Surrogate Variable Analysis toolkit of the R 
language was used to perform variable selection on the GSE45603 
dataset, and the filtered GSE45603 was generated. Using box plots 
and principal component analysis charts, the datasets from the pre­
and post-stage screening were then compared and analyzed 
(Figures 2A–D). Box plot and principal component analysis 
showed that batch-related effects among the samples in the 
GSE45603 dataset were largely resolved after excluding the 
batch factor. 
3.3 Differential expression analysis of genes 
related to external body 

The limma toolkit was used to conduct an in-depth comparative 
analysis of the information in the GSE45603 dataset to investigate 
the variations in gene transcription levels between different 
categories (PPD/Control) in the PPD dataset. The aim is to 
identify genes with altered expression (DEGs) among the distinct 
classifications (PPD/Control). Dataset GSE45603 comprises 11,819 
genes, with 966 exhibiting differential expression based on the 
criteria of | logFC | > 0 and p-value < 0.05. Within this subset, 
578 genes were upregulated in the PPD group (the control group 
showed reduced expression with positive logFC values), and 388 
genes were downregulated in the PPD group (the control group 
showed increased expression with negative logFC values). 

To identify ERDEGs, we filtered dataset GSE45603 for DEGs with | 
logFC | > 0 and a p-value < 0.05 and intersected these with extracellular 
vesicle-related ERGs to yield 44 ERDEGs (Supplementary Table S2). A 
Venn diagram illustrating this process is shown in Figure 3A. 
Difference analysis results for dataset GSE45603 are displayed in a 
volcano plot (Figure 3B). The expression differences of 44 ERDEGs 
genes in each category (PPD/Control) of dataset GSE45603 were 
explored through the information revealed by the Venn map, and 
the corresponding heat map was drawn using the PheatMap package of 
the R language, thus visually displaying the detailed information of 
these differential expressions (Figure 3C). 
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3.4 Functional enrichment analysis (GO) 
and pathway enrichment analysis (KEGG) 

After the GO richness analysis, we explored the correlation 
between the 44 ERDEGs and A considering BP, CC, MF, and 
specific biological pathways. Forty-four ERDEG indicators were 
used for GO enrichment analysis, and the results are presented in 
Supplementary Table S2 (GO section). The 44 ERDEGs were 
mainly involved in translation control, processing of non-coding 
RNA, formation of ribonucleoprotein complexes, proteasome­

mediated protein degradation, and positive regulation of 
translation. They play a key role in cellular processes, such as 
focal adhesion, cell-matrix interactions, ribosome activity, vesicles 
formed by endocytosis, and ribosomes in the cytoplasm and exhibit 
other functional features, such as ribosome composition, GTPase 
activity, binding to rRNA, binding to GDP, and threonine-type 
endopeptidase activity. KEGG enrichment analysis of 44 ERDEGs 
revealed the remarkable richness of these ERDEGs in the 
coronavirus disease-COVID-19 and ribosomal KEGG pathways. 
Using a graphical format, we demonstrated the effectiveness of GO 
functional enrichment analysis (Figure 4A) and bubble diagrams 
(Figure 4B). We constructed a BP network diagram (Figure 4C), CC 
(Figures 4D, E), and KEGG (Figure 4F). The functional network of 
GO genes was drawn according to enrichment analysis. These 
tracks indicated the relevant molecules and their corresponding 
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annotation entries. With the expansion of the node size, the number 
of molecules involved in the entries under it increases accordingly. 
3.5 Screening of key genes 

To refine the selection of pivotal genes, we initially applied 
logistic regression analysis, which identified 44 ERDEGs (p < 0.05), 
leading to the final retention of 31 ERDEGs (Supplementary Table 
S3). Subsequently, we used the random forest algorithm to analyze 
the expression of 31 ERDEGs in the PPD/control group in the 
GSE45603 dataset. The initial sample size was set to 234, and the 
number of decision algorithm models was set to 500. The error rates 
of the algorithm models were plotted over time (Figure 5A). The 
study revealed that the observed error reached its lowest point and 
stabilized when the number of decision trees reached approximately 
300. Subsequently, we plotted a graph that measured the Gini index 
of reduction. During screening for important genes, 31 ERDEG were 
identified (Figure 5B). The median reduction in the Gini coefficient is 
referred to as the MeandecreaseGini coefficient. The purity of a node 
was measured using the Gini index. The degree of the Gini coefficient 
increases, and the degree of purity is correspondingly reduced, 
suggesting  that  more  mixed  components  are  present.  
Meandecreasegini represents the average reduction in impurities in 
the variable separation nodes of all trees. Larger mean and decreased 
 FIGURE 1

