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Mathematical modeling of the
interaction between endocrine
systems and EEG signals
Wei Liu*

Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China
Introduction: The intricate interplay between endocrine systems and EEG signals

is pivotal for understanding and managing physiological and neurological health.

Traditional mathematical models often fail to capture the nonlinear dynamics,

feedback mechanisms, and cross-system interactions inherent in these

processes, limiting their applicability in clinical and research settings.

Methods: This study proposes a novel framework for modeling and analyzing the

interaction between endocrine regulatory systems and EEG signals, leveraging

advanced methodologies such as the Hormone Interaction Dynamics Network

(HIDN) and the Adaptive Hormonal Regulation Strategy (AHRS). HIDN integrates

graph-based neural architectures with recurrent dynamics to encapsulate the

spatialtemporal interdependencies among endocrine glands, hormones, and EEG

signal fluctuations. AHRS complements this by dynamically optimizing therapeutic

interventions using real-time feedback and patient-specific parameters, ensuring

adaptability to individual variability and external perturbations.

Results: The proposed model excels in scalability, precision, and robustness,

addressing challenges like sparse clinical data, temporal resolution, and multi-

hormonal regulation. Experimental validation demonstrates its efficacy in

predicting hormone dynamics, EEG signal patterns, and therapeutic outcomes

under varying conditions.

Discussion: This interdisciplinary approach bridges the gap between

computational modeling and practical healthcare applications, advancing our

understanding of endocrine-neurological interactions.
KEYWORDS

endocrine systems, EEG signals, nonlinear dynamics, adaptive regulation, hormonalmodeling
1 Introduction

The intricate interplay between the endocrine system and brain activity, as reflected in

EEG signals Tao et al. (1), is a critical area of research for understanding physiological and

pathological processes. This interaction not only provides insights into the neuroendocrine

regulation of cognition, mood, and behavior but also enables the development of diagnostic
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and therapeutic tools for conditions such as hormonal imbalances,

neurological disorders, and psychiatric diseases Cai et al. (2).

Traditional approaches to analyzing these interactions have been

limited in their ability to account for the nonlinear and dynamic

nature of neuroendocrine mechanisms. Consequently,

mathematical modeling has emerged as a promising framework

to integrate diverse physiological processes, allowing researchers to

decode complex feedback loops and predict system behaviors with

greater precision. This study area, therefore, holds immense

potential for advancing biomedical research and personalized

medicine Li et al. (3).

A clearer understanding of the interaction between the

endocrine system and brain activity is essential for advancing

both theoretical knowledge and clinical practice. The endocrine

system regulates a wide range of physiological functions—including

metabolism, stress response, and circadian rhythms—through

hormone release, which in turn influences brain function via

modulation of neural excitability and signal transmission Kamble

and Sengupta (4). Conversely, the brain exerts regulatory control

over hormonal activity through neuroendocrine pathways, such as

the hypothalamic-pituitary axes. Disruptions in this bidirectional

communication are implicated in a variety of neurological and

psychiatric disorders. Therefore, modeling these complex

interdependencies holds the potential to improve early diagnosis,

inform personalized treatment strategies, and enhance the efficacy

of therapeutic interventions Pepino et al. (5). By bridging the gap

between computational modeling and biological interpretation, our

work aims to shed light on these dynamics and contribute to a more

integrated understanding of human health.

Early approaches to mathematical modeling in this domain

relied heavily on symbolic AI and knowledgebased systems Shen

et al. (6). These models used differential equations and heuristic

rules to represent the physiological processes governing endocrine

systems and EEG signals. Techniques such as compartmental

modeling were employed to capture hormone secretion,

transport, and receptor interactions. Simultaneously, linear

models were used to analyze EEG signal dynamics. Despite

providing a structured framework and theoretical insights Song

et al. (7), these methods suffered from oversimplification and

limited accuracy in handling the inherent variability of biological

system. Their inability to incorporate stochastic effects and adapt to

real-time data further constrained their applicability, prompting the

need for more robust methodologies Wang et al. (8).

To address the limitations of symbolic approaches, researchers

turned to data-driven machine learning methods. These models

utilized statistical techniques and algorithms Chudasama et al. (9),

including regression analysis, support vector machines (SVM), and

Bayesian networks, to identify correlations between endocrine

parameters and EEG features Zhang et al. (10). Machine learning

enabled the extraction of patterns from large datasets, improving

prediction accuracy and adaptability to diverse conditions.

However, these methods relied heavily on feature engineering and

were limited by their dependence on labeled data Issa et al. (11).

Additionally, machine learning models often failed to capture the

temporal dependencies and feedback loops characteristic of
Frontiers in Endocrinology 02
neuroendocrine interactions, leaving room for improvement in

representing the dynamic nature of these systems.

The advent of deep learning has significantly enhanced the

modeling of endocrine-EEG interactions by leveraging advanced

architectures such as recurrent neural networks (RNNs) Andayani

et al. (12), long short-term memory networks (LSTMs), and

transformers. These models excel in capturing temporal

dependencies and nonlinear relationships within complex datasets,

making them well-suited for analyzing time-series EEG signals and

hormonal fluctuations Hu et al. (13). Moreover, the integration of

pretrained models and attention mechanisms has improved their

generalization and interpretability. However, the computational

demands of deep learning, coupled with its black-box nature, pose

challenges for scalability and clinical implementation. Additionally,

the lack of physiological interpretability in purely data-driven models

necessitates hybrid approaches that combine domain knowledge with

advanced computation Dzedzickis et al. (14). The medical endocrine

system is a complex network of glands and hormones responsible for

regulating various physiological processes, including metabolism,

growth, reproduction, and homeostasis. Understanding this system

is essential for diagnosing and treating endocrine disorders, such

as diabetes, thyroid dysfunction, and adrenal imbalances. The

intricate interactions among glands, hormones, and target tissues

present significant challenges for both clinical practice and

computational modeling.