Technology roadmap. 
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Gini values indicate that the genes are critical for our grouping (PPD/ 
Control), suggesting their significant impact on the diagnostic 
accuracy of GSE45603. Subsequently, we adopted a five-time ten­
fold cross strategy for validation and plotted the validation error to 
determine the optimal number of genes (Figure 5C). After image 
analysis, the error curve reached its lowest point when the gene count 
was 31. Based on this, the Meandecreasegini index was integrated to 
select key genes and conduct in-depth research. The final results 
showed that after intelligent algorithm screening, 31 ERDEG factors 
with a significant impact on the diagnosis of PPD were identified 
(Figures 5B, C). The factors were rearranged according to their 
magnitude of influence as follows: rps3, FAH, HLA-B, PARK7, 
HNRNPA2B1, NDST1, EIF6, AKR1B1, KHSRP, TPP2, TPRG1L, 
PSMB6, RHBDD1, SAT2, GNB1, CD59, RPS16, PLXNB2, SCARB1, 
EXOSC1, RAB22A, TNFSF10, CFL1, FBl, RALA, RPL24, and RPS4X. 
This ranking reflects the relative importance of each factor during 
the diagnosis. 

Subsequently, 31 ERDEG indicators were selected using the 
random forest method, and LASSO regression analysis was 
performed to establish the LASSO risk model. By constructing the 
LASSO regression model diagram (Figure 5D) and LASSO variable 
trajectory diagram (Figure 5E), a graphical representation of the 
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results of the LASSO regression analysis was realized. The study 
revealed that the LASSO risk assessment model comprised 10 
ERDEGs elements: TPP2, AKR1B1, CD59, PARK7, PLXNB2, 
HLA-B, FAH, NDST1, SCARB1, and HNRNPA2B1. These specific 
sequences were selected as the focus of the study in a follow-up 
inquiry, and a forest pattern map showing the transitions of these 
sequences was created (Figure 5F). 
3.6 Key genes to construct the diagnostic 
logistic regression model 

To obtain the diagnostic model for PPD, we used 10 key genes 
(TPP2, AKR1B1, CD59, PARK7, PLXNB2, HLA-B, FAH, NDST1, 
SCARB1, and HNRNPA2B1) to calculate the relative contribution 
weights of these genes to the risk of diseases. Subsequently, using 
the RiskScore formula, the expression and coefficients of the 10 
major genes in the GSE45603 dataset were included in the 
calculation to determine the RiskScore value for each sample. 
Then, according to the medium-risk level, the PPD group was 
subdivided into a lower-risk group and a higher-risk group. The risk 
assessment formula was as follows: 
E 2 FIGUR

Data preprocessing. (A) Boxplot of gene expression distribution for GSE45603 dataset before batch effect correction. (B) Boxplot of improved inter-
sample agreement after correction. (C) principal component analysis (PCA) plot of GSE45603 dataset before correction to reflect sample variation 
due to batch effect. (D) The corrected principal component analysis chart shows that the batture-related variation is effectively reduced, and the 
postpartum depression (PPD) group is more clearly distinguished from the control group. Light blue represents the control group and light red 
represents the PPD group. PPD, postpartum depression; PCA, principal component analysis; GSE45603, a gene-expression data set from the Gene 
Expression Omnibus. 
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RiskScore  = − 10:9487  ∗ C + 4:5673  ∗ D + 0:4049  ∗ E + 1:8916  ∗ F 

− 2:1980  ∗ G − 2:0310  ∗ H − 0:4907  ∗ I − 2:0357  ∗ J 

− 1:1504  ∗ K − 0:9922  ∗ L 

We then drew a nomogram (Figure 6A) to show the 
connections between the 10 key genes, and the expression of 
TPP2 contributed the most in the multivariate logistic model. 

Calibration analyses were performed and calibration charts 
were prepared to evaluate the precision and discriminative power 
of the multiple logistic regression model. The ability of the model to 
predict the actual outcome was analyzed by examining the 
alignment of the observed and estimated probabilities in the 
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graph for different scenarios (Figure 6B). The calibration plot of 
the multiple logistic regression model revealed that the calibration 
curve indicated by the dotted line aligned with the main diagonal of 
the perfect model, indicating that the model was accurate 
and discriminative. 

Furthermore, using dataset GSE45603, we implemented DCA 
to evaluate the performance of the multivariate logic diagnostic 
model for PPD (Figure 6C). The results showed that the linear 
stability of the model was superior to those of the overall and 
ineffective models within certain limits, and the net benefit was 
more significant, indicating the superiority of the model in 
diagnostic performance. 
 frontiersin.or
FIGURE 3 

Differential expression analysis of genes related to the external body. (A) Venn diagram of differentially expressed genes (DEGs) and exosome-related 
genes (ERGs) in dataset GSE45603. (B) Volcano plot of differentially expressed genes analysis between different groups (postpartum (PPD)/Control) 
of dataset GSE45603. (C) Expression heatmap of exosome related differentially expressed genes (ERDEGs) between different groups (PPD/Control) of 
dataset GSE45603. Light red represents the PPD group, and light blue represents the control group. Red represents high expression, and blue 
represents low expression, respectively, on the heat map. PPD, postpartum depression; DEGs, Differentially expressed genes; ERGs, Exosome-related 
genes; ERDEGs, Exosome related differentially expressed genes. 
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Finally, using the pROC package in R language software, we drew 
the ROC curve of the RiskScore index in dataset GSE45603 to 
evaluate the accuracy of the multiple logistic regression model in 
determining PPD. The multivariate Logistic model was constructed 
based on ten genes. The plot of the ROC curve indicated the high 
degree of accuracy of the multivariate logistic regression model for 
disease identification (Figure 6D, AUC = 0.942). 
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3.7 Validation of expression disparities and 
analysis of functional similarity among 
pivotal genes 