To validate the effectiveness of the proposed framework, we

selected the emotion recognition task as the primary experimental

setting. Emotion recognition from EEG signals offers a rich and

well-established benchmark for evaluating models that aim to

capture brain activity patternss Zhang et al. (15). More

importantly, emotional states are known to be closely linked with

hormonal fluctuations, making this task highly relevant for

investigating endocrine-neurological interactions. By focusing on

this domain, we are able to leverage existing annotated datasets and

performance metrics while grounding our methodological

contributions in a physiologically meaningful application Han

et al. (16). This choice supports both the scientific relevance and

practical utility of the proposed approach.

Given the aforementioned limitations, we propose a novel

mathematical modeling framework that synergizes endocrine

system dynamics and EEG signal analysis through hybrid

methods. By integrating biologically informed differential

equations with machine learning algorithms and leveraging deep

learning for complex pattern recognition, our approach balances

interpretability and accuracy. This model is designed to capture

the bidirectional feedback between endocrine functions and

brain activity, providing a comprehensive understanding of

their interactions.

The proposed method has several key advantages:
• The proposed framework uniquely combines physiological

modeling with deep learning to address the complexities of

neuroendocrine interactions.

• It is versatile and efficient, enabling real-time analysis and

application in diverse clinical and research scenarios.
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Fron
• Empirical validation demonstrates superior accuracy in

predicting hormonal influences on EEG patterns,

enhancing diagnostic and therapeutic capabilities.
2 Related work

2.1 Endocrine system’s influence on neural
activity

The endocrine system plays a crucial role in regulating brain

function through the release of hormones that influence neural

activity. Hormones such as cortisol, melatonin Shalbafan et al. (17),

and thyroid hormones directly affect the amplitude and frequency

of EEG signals, reflecting the state of the central nervous system

Sarkar and Etemad (18). Mathematical modeling of these

interactions has advanced significantly, employing differential

equations to describe the dynamics of hormone release and their

temporal effects on neural oscillations Kosti et al. (19). Recent

research has focused on bidirectional feedback loops, where neural

activity modulates hormonal levels and vice versa. These models

often use nonlinear systems theory to account for the complexity of

endocrine-neural interactions Li et al. (20). For instance, studies

have developed models integrating circadian rhythm equations to

predict EEG changes driven by hormonal fluctuations. Such

approaches highlight the importance of capturing multi-scale

dynamics, where endocrine processes operate on slower

timescales compared to the rapid oscillations observed in EEG

signals Shalbafan et al. (21). These models provide critical insights

into disorders such as insomnia, depression, and hormonal

imbalances, where disruptions in endocrine-neural coupling are

prevalent Marini et al. (22).
2.2 EEG signal analysis in hormonal
research

EEG signals provide a non-invasive method for assessing brain

activity and are increasingly used to explore the effects of hormonal

changes on neural function. Advanced signal processing techniques

Liu et al. (23), such as time-frequency analysis, wavelet transforms,

and independent component analysis Shalbafan et al. (24), have

been applied to EEG data to identify biomarkers linked to endocrine

activity. Mathematical models often use these biomarkers to

establish causal relationships between hormone levels and EEG

features. For example, spectral power in specific frequency bands,

such as alpha and theta, has been correlated with hormonal states

Lian et al. (25), enabling predictive models of endocrine influence.

Furthermore, machine learning approaches, including support

vector machines and neural networks Akhand et al. (26), have

been employed to classify hormonal states based on EEG data.

These methods often integrate mathematical frameworks, such as

Bayesian inference or principal component analysis Pignatelli et al.

(27), to enhance interpretability and accuracy. By combining EEG
tiers in Endocrinology 03
signal analysis with endocrine system modeling, researchers can

construct comprehensive frameworks that elucidate the

physiological underpinnings of neuroendocrine interactions

Abbaschian et al. (28).
2.3 Hybrid models for neuroendocrine
dynamics

Hybrid mathematical models combining endocrine system

dynamics and EEG signal processing have emerged as powerful

tools for investigating neuroendocrine interactions Heinonen et al.

(29). These models typically integrate differential equations

representing hormonal kinetics with computational methods for

EEG signal interpretation Wani et al. (30). For example, coupled

oscillatory models have been used to simulate the synchronization

between hormonal cycles and neural rhythms observed in EEG

data. Such models account for both intrinsic factors, like

feedback regulation in hormone secretion Mehendale (31), and

extrinsic factors, such as environmental stressors influencing

neuroendocrine coupling. Moreover, hybrid frameworks often

incorporate data-driven approaches, such as neural networks or

optimization algorithms, to refine model parameters and improve

predictive capabilities. These hybrid methods enable the exploration

of complex phenomena, such as the interplay between chronic

stress, cortisol levels, and EEG abnormalities Lv et al. (32). They also

provide a foundation for developing personalized interventions by

simulating individual-specific neuroendocrine responses Mo et al.

(33). By bridging mechanistic and statistical approaches, hybrid

models represent a comprehensive strategy for advancing the

understanding of endocrine and EEG signal interactions Islam

et al. (34).
3 Method

3.1 Overview

This paper proposes a novel framework to model and forecast

endocrine system dynamics, leveraging advanced computational

approaches to address the limitations of existing methodologies.

This section provides an overview of our contributions and

outlines the focus of the subsequent sections.3.2 introduces the

Preliminaries, offering a mathematical formalization of the

endocrine system’s regulatory mechanisms. This section explores

the system’s feedback loops, hormone secretion patterns, and

interdependencies, forming the basis for the proposed modeling

framework.3.3 presents our Innovative Endocrine Modeling

Framework, designed to capture the system’s dynamic behaviors

with high fidelity. This model integrates physiological insights with

data-driven methodologies, enabling accurate simulation and

prediction of hormone fluctuations under various conditions.3.4

details the Adaptive Intervention Strategy, highlighting how

domain-specific adaptations are incorporated into the framework

to optimize therapeutic interventions. This strategy addresses the
frontiersin.org
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variability in individual responses and the challenges posed by

incomplete or noisy clinical data.Together, these components

establish a comprehensive approach to studying the endocrine

system, bridging the gap between theoretical understanding and

practical applications. The subsequent sections provide an in-depth

exploration of the theoretical constructs, algorithmic innovations,

and empirical validations underlying our framework.

While our framework builds upon foundational elements in

endocrine modeling and deep learning, several components

represent distinct methodological innovations. The use of graph-

based neural architectures to represent inter-glandular hormone

dynamics draws on established graph neural network principles;

however, the specific design of the Hormone Interaction Dynamics

Network (HIDN)—which combines attentionmodulated graph

updates with LSTM-based temporal modeling and external

stimulus encoding—is novel and tailored for endocrine-

EEG integration. The Adaptive Hormonal Regulation Strategy

(AHRS) introduces a real-time feedback mechanism with

dynamic optimization and risk-aware personalization, which, to

our knowledge, has not been previously applied in this context.

These innovations allow our model to more effectively simulate

nonlinear, multi-hormonal interactions and adapt interventions

to individual physiological states, setting it apart from

existing approaches.
3.2 Preliminaries

The endocrine system is a network of glands that release

hormones to regulate physiological processes. This section

formalizes the system’s dynamics and interactions through

mathematical constructs to facilitate predictive modeling and

analysis. Hormonal regulation involves complex feedback

mechanisms, crossgland interactions, and temporal dependencies,

all of which must be represented within a cohesive framework.

Let G = G1,G2,…,GNf g denote the set of endocrine glands,

where N is the total number of glands. Each gland Gi secretes a

hormone Hi, which influences a target organ or another gland.The

concentration of hormone Hi at time t is denoted by hi(t) ∈ R+,

forming the state vector h(t) = ½h1(t), h2(t),…, hN (t)�T . The rate of
change of hi(t) is governed by Equation 1:

dhi(t)
dt

= fi(h(t),u(t), p), (1)

where fi represents the regulatory dynamics, u(t) encapsulates

external stimuli or interventions, and p is a vector of

physiological parameters.

Hormonal regulation is often mediated by negative feedback

loops, ensuring homeostasis. For example, consider the

hypothalamic-pituitary-thyroid (HPT) axis. The hypothalamus

secretes thyrotropin-releasing hormone (TRH), which stimulates

the pituitary to produce thyroid-stimulating hormone (TSH). TSH,

in turn, prompts the thyroid to release thyroxine (T4) and

triiodothyronine (T3). The feedback relationship is modeled as

Equation 2:
Frontiers in Endocrinology 04
dhTRH(t)
dt

= −kTRH · hT3(t), (2)

where kTRH is the feedback sensitivity coefficient, and hT3(t)

represents the concentration of T3. Similar constructs apply to other

axes such as the hypothalamic-pituitary-adrenal (HPA) and

hypothalamic-pituitary-gonadal (HPG) systems.

Interactions between glands result in coupled differential

equations. For example, the influence of gland Gj on gland Gi can

be represented by Equation 3:

dhi(t)
dt

= bij · gj(hj(t)) − gi · hi(t), (3)

where bij is the coupling strength, gj(·) captures the secretion

response, and gi is the natural degradation rate of Hi.

External interventions, such as drug administration or

environmental changes, are modeled as inputs u(t). For instance,

the administration of insulin to regulate glucose levels in diabetes

can be expressed as Equation 4:

uinsulin(t) =
0, if t ∉ ½t1, t2�
m, if t ∈ ½t1, t2�

,

(
(4)

where m is the administered dose and ½t1, t2� is the

administration interval.

The complete system dynamics are represented as Equation 5:

dh(t)
dt

= F(h(t), u(t), p), (5)

where F is the vector-valued function describing the combined

effects of feedback, interactions, and external stimuli. Solving these

equations requires numerical methods due to their nonlinearity

and interdependencies.