To confirm the disparities among the 10 pivotal genes (TPP2, 
AKR1B1, CD59, PARK7, PLXNB2, HLA-B, FAH, NDST1, SCARB1, 
and HNRNPA2B1) in different groups (PPD/Control) of dataset 
FIGURE 4 

GO enrichment analysis and KEGG enrichment analysis. (A) Bar graph of gene ontology (GO) enrichment analysis results of exosome-related 
differentially expressed genes (ERDEGs). (B). Bubble plot of GO enrichment analysis results of ERDEGs. The ordinate is GO terms. (C–E) Network 
diagram of GO enrichment analysis results of ERDEGs (C BP, D: CC, E: MF). In the network diagram (C–E), red dots represent specific pathways, and 
blue dots represent specific genes. (F) Network diagram of KEGG enrichment analysis results of ERDEGs. The screening criteria for GO enrichment 
items were p value< 0.05 and false discovery rate value (q.value) < 0.25, and the Benjamini-Hochberg (BH) method was used for p-value correction. 
GO, Gene Ontology; BP, Biological process; CC, Cellular component; MF, Molecular function; KEGG, Kyoto encyclopedia of genes and genomes; 
ERDEGs, Exosome-related differentially expressed genes; BH, Benjamini-Hochberg. 
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GSE45603. Using the transcriptional profiles of these 10 crucial 
genes across various cohorts (PPD/control) of dataset GSE45603, 
the Wilcoxon rank-sum test was used to analyze the expression 
differences of the 10 key genes in different groups (PPD/Control) of 
dataset GSE45603, and the expression difference analysis results 
were displayed by grouping violin plots (Figure 7A). According to 
the grouped violin plot, two pivotal genes (PARK7 and 
HNRNPA2B1) exhibited strong statistical significance (p < 0.01). 

Subsequently, we conducted a correlation analysis and 
generated a correlation heatmap for the expression levels of 10 
crucial genes within dataset GSE45603 (Figure 7B). This analysis 
revealed that AKR1B1 and PARK7 exhibited the highest positive 
correlation (r = 0.47, p < 0.05), whereas HLA-B and PARK7 showed 
the most significant negative correlation (r = -0.56, p < 0.05). 

To determine the diagnostic performance of 10 key genes 
(TPP2, AKR1B1, CD59, PARK7, PLXNB2, HLA-B, FAH, NDST1, 
SCARB1, and HNRNPA2B1) for PPD in dataset GSE45603, we drew 
the ROC curves of 10 key genes in the GSE45603 disease control 
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group (PPD/Control); the results are presented in Figures 7C–G). 
According to the ROC curve, in dataset GSE45603, TPP2 (AUC = 
0.667, Figure 7C), CD59 (AUC = 0.674, Figure 7D), PLXNB 2 (AUC 
= 0.662, Figure 7E), HLA-B (AUC = 0.697, Figure 7E), NDST1 
(AUC = 0.690, Figure 7F), SCARB1 (AUC = 0.685, Figure 7G) had 
low accuracy in PPD diagnosis. AKR1B1 (AUC = 0.728, Figure 7C), 
PARK7 (AUC = 0.745, Figure 7D), FAH (AUC = 0.713, Figure 7F), 
and HNRNPA2B1 (AUC = 0.745, Figure 7G) accurately 
diagnosed PPD. 

To explore the functional relevance of the 10 core genes, we 
used the GOSemSim toolkit to estimate the GO semantic similarity 
of these genes in terms of BP, CC, and MF and then calculated their 
average geometric values at these three levels to obtain a 
comprehensive score. The similarity scores between each core 
gene and other core genes were averaged and ranked in 
descending order. The data from the functional similarity analysis 
are presented as box plots using the ggplot toolkit (Figure 7H). The 
graph reveals a high degree of functional similarity between PARK7 
FIGURE 5 

Screening of key genes. (A) Plot of model training error of random forest algorithm. (B) MeanDecreaseGini scatter plot of ERDEGs (in descending 
MeanDecreaseGini order). (C) Cross-validation error plot. (D) Diagnostic model plot of Least absolute shrinkage and selection operator (LASSO) 
regression model. (E) Variable trajectory plot of LASSO regression model. (F) Forest plot of key genes in LASSO regression model. ERDEGs, 
Exosome-related differentially expressed genes; LASSO, Least absolute shrinkage and selection operator. 
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and several core genes. Finally, we constructed a chromosome 
mapping chart (Figure 7I), showing the distribution of 10 major 
loci at the chromosomal level. 
3.8 Analysis of logistic risk score for the 
high and low group GSEA enrichment 

To investigate the correlation between the expression levels of 
genes in GSE45603 and the high or low-risk classifications of the 
group PPD, we used the GSEA method to analyze the expression of 
11,819 genes in different high- and low-risk ratings (low or high) of 
the PPD group and the biological processes involved. The criteria for 
significant enrichment were set at a p-value adj < 0.05 and a false 
discovery rate value (q value) < 0.25. Significantly enriched pathways 
screened using GSE45603 are depicted using a mountain plot 
(Figure 8A). Finally, the relevant genes in various groups with low 
or high GSE45603 values showed significant clustering in the 
phospholipid biosynthesis pathway (Figure 8B), mitochondrial 
translation (Figure 8C), valine, leucine, and isoleucine degradation 
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(Figure 8D), respiratory electron transport (Figure 8E), and other 
pathways (Figures 8B–E, Supplementary Table S3). 
3.9 GSVA based on logistic risk-score 
grouping 

This study aimed to investigate the difference between 
H.all.v7.4. symbols. For the gmt gene set in dataset GSE45603 
between the low- and high-risk-score groups of patients with PPD, 
we performed GSVA on all genes in dataset GSE45603. 

According to the GSVA results, the differential expression of 
five  pathways  with  significant  enrichment  (p  <  0.05)  
(Supplementary Table S4) between the high- and low-risk score 
groups (low or high) was analyzed and visualized using a heat map 
(Figure 9A) and a group comparison map (Figure 9B). Four 
pathways showed statistical significance in distinguishing between 
the high- and low-risk-score groups (p-value < 0.05) after analysis. 
The pathways included MYC target V2, pancreatic beta cells, 
unfolded protein response, and oxidative phosphorylation. 
FIGURE 6 

Key genes to construct diagnostic logistic regression model. (A) Nomogram of key genes in the diagnostic multivariate logistic model based on 
dataset GSE45603. (B) Calibration nomogram of key genes for the diagnostic multivariate logistic model based on the GSE45603 dataset. 
(C) Decision curve analysis (DCA) plot of the key genes of the diagnostic multivariate logistic model based on dataset GSE45603. (D) Diagnostic 
receiver operating characteristic curve (ROC) curve of the risk score of the diagnostic multivariate logistic model (Riskscore) in data set GSE45603. 
The multivariate Logistic model was constructed based on ten genes. The ordinate of the DCA plot is the net benefit, and the abscissa is the 
probability threshold or threshold probability. The closer the area under the curve (AUC) is to 1 on the ROC curve, the better the diagnostic 
performance. When the AUC was above 0.9, the accuracy was high. DCA, Decision curve analysis; ROC, Receiver operating characteristic curve; 
AUC, Area under the curve; PPD, Postpartum depression. 
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FIGURE 7 

Expression difference verification and functional similarity analysis of key genes. (A) Group comparison diagram of key gene expression differences 
between different groups of postpartum depression (PPD)/Control) in dataset GSE45603. (B) Heat map of correlation between key genes in dataset 
GSE45603. (C–G). Key genes: TPP2 (C), AKR1B1 (C), CD59 (D), PARK7 (D), PLXNB2 (E), HLA-B (E), FAH (F), NDST1 (F), SCARB1 (G), ROC curve of 
HNRNPA2B1 (G) between different groups (PPD/Control) in dataset GSE45603. (H). Plot of functional similarity of key genes. (I) Chromosomal 
mapping of key genes. * is equivalent to a p-value < 0.05, which is statistically significant; ** is equivalent to a p-value < 0.01 and is highly significant. 
The closer the area under the curve (AUC) in the receiver operating characteristic (ROC) curve is to 1, the better the diagnostic effect. When AUC 
was between 0.5 and 0.7, the accuracy was low. When AUC was between 0.7 and 0.9, it had a certain accuracy. Correlation intensity is 0.5 or lessr< 
0.8: moderate; 0.3 or lessr< 0.5: low correlation. DCA, Decision curve analysis; ROC, Receiver operating characteristic curve; AUC, Area under the 
curve; PPD, Postpartum depression. 
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3.10 ssGSEA immune infiltration analysis 
based on logistic risk score grouping 

We used ssGSEA to quantify the infiltration levels of 28 
immune cell types in low- and high-risk patient subsets from 
dataset GSE45603. The Mann–Whitney U test was conducted to 
evaluate the disparities in the accumulation of the 28 immune cell 
types between the two risk stratifications (high and low). The results 
are presented as a group comparison plot (Figure 10A). The survey 
discovered that for dataset GSE45603, immune cells, immature B 
cells, and Tregs, the infiltrating abundance of T follicular helper 
(Tfh) cells showed significant discrimination among different risk 
groups (p < 0.05). 