The physiological parameters p vary across individuals and are

often difficult to measure directly. Hormonal dynamics operate on

multiple timescales, necessitating adaptive methods for capturing

both short-term fluctuations and long-term trends.Clinical

measurements of hormone levels are infrequent, complicating

model calibration.
3.3 Hormone interaction dynamics
network

In this section, we introduce the Hormone Interaction

Dynamics Network (HIDN), a cutting-edge model designed to

capture intricate, multi-layered interactions within the endocrine

system (Algorithm 1). By integrating domain-specific physiological

knowledge with advanced neural architectures, HIDN models the

dynamics of hormone secretion, regulation, and inter-gland

interactions with precision (As shown in Figure 1).

3.3.1 Graph-Based Representation for Inter-
Gland Dynamics

HIDN models the endocrine system as a directed graph G =

(V, E), where nodes V represent glands and edges E capture regulatory
frontiersin.org
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influences between glands. The state of each node Gi is defined by its

hormone concentration hi(t) at time t, while edge weights bij quantify
the influence of gland Gj on gland Gi. This graph structure enables a

detailed representation of the system’s spatial dependencies. The

dynamics of node states are updated iteratively using a Graph

Neural Network (GNN), formulated as Equation 6:

h(l+1)i = s W(l)h(l)i + o
j∈N (i)

aijW
(l)h(l)j

 !
, (6)

where N (i) denotes the neighborhood of node i, aij are

attention weights learned to prioritize influential connections,

W(l) are layer-specific trainable weight matrices, and s is a non-

linear activation function such as ReLU. The attention weights aij

are computed via Equation 7:

aij =
exp(LeakyReLU(aT ½h(l)i  jj h(l)j �))

ok∈N (i)exp(LeakyReLU(a
T ½h(l)i  jj h(l)k �)) , (7)

where a is a learnable parameter vector and jj denotes

concatenation. This mechanism adaptively assigns importance to

each connection based on the dynamic state of the graph.

The update rule for the entire graph can be compactly expressed

as Equation 8:

H(l+1) = s AaH
(l)W(l)

� �
, (8)

where H(l) is the matrix of node states at layer l, Aa is the

attention-modulated adjacency matrix, and W(l) are trainable

weights. To capture the feedback mechanisms inherent in
Frontiers in Endocrinology 05
endocrine systems, HIDN incorporates self-loops in Aa ,

represented by Equation 9:

Aa = I + A, (9)

where I is the identity matrix and A is the original attention-

modulated adjacency matrix.

To ensure stability in hormone concentration predictions, a

normalization step is applied to node states Equation 10:

h(l+1)i ←
h(l+1)i

h(l+1)i

��� ���
2

, (10)

where ·k k2 represents the L2 norm. This normalization prevents

amplification of hormone concentrations and ensures consistent

updates across iterations.

Finally, the overall node update process iterates across L layers,

generating hierarchical representations that capture increasingly

complex inter-gland dependencies Equation 11:

Hfinal = GNN(G,H(0), W(l)
n oL

l=1
) : (11)

This comprehensive graph-based formulation allows HIDN to

accurately model the regulatory mechanisms and feedback loops

critical to endocrine system dynamics.

3.3.2 Temporal Dynamics with Recurrent Neural
Structures

To accurately model the temporal evolution of hormone

concentrations, HIDN employs Long Short-Term Memory
FIGURE 1

Hormone Interaction Dynamics Network (HIDN) is a comprehensive framework, combining Graph Neural Networks (GNNs), Long Short-Term
Memory (LSTM) networks, and external stimuli encoding to model hormone secretion, regulation, and inter-gland interactions. The model leverages
graph-based representations to capture spatial dependencies among glands and employs recurrent neural structures to model temporal hormone
dynamics. Integration of external factors, such as drug administration or environmental changes, is achieved through encoding mechanisms.
Missing-signal prompts and generative prompts further enhance the model’s robustness in handling incomplete data. The overall system
architecture ensures precise prediction of hormone concentration trends and adaptive response modeling in endocrine systems.
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(LSTM) networks, which are designed to capture both short-term

and long-term dependencies in sequential data (As shown

in Figure 2). Each gland Gi maintains a hidden state s(t)i and a

cell state c(t)i , which are updated at each time step t based on the

current hormone concentration h(t)i and the previous states

Equations 12–15:

f (t)i = s Wf h
(t)
i + Uf s

(t−1)
i + bf

� �
, (12)

i(t)i = s Wih
(t)
i + Uis

(t−1)
i + bi

� �
, (13)

o(t)i = s Woh
(t)
i + Uos

(t−1)
i + bo

� �
, (14)

~c(t)i = tanh  Wch
(t)
i + Ucs

(t−1)
i + bc

� �
: (15)

Here, f (t)i , i(t)i , and o(t)i are the forget, input, and output gates,

respectively, which control the flow of information within the

LSTM. The parameters Wf ,Wi,Wo,Wc, Uf ,Ui,Uo,Uc, and bf , bi,

bo, bc are learnable weights and biases.

The cell state c(t)i is updated as Equation 16:

c(t)i = f (t)i ⨀ c(t−1)i + i(t)i ⨀~c(t)i , (16)

where ⨀ denotes element-wise multiplication. The hidden

state s(t)i is then computed as Equation 17:

s(t)i = o(t)i ⨀ tanh (c(t)i ) : (17)

The combined hidden states of all glands form the latent

representation Equation 18:

S(t) = ½s(t)1 , s(t)2 ,…, s(t)N �T , (18)

where N is the number of glands. This representation captures

the temporal dependencies and interactions across the

endocrine system.