Next, we used the “Pearson” method to calculate the eosinophil, 
plasmacytoid dendritic cell, and immune cell counts in low- or 
high-risk PPD samples in the GSE45603 dataset. The degree of 
enrichment of eosinophils and plasmacytoid dendritic cells was 
significantly correlated with the expression levels of 10 key genes 
(TPP2, AKR1B1, CD59, PARK7, PLXNB2, HLA-B, FAH, NDST1, 
SCARB1 and HNRNPA2B1), and this finding was visualized by a 
correlation heatmap (Figures 10B, C). Samples from the low-risk 
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group (low) in the GSE45603 dataset showed a significant positive 
correlation between eosinophils and NDST1 expression in immune 
cells (r = 0.568, p < 0.05). In an immune cell study of high-risk 
eosinophil samples, a significant positive correlation with the index 
NDST1 was observed (r = 0.822, p < 0.05). 
3.11 Regulatory network analysis of key 
genes 

We used the CTD database to predict the regulatory network of 
10 key genes in order to conduct relevant targeted regulation in the 
future (Figure 11). 
4 Discussion 

Symptoms such as emotional depression, lack of interest or 
satisfaction, and reduced vitality form a core symptom group that 
co-occur with other psychological manifestations and is classified as 
a syndrome of mental illness and somatic symptoms. This condition 
FIGURE 8 

GSEA based on high and low logistic risk score groups. (A), Gene set enrichment analysis (GSEA) of genes between different groups (Low/High) in 
dataset GSE45603 showed the main four biological characteristics of mountain plots. B-e. The genes in dataset GSE45603 were significantly 
enriched in the REACTOME_PHOSPHOLIPID_METABOLISM (B), REACTOME_MITOCHONDRIAL_TRANSLATION (C), KEGG_VALINE_LEUCINE_AND_ 
ISOLEUCINE_DEGRADATION (D), and REACTOME_RESPIRATORY_ELECTRON_TRANSPORT (E) pathways. The screening criteria of GSEA were p-
value adj < 0.05 and false-discovery rate value (q value) < 0.25, and the Benjamini-Hochberg method was used for p-value correction. GSEA, Gene 
set enrichment analysis; PPD, Postpartum depression; BH, Benjamini-Hochberg. 
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usually manifests within 4–6 weeks (34). PPD following childbirth 
adversely affects mothers, increases suicide risk, and profoundly 
influences the health and growth of babies and children. This 
includes a heightened risk of infant mortality, stunted growth and 
development in children, and possible autism spectrum disorder 
escalation (35). Current diagnostic methods for PPD are limited 
and  often  subjective,  relying  heavily  on  standardized  
questionnaires, including scales and clinical evaluations (36). 
These methods are time-consuming and prone to bias, leading to 
potential misdiagnosis and delayed treatment. Moreover, treatment 
options for PPD, including pharmacotherapy and psychotherapy, 
are not always effective and can have side effects, further 
emphasizing the need for more precise diagnostic tools and 
targeted therapies (37). Biomarkers can objectively measure and 
evaluate biological processes, drug reaction indices, pathological 
processes, disease diagnosis, treatment monitoring, and prognostic 
assessments, which play an important role (38). Identifying and 
measuring biomarkers associated with PPD can improve the 
accuracy and timeliness of diagnosis for effective management 
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and treatment of the disease (39). Biomarkers in the diagnosis 
and treatment of PPD have important application value in 
monitoring; however, the underlying molecular mechanism 
remains unclear. Further studies are needed to determine the 
biomarkers and develop effective diagnosis and treatment 
strategies and precision medical support for PPD. 

Exosomes are a subtype of extracellular vesicles that possess a 
dual lipid membrane architecture, function as reliable data 
transporters, and facilitate unrestricted movement between the 
peripheral blood flow and the central nervous system. According 
to the definition of MISEV, “exosome” refers to EVs released from 
the interior of the cell through multivesicular bodies (MVBS). Its 
significance extends beyond bodily functions and encompasses a 
multitude of diseases (40). Furthermore, the body emits bioactive 
elements such as nucleic acids and proteins in response to 
alterations in the central nervous system operations, leading to a 
corresponding dynamic adaptation (41). Several studies have 
established the crucial functions of exosomes in the development 
and progression of depression. For instance, external secretion of 
FIGURE 9 

Gene set variation analysis based on high and low logistic risk score groups. (A, B) Complex numerical heatmap (A) and group comparison boxplot 
(B) of gene set variation analysis results in the dataset GSE45603 risk score high and low groups (Low/High). ns is equivalent to a p-value ≥ 0.05, 
which is not significant; * is equivalent to a p-value < 0.05 and is significant. Light blue represents the low-risk group (Low), and light red represents 
the high-risk group (High). The screening criteria for gene set variation analysis (GSVA) was p value < 0.05, the p-value correction method was p 
value < 0.05, and the p-value correction method was Benjamini-Hochberg (BH) method. GSVA, Gene set variation analysis. BH, Benjamini-Hochberg 
(BH). GSVA, Gene set variation analysis. BH, Benjamini-Hochberg. 
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the body by depression can result in depressive behaviors in mice, a 
process that encompasses the miR-139-5p regulation of neural 
functions (42). However, research on whether exosomes can be 
used as specific diagnostic biomarkers for PPD is lacking. This will 
help to explore further relevant therapeutic targets for postpartum 
depressive disorders, particularly PPD. This highlights the urgent 
need for extensive validation to enhance our understanding of the 
role of exosomes in PPD. 

Analysis of functional annotation enrichment encompassing the 
GO and KEGG pathways provided a comprehensive overview of the 
BPs, CCs, and MFs associated with the identified ERDEGs. Notably, 
the enriched GO terms included those related to synaptic signaling, 
hormonal changes, and inflammatory responses, which aligns with 
previous findings suggesting that neurotransmitter imbalances, 
hormonal fluctuations post-delivery, and immune system 
dysregulation could contribute to PPD pathophysiology (43). 
Furthermore,  KEGG  pathway  analysis  emphasized  the  
significance of pathways involving neuroactive ligand-receptor 
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and cytokine-cytokine receptor interactions, supporting the 
hypothesis that altered communication within neural circuits and 
between immune signaling molecules may be crucial in PPD 
development (44). 

The identification of key genes through logistic regression, 
random forest, and LASSO regression analyses underscores the 
robustness of our approach in identifying critical molecular players 
in PPD. The selection of 10 key genes (TPP2, AKR1B1, CD59, 
PARK7,  PLXNB2, HLA-B,  FAH, NDST1, SCARB1,  and
HNRNPA2B1) from the initial 44 ERDEGs highlighted their 
potential as biomarkers for PPD. Because both PARK7 and 
HNRNPA2B1 showed better diagnostic performance than the 
other genes in the area under the ROC curve (AUC) assessment 
(AUC = 0.745) and also had a strong influence in terms of statistical 
significance (P value), In addition, there is sufficient biological 
evidence in the postpartum depression (PPD) literature to 
support its importance in the disease mechanism, especially its 
key role in neuroprotection and cell signaling. So PARK7 and 
FIGURE 10 

Single-sample gene set enrichment analysis (ssGSEA) immune infiltration analysis based on high and low Logistic risk score groups. (A) Group 
comparison of ssGSEA immune infiltration analysis results between low/high-risk groups of patients with PPD in dataset GSE45603. (B) Heat map of 
correlation between immune cells with significant differences and key genes in the group comparison plot (A) of PPD low-risk group (Low) samples 
in the GSE45603 dataset. (C) Heat map of correlation between immune cells with significant differences and key genes in group comparison 
map (A) in PPD high-risk group (High) samples of GSE45603 data set. ns is equivalent to p value ≥ 0.05, which is not significant. * is equivalent to a 
p-value < 0.05, which is significant. Light blue represents the low-risk group (Low), and light red represents the high-risk group (High). Red is a 
positive correlation, blue is a negative correlation, and the depth of the color represents the strength of the correlation. PPD, Postpartum depression. 
ssGSEA, Single-sample gene-set enrichment analysis. 
frontiersin.org 

https://doi.org/10.3389/fendo.2025.1542327
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2025.1542327 
HNRNPA2B1 were selected as the most important genes. PARK7 
(Parkinsonism-associated deglycase), also known as DJ-1, is a 
versatile protein that participates in response to oxidative stress, 
regulation of mitochondrial activities, and safeguarding of neural 
cells. The altered regulation of this process has been associated with 
a range of neurodegenerative conditions, such as Parkinson’s 
disease and depression (45). Notably, PARK7, previously linked 
to oxidative stress in Parkinson’s disease, here correlated strongly 
with PPD risk, suggesting its role may extend to perinatal mood 
disorders via exosome-mediated pathways. HNRNPA2B1 is 
involved in RNA processing, transport, and stability. The 
dysregulation of this gene has been associated with various 
neurodegenerative and neuropsychiatric disorders (46). 
Subsequent validation of these genes through differential 
expression and ROC curve analyses confirmed their diagnostic 
utility. Notably, PARK7 and HNRNPA2B1 showed the highest 
statistical significance, suggesting their prominent roles in PPD. 
AKR1B1 is involved in the polyol pathway that converts glucose to 
sorbitol and has been implicated in oxidative stress and 
inflammatory responses, both of which are relevant to the 
pathophysiology of PPD (47). Elevated AKR1B1 expression may 
exacerbate oxidative stress and contribute to neuronal damage and 
mood disorders. Our findings indicated that AKR1B1 was 
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significantly upregulated in patients with PPD, consistent with its 
proposed role in neuroinflammation and oxidative stress. 
Correlation analysis further revealed the intricate relationships 
among these key genes, with AKR1B1 and PARK7 showing the 
strongest positive correlations. These findings validate the 
diagnostic capability of these critical genes and provide a 
foundation for future functional studies to elucidate their roles 
in PPD. 