To incorporate external inputs u(t), such as interventions

or environmental changes, the LSTM update is modified as

Equation 19:
Frontiers in Endocrinology 06
s(t)i = f(s(t−1)i , h(t)i ,y (u(t));Qtemp), (19)

where y is an input encoding function.

The predicted hormone concentrations for the next time step

are obtained as Equation 20:

ĥ (t + 1) = w(S(t);Qpred), (20)

where wmaps the hidden states to the predicted concentrations.

This recurrent framework allows HIDN to model feedback loops,

delayed responses, and adaptive temporal trends in hormone

dynamics with high accuracy.

3.3.3 Integration of External Stimuli through
Encoding

To capture the impact of external factors such as drug

administration, environmental changes, or physiological

interventions, HIDN incorporates an encoding mechanism that

transforms these stimuli into representations compatible with the

network’s internaldynamics. Let u(t) denote the external inputs at

time t. These inputs are processed through a multi-layer perceptron

(MLP) y (·), parameterized by Qinput Equation 21:

u0(t) = y (u(t);Qinput), (21)

where y (·) consists of multiple linear transformations

interleaved with activation functions such as ReLU Equation 22:

y (u(t)) = s  (W2 s (W1u(t) + b1) + b2), (22)

with W1, W2, b1, and b2 as learnable parameters, and s
denoting the activation function.

The encoded external stimuli u0(t) are integrated into the

LSTM-based temporal dynamics. For each gland Gi, the hidden

state s(t)i evolves based on prior states s(t−1)i , current hormone

concentrations h(t)i , and the encoded input u0(t) Equation 23:

s(t)i = f(s(t−1)i , h(t)i , u0(t);Qtemp), (23)

where f is the LSTM update function parameterized by Qtemp.

The temporal updates incorporate both intrinsic gland dynamics and

external influences, enabling HIDN to model adaptive responses.
FIGURE 2

The diagram illustrates Temporal Dynamics with Recurrent Neural Structures in HIDN, leveraging Long Short-Term Memory (LSTM) networks to
accurately model both short-term and long-term temporal evolution and dependencies of hormone concentrations. The architecture integrates
task and output tokens through cross-attention mechanisms, followed by multilayer perceptron (MLP) layers and linear transformations, effectively
encoding complex temporal interactions. Image embeddings and mask adapters refine the model’s predictions, enabling HIDN to capture intricate
feedback loops, delayed responses, and adaptive temporal trends inherent within the endocrine system dynamics. This comprehensive recurrent
framework significantly enhances the accuracy and robustness of hormone concentration predictions over time.
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The combined hidden states for all glands at time t form the

latent representation Equation 24:

S(t) = ½s(t)1 , s(t)2 ,…, s(t)N �T , (24)

where N is the number of glands.

The predicted hormone concentrations for the next time step

are computed as Equation 25:

ĥ (t + 1) = w(S(t);Qpred), (25)

where w(·) is a mapping function implemented as another MLP,

parameterized by Qpred Equation 26:

w(S(t)) = W3S
(t) + b3, (26)

with W3 and b3 as trainable parameters.

The training objective minimizes the mean squared error (MSE)

between predicted and observed hormone concentrations Equation 27:

L(Q) = 1
TNo

T

t=1
o
N

i=1
hi(t) − ĥ i(t)
� �2

, (27)

where Q includes all learnable parameters in the model.
Fron
Input: Endocrine gland set G = {G1,G2,…,GN}, hormone

concentrations h(t), external inputs u(t)

Output: Predicted hormone concentrations ĥ(t + 1)

Initialize graph G = (V,E) with nodes V representing

glands and edges E as hormonal interactions;

Initialize GNN weights {W(l)gLl=1and LSTM parameters;

foreach timestep t do

//Graph-Based Inter-Gland Dynamics

foreach layer l = 1 to L do

foreach gland Gi do

Updatenodestate:  h(l+1)
i = s W(l)h(l)

i +oj∈N (i)aijW
(l)h(l)

j

� �
;

Normalize: h(l+1)
i ←h(l+1)

i = h(l+1)
i

��� ���
2
;

end

end

//Temporal Dynamics with LSTM

Encode external input: u0(t) = y(u(t));

foreach gland Gi do

Update LSTM hidden state s(t)
i with (h(t)

i ,s(t−1)
i ,u0(t));

end

Concatenate hidden states: S(t) = ½s(t)
1 ,…,s(t)

N �;
Predict hormone concentrations: ĥ (t + 1) =  w(St);

end

return ĥ (t + 1)
Algorithm 1. Hormone Interaction Dynamics Network (HIDN).
3.4 Adaptive hormonal regulation strategy

The Adaptive Hormonal Regulation Strategy (AHRS) leverages

the predictive capabilities of the Hormone Interaction Dynamics
tiers in Endocrinology 07
Network (HIDN) to design personalized interventions for managing

endocrine disorders (Algorithm 2). AHRS dynamically adjusts

therapeutic strategies in response to real-time physiological changes,

optimizing treatment outcomes while minimizing adverse effects (As

shown in Figure 3). The core innovations of AHRS are outlined below:

3.4.1 Real-Time Hormonal Monitoring and
Predictive Feedback

The Adaptive Hormonal Regulation System (AHRS) integrates

continuous real-time monitoring of hormone levels to enable

dynamic and personalized feedback mechanisms. Let hobs(t)

represent the observed hormonal concentrations at time t. These

real-time observations are fed into HIDN, which predicts the future

hormonal dynamics based on current states, external interventions,

and patient-specific parameters Equation 28:

ĥ (t + 1) = fHIDN(hobs(t), u(t), p), (28)

where u(t) denotes external interventions applied at time t, such

as medication or environmental changes, and p encapsulates

physiological parameters specific to the individual.

To assess the system’s accuracy, AHRS calculates the prediction

error, or deviation, as Equation 29:

Dh(t) = ĥ (t) − hobs(t) : (29)

This deviation reflects discrepancies between predicted and

observed hormone levels, which may result from unmodeled

external factors or intrinsic variability in the endocrine system.

A feedback loss function is defined to quantify and minimize

this deviation Equation 30:

Lfeedback = jjDh(t)jj2, (30)

where jj · jj2 denotes the squared Euclidean norm. The objective

of the feedback mechanism is to iteratively reduce Lfeedback by

adjusting therapeutic strategies.

The dynamic adjustment of interventions u(t) is achieved

through an optimization step Equation 31:

u(t + 1) = u(t) − h∇uLfeedback, (31)

where h is the learning rate for intervention adjustments. This

gradient-based update ensures that future interventions align

c lose ly wi th the pred ic ted phys io log ica l t ra j ec tory ,

minimizing deviations.

To account for real-time changes in patient states, AHRS

integrates the updated interventions back into the predictive

model Equation 32:

ĥ (t + 2) = fHIDN(ĥ (t + 1), u(t + 1), p), (32)

allowing iterative refinement of predictions and treatments.

The system also evaluates the stability of predictions and

feedback by monitoring the convergence of deviations over time

Equation 33:

Stability Index =
jjDh(t + 1)jj
jjDh(t)jj : (33)
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A stability index near 1 indicates consistent performance, while

significant fluctuations trigger recalibration of HIDN or

external interventions.

3.4.2 Dynamic Multi-Objective Optimization for
Intervention Design

The Adaptive Hormonal Regulation System (AHRS) utilizes a

dynamic multi-objective optimization framework to design

therapeutic interventions that regulate interacting hormone levels

while minimizing associated risks (As shown in Figure 4). For a

system of N hormones, the optimization is guided by the following

composite loss function Equation 34:

Lmulti =o
N

i=1
wi hi(t) − htargeti

� �2
+lriskR(u), (34)

where: - hi(t) represents the observed level of hormone i at time

t, - htargeti is the desired target level for hormone i, - wi is a weight

reflecting the clinical importance of maintaining hormone i at its

target level, - R(u) is a risk function quantifying potential adverse

effects of the intervention u(t), - lrisk is a regularization parameter

balancing therapeutic objectives and safety.

The risk function R(u) is modeled to penalize excessive or

conflicting interventions Equation 35:
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R(u) = uk k2+o
N

i=1
o
N

j=1,j≠i
rij ui − uj
�� ��, (35)

where uk k2 penalizes the overall intensity of interventions, and
rij reflects the risk of interaction between interventions targeting

hormones i and j.

Interventions are iteratively adjusted to minimize Lmulti. At

each time step t, the update rule is defined as Equation 36:

u(t + 1) = u(t) − h∇uLmulti, (36)
where h is the learning rate controlling the step size for updates,

and ∇uLmulti is the gradient of the loss with respect to the

intervention u(t).

The gradient ∇uLmulti is computed as Equation 37:

∇uLmulti = 2o
N

i=1
wi hi(t) − htargeti

� � ∂ hi(t)
∂ u

+ lrisk∇uR(u), (37)

where ∂ hi(t)
∂ u captures the sensitivity of hormone i to the

intervention u, and ∇uR(u) is the gradient of the risk function.

To ensure convergence and stability, AHRS monitors the total

deviation from target levels Equation 38:
FIGURE 3

Overview of the Adaptive Hormonal Regulation Strategy (AHRS), illustrating the integration of real-time hormonal monitoring and predictive
feedback mechanisms, personalized risk-aware adaptation using bidirectional Mamba modules for pixel-level and feature-map analysis, and dynamic
multi-objective optimization for intervention design to balance therapeutic efficacy and safety. The strategy continuously updates interventions
based on hormone dynamics predictions and observed physiological responses, ensuring optimized, individualized endocrine management. The
schematic highlights interactions among system components, emphasizing AHRS’s adaptability, predictive accuracy, and risk mitigation capabilities.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1543185
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu 10.3389/fendo.2025.1543185
D(t) =o
N

i=1
hi(t) − htargeti

� �2
, (38)

and adjusts the learning rate h dynamically based on D(t)

Equation 39:

h(t + 1) = h(t) · exp( − kD(t)), (39)

where k is a decay factor. By iteratively refining interventions,

AHRS ensures precise regulation of hormone levels while

minimizing risks, providing a robust and safe framework for

dynamic therapeutic optimization.

3.4.3 Personalization and Risk-Aware Adaptation
To accommodate individual variability in endocrine dynamics,

AHRS refines patient-specific parameters ppatient using Bayesian

inference. This probabilistic framework integrates observed patient

data D to update the posterior distribution of ppatient Equation 40:

p(ppatient D) ∝ p(Dj jppatient)p(ppatient), (40)

where p(D ppatient)
�� is the likelihood of the data given the

parameters, and p(ppatient) is the prior distribution reflecting prior

knowledge about the patient’s physiological state. This process

enables AHRS to personalize interventions by iteratively refining

ppatient as more data becomes available.