The diagnostic logistic regression model using the 10 pivotal 
genes exhibited robust diagnostic efficacy for PPD, as evidenced by 
an AUC of 0.942. Calibration curve analysis confirmed the 
reliability of the model, with the predicted probabilities closely 
aligned with the actual outcomes. DCA confirmed the practical 
clinical value of the model, showing a high net benefit across a range 
of threshold probabilities. The nomogram provides a user-friendly 
tool for clinicians to perform risk assessments derived from the 
transcriptional activity of pivotal genes. These findings highlight the 
potential of the logistic regression model as a dependable diagnostic 
method for PPD, contributing to the timely identification and 
management of the condition. This multi-analyte approach 
significantly outperforms single biomarkers, aligning with Rathi 
who advocated combinatorial signatures for complex disorders like 
PPD (39). 
FIGURE 11 

Regulatory network analysis of key genes. (A) Diagram of microRNA (mRNA)-drugs interaction network of key genes, pink oval blocks are mrnas and 
yellow square blocks are drugs. (B) mRNA-mirna interaction network diagram of key genes, pink oval block is mRNA, orange diamond block is 
miRNA. (C) mRNA- RNA binding protein (RBP) interaction network diagram of key genes. The pink oval block represents mRNA, and the blue 
polygon block represents RBP. (D) mRNA-RBP interaction network diagram of key genes. The pink oval blocks are mrnas, and purple diamonds are 
transcription factors (TFs). TF, Transcription factors; RBP, RNA binding protein; TFS, transcription factors. 
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GSEA indicated that genes within the high- and low-risk 
categories were prominently involved in pathways, such as 
phospholipid metabolism and mitochondrial translation. 
Phospholipid metabolism is essential for maintaining the integrity 
of cellular membranes and signaling, which is fundamental for the 
proper functioning of neurons  and  synaptic  plasticity.  
Dysregulation of this pathway may contribute to the development 
of PPD by influencing neuronal communication and brain function. 
Mitochondrial translation is critical for the production of 
mitochondrial proteins that are crucial for energy production and 
metabolism. Mitochondrial dysfunction is associated with various 
neuropsychiatric conditions, including depression, indicating that 
mitochondrial malfunction may be involved in PPD pathogenesis 
(48). GSVA revealed several notable pathways, including those 
related to MYC targets, pancreatic beta cells, the unfolded protein 
response, and oxidative phosphorylation. The MYC pathway is 
involved in controlling cell growth, division, and programmed cell 
death. Its dysregulation is associated with various mental health 
conditions (49). The role of pancreatic beta cells in PPD is 
intriguing, hinting at a possible connection between metabolic 
activity and mood modulation, which may be mediated through 
insulin signaling pathways (50). The unfolded protein response is a 
biological response activated by the endoplasmic reticulum under 
stress and is linked to neuroinflammation and neurodegeneration. 
These processes are considered relevant to the onset of depressive 
symptoms (51). Oxidative phosphorylation is the main process 
through which the mitochondria is involved in the synthesis of 
adenosine triphosphate), the cell’s main energy provider. Any 
disruption in this process can result in diminished energy levels 
within neurons, which has been implicated in the manifestation of 
depressive symptoms (52). The discovery of these molecular 
pathways offers more profound insights into the underlying 
mechanisms of PPD and pinpoints areas for potential therapeutic 
intervention. The substantial enrichment of these pathways in both 
high- and low-risk groups suggests that they could function as 
indicators for diagnosing and predicting the outcome of PPD, 
contributing to the advancement of targeted and effective 
treatment approaches. 

Evaluating immune cell penetration using ssGSEA revealed 
notable variations in the levels of immature B cells, Tregs, and 
Tfh cells between individuals classified as high and low risk for PPD. 
Immature B cells are pivotal in the adaptive immune response and 
serve as precursors of mature B cells that produce antibodies. 
Abnormalities in B-cell development and function have been 
associated with various mental health conditions, indicating a 
possible connection to PPD (53). Tregs play pivotal roles in 
maintaining immune homeostasis and preventing autoimmune 
responses. The altered abundance of Tregs may reflect a 
compromised ability to regulate immune responses, potentially 
leading to increased neuroinflammation and mood disturbances 
(54). Tfh cells are crucial for forming germinal centers and 
producing highly affine antibodies. These cells also modulate 
immune responses and have been linked to the development of 
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autoimmune disorders and persistent inflammation (55). The 
increased levels of immature B cells and Tfh cells observed in 
high-risk populations suggest persistent immune activation or 
compromised immune responses, which may exacerbate PPD 
symptoms, highlighting the role of the immune system in PPD 
and identifying potential therapeutic targets. Our observation of 
altered immune infiltration extends findings by Konstantinou et al, 
who proposed immune-inflammatory pathways in PPD. Here, 
ERGs may modulate this response via exosomes, offering a 
mechanistic link not previously explored. More targeted and 
effective treatments can be developed by comprehending the 
precise functions and mechanisms of these immune cells in 
relation to PPD. Additionally, incorporating immune cell 
profiling into diagnostic models could improve the accuracy of 
PPD diagnosis and allow personalized treatment plans. Future 
research should delve into the specific mechanisms by which 
these immune cells impact PPD and investigate their potential as 
biomarkers for early detection and intervention. 