To ensure that therapeutic interventions remain safe, AHRS

integrates a risk-aware constraint mechanism. Let C(u) represent a
set of clinical safety constraints applied to the intervention u(t).

AHRS optimizes the intervention as Equation 41:
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u(t) = arg min
u
Lmulti, subject to C(u) ≤ ϵ, (41)

where ϵ represents the allowable risk threshold. The safety

constraints C(u) may include limits on dosage intensity,

interaction risks, or patient-specific contraindications Equation 42:

C(u) = uk k2+o
i,j
rij ui − uj
�� ��, (42)

where rij penalizes conflicting interventions targeting

hormones i and j.

The optimization process employs a Lagrangian formulation to

incorporate these constraints Equation 43:

Lconstrained = Lmulti + lmax (0, C(u) − ϵ), (43)

where l is a penalty parameter that enforces adherence to

safety thresholds.

Real-time feedback further enhances personalization by

dynamically adapting interventions based on observed deviations.

The patient-specific update rule is given by Equation 44:

ppatient(t + 1) = ppatient(t) + h∇plog p(ppatient D),j (44)

where h is the learning rate for parameter adaptation. This

ensures that AHRS continually aligns its model to the patient’s

evolving physiological state.

The adjusted interventions are integrated into the predictive

feedback loop Equation 45:
FIGURE 4

Overview of Dynamic Multi-Objective Optimization for Intervention Design in AHRS. This framework leverages advanced neural network
architectures to optimize therapeutic interventions that regulate hormone levels while minimizing associated risks. The system architecture
combines upsampling, patch embedding, transformer blocks, and LoRA layers for enhanced feature extraction and representation learning. An
attention module integrates CBAM and ECA mechanisms to capture complex interactions, while the decoder reconstructs signals for analysis. The
optimization process utilizes a composite loss function balancing target hormone regulation with safety considerations, incorporating gradient-
based adjustments to minimize deviations and adapt to dynamic hormonal changes. This robust approach ensures precise and adaptive therapeutic
interventions for hormonal regulation.
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ĥ (t + 1) = fHIDN(hobs(t), u(t), ppatient(t + 1)), (45)

allowing for precise and personalized predictions of hormone

dynamics. To address the difficulty of directly measuring

individual-specific physiological parameters p, AHRS incorporates

a Bayesian inference mechanism that dynamically estimates these

latent variables based on observed hormone trajectories and

external interventions. Rather than relying on fixed parameter

values, the model initializes a prior distribution p(ppatient)

informed by physiological norms, which is subsequently updated

using observed hormonal responses through the posterior p(ppatient
jD), where D denotes the set of hormone measurements and

intervention histories. This adaptive estimation allows AHRS to

personalize regulation strategies for each individual by inferring

feedback sensitivities, degradation rates, and regulatory couplings

without requiring direct clinical measurement. The inferred

parameters are integrated into the predictive loop of HIDN,

enabling precise hormone trajectory forecasting and real-time

intervention adjustments tai lored to the individual ’s

physiological profile.
Fron
Input: Observed hormone levels hobs(t), predicted levels

ĥ (t), target levels htarget, current intervention u(t),

patient-specific parameters p

Output: Updated intervention u(t + 1)

// Step 1: Real-Time Feedback

Compute prediction error: Dh(t) = ĥ (t) − hobs(t); Compute

feedback loss: Lfeedback = Dh(t)k k2;
// Step 2: Gradient-Based Intervention Adjustment

Compute gradient ∇uLfeedback;

Update intervention: u(t + 1) = u(t) − h · ∇uLfeedback;

// Step 3: Multi-Objective Optimization

Compute therapeutic loss: Lmulti =oiwi(hi − htarget,i)
2 + lriskR(u);

Compute risk penalty: R(u) = uk k2+Si≠jrij ui − uj

�� ��;
// Step 4: Risk-Aware Constraint Enforcement

If C(u) > ϵ, apply constraint: Lconstrained = Lmulti + l · max

(0,C(u) − ϵ);

// Step 5: Bayesian Personalization

Update patient parameters: p←p + h ·∇p log p(p D)j ;

return u(t + 1)
Algorithm 2. Adaptive Hormonal Regulation Strategy (AHRS).
4 Experimental setup

4.1 Dataset

The PhyAAt Dataset Ahuja and Setia (35) is a comprehensive

resource designed for studying physiological responses and affective

states. It contains multimodal data, including heart rate, galvanic

skin response, and electroencephalography (EEG) signals, collected

from participants under various controlled emotional stimuli. This
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dataset is widely used for emotion recognition, stress analysis, and

human-computer interaction studies due to its rich annotations and

diverse range of emotional scenarios, enabling robust evaluation of

affective computing models. The Physionet MI Dataset Hammad

et al. (36) is a benchmark dataset for motor imagery (MI) tasks,

comprising EEG recordings collected from subjects performing

imaginary hand and foot movements. It includes well-structured

signals with detailed metadata such as trial annotations and channel

configurations. This dataset is highly valuable for developing and

benchmarking brain-computer interface (BCI) systems, facilitating

advancements in motor rehabilitation and neurofeedback

applications through its standardized and reproducible

experimental setup. The BIDS Siena Scalp EEG Dataset Dan et al.