Although our study demonstrated good predictive performance 
and high reliability and stability of the results, the study had some 
limitations. Our findings are mainly based on bioinformatics analysis 
of publicly available transcriptome databases and have not yet 
included experimental validation such as in vitro or in vivo 
functional studies. We have fully recognized this limitation, and we 
plan to conduct further relevant experiments in the future to verify 
the biological role of the screened key genes in postpartum 
depression, so as to improve the translational value and reliability 
of the research conclusions. In this study, we screened and verified 
exosome-related gene features for PPD diagnosis by bioinformatics 
methods, and the diagnostic model showed high accuracy on the 
basis of existing samples. It should be pointed out that research is 
currently based on a single dataset (GSE45603), the sample size of this 
study is limited (43 cases in total), which is mainly limited by the 
accessibility of clinical data in public databases and ethical 
constraints, validation of independent external cohorts or clinical 
samples was not performed. Multiple algorithms and cross-validation 
have been used to improve the robustness of the results, but the 
limited sample size may still affect the extrapolation and power of the 
conclusions. Although we tried our best to correct for batch effects 
during the analysis, potential batch bias cannot be completely ruled 
out. In the future, the sample size and multi-center clinical validation 
will be further expanded to enhance the reliability and clinical 
application value of the research conclusions. 

In  summary, this  study, through in-depth bioinformatics 
exploration, reveals the possible functions of key cellular receptor 
agonists (ERGs) in PPD. The constructed diagnostic model 
demonstrated high accuracy, as evidenced by ROC curve analysis. 
By evaluating functional enrichment and immune penetration, we 
gained valuable insights into biological processes and the immune 
system. Despite the limitations, the study’s findings lay a promising 
foundation for future academic exploration and potential 
applications in medical practice, including the development of 
new diagnostic methods and therapies. 
frontiersin.org 

https://doi.org/10.3389/fendo.2025.1542327
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2025.1542327 
Data availability statement 

The original contributions presented in the study are included 
in the article/Supplementary Material. Further inquiries can be 
directed to the corresponding author. 
Author contributions 

JH: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Software, 
Validation, Visualization, Writing – original draft, Writing – 
review & editing. HC: Conceptualization, Formal analysis, 
Visualization, Writing – original draft. KD: Data curation, Formal 
analysis, Writing – original draft. SW: Data curation, Formal 
analysis, Writing – original draft. XW: Data curation, Writing – 
original draft. YL: Data curation, Writing – original draft. XQ: 
Conceptualization, Formal analysis, Funding acquisition, 
Supervision, Visualization, Writing – review & editing. 
Funding 

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was funded by 
the Youth Scientific Research Project of the Fifth Affiliated Hospital 
of Xinjiang Medical University (XYDWFY-ZR-202416) and 
Xinjiang  Uygur  Autonomous  Region  Natural  Science  
Foundation (2021D01C430). 
Frontiers in Endocrinology 18 
Conflict of interest 

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 
Generative AI statement 

The author(s) declare that no Generative AI was used in the 
creation of this manuscript. 
Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 
Supplementary material 

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fendo.2025. 
1542327/full#supplementary-material 
References 
1. O’Hara MW, McCabe JE. Postpartum depression: current status and future directions. 
Annu Rev Clin Psychol. (2013) 9:379–407. doi: 10.1146/annurev-clinpsy-050212-185612 

2. Slomian J, Honvo G, Emonts P, Reginster JY, Bruyère OA-O. Consequences 
of maternal postpartum depression: A systematic review of maternal and infant 
outcomes. Womens Health (Lond). (2019) 15:1745506519854864. doi: 10.1177/ 
1745506519854864 

3. Hahn-Holbrook J, Cornwell-Hinrichs T, Anaya I. Economic and health predictors 
of national postpartum depression prevalence: A systematic review, meta-analysis, and 
meta-regression of 291 studies from 56 countries. Front Psychiatry. (2017) 8:248. 
doi: 10.3389/fpsyt.2017.00248 

4. Mu TY, Li YH, Pan HF, Zhang L, Zha DH, Zhang CL, et al. Postpartum depressive 
mood (PDM) among Chinese women: a meta-analysis. Arch Womens Ment Health. 
(2019) 22:279–87. doi: 10.1007/s00737-018-0885-3 

5. Norhayati MN, Hazlina NH, Asrenee AR, Emilin WM. Magnitude and risk 
factors for postpartum symptoms: a literature review. J Affect Disord. (2015) 175:34–52. 
doi: 10.1016/j.jad.2014.12.041 
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