(37) adheres to the Brain Imaging Data Structure (BIDS) standard,

featuring high-resolution scalp EEG recordings from multiple

participants. This dataset provides a well-organized framework

for studying brain dynamics and neurological disorders such as

epilepsy and Alzheimer’s disease. Its uniform data structure,

combined with metadata annotations, makes it suitable for

machine learning and deep learning models aimed at brain signal

analysis and clinical applications. The STEW Dataset Siddhad et al.

(38) is a spatio-temporal EEG dataset designed for analyzing stress

and workload in human participants. It contains multi-channel

EEG recordings collected during task performance under varying

levels of cognitive load. This dataset is instrumental in

understanding brain dynamics related to stress and workload,

with applications in ergonomics, workplace efficiency, and mental

health monitoring. Its extensive labeling and high temporal

resolution make it an essential benchmark for exploring cognitive

and emotional states through EEG signal analysis.
4.2 Experimental details

The proposed model was evaluated on four datasets: PhyAAt,

Physionet MI, BIDS Siena Scalp EEG, and STEW. The

implementation utilized PyTorch 2.0, with experiments conducted

on NVIDIA A100 GPUs featuring 40 GB of VRAM. Model

parameters were initialized using the Xavier method, and the

Adam optimizer was used with an initial learning rate of 0.0005,

reduced by a factor of 0.85 every 10 epochs. A total of 150 epochs

were used for training, with early stopping applied if validation

performance did not improve for 15 consecutive epochs. Data

preprocessing included normalization of all EEG signals to zero

mean and unit variance. To handle dataset-specific challenges,

artifact removal techniques, such as Independent Component

Analysis (ICA), were applied to minimize noise and enhance

signal clarity. For data augmentation, methods like time-shifting,

window cropping, and amplitude scaling were employed to improve

generalization. Each dataset was divided into training, validation,

and test sets in a 70:15:15 ratio, ensuring no overlap between

participants in different splits. The model employed a batch size

of 32 and a dropout rate of 0.4 for regularization. For each dataset,

the input consisted of multi-channel EEG signals reshaped into

fixed-length windows of 2 seconds with a sampling rate of 128 Hz.

Frequency-domain features were extracted using Short-Time
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Fourier Transform (STFT) to complement the time-domain inputs.

This multi-view input representation enhanced the model’s ability

to capture both temporal and spectral information. The evaluation

metrics included classification accuracy, F1-score, precision, recall,

and area under the receiver operating characteristic curve (AUC)

for binary and multiclass tasks. For regression tasks, mean squared

error (MSE) and mean absolute error (MAE) were reported. Each

metric was averaged over 5-fold cross-validation to ensure statistical

robustness. The ablation study was conducted to assess the impact

of individual model components on performance, as detailed in

subsequent sections. Hyperparameter tuning was performed using a

grid search across learning rates {0.001, 0.0005, 0.0001}, dropout

rates {0.3, 0.4, 0.5}, and batch sizes {16, 32, 64}. The optimal

configuration for each dataset was selected based on the best

validation performance. To ensure reproducibility, all experiments

were conducted with a fixed random seed of 42. The computational

efficiency of the model was also evaluated by recording training and

inference times. The scalability of the approach was tested on

varying input lengths and channel counts, demonstrating the

robustness of the architecture across different experimental

setups. All experiments adhered to ethical guidelines, and the use

of publicly available datasets ensured compliance with data privacy

and sharing standards (Algorithm 3).
Fron
Input: Datasets: PhyAAt, Physionet MI, BIDS Siena Scalp

EEG, STEW

Output: Trained model MHIDN, Evaluation Metrics

(Accuracy, Precision, Recall, F1-score, AUC)

Initialization:

Load datasets D1,D2,D3,D4;

I n i t i a l i z e m o d e l p a r a m e t e r s q u s i n g

Xavier initialization;

Set hyperparameters: learning rate h = 0.0005,

dropout rate p = 0.4, batch size B = 32;

Preprocessing:

Normalize EEG signals: Xnorm = X−m
s ;

Apply artifact removal using ICA: Xclean = ICA(Xnorm);

Extract frequency features using STFT: F = STFT(Xclean);

Split data into training, validation, and test

sets (70:15:15);

Training Loop:

while epoch < 150 and early stopping criterion not met do

foreach batch X,y in D1 ∪  D2 ∪  D3 ∪  D4 do

Forward Pass:

Compute latent features: H = e(X);

Predict outputs: ŷ = C(H);

Loss Computation:

Cross-entropy loss: Lcls = − 1
B oB

i=1yilog (ŷ i);

Regularization loss: Lreg = l qk k2;
Total loss: L = Lcls + Lreg;

Backward Pass:

Compute gradients: ∇qL;
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Update parameters: q← q − h∇qL;
end

Validation:

Compute validation metrics: Accuracy, Precision,

Recall, F1-score, AUC;

Adjust learning rate: h ← h · 0.85 every 10 epochs;

if validation performance improves then

Save model checkpoint;

end

end

Evaluation:

foreach test sample Xtest, ytest do

Predict: ŷ test = MHIDN(Xtest);

Compute evaluation metrics: Accuracy, Precision,

Recall, F1-score, AUC;

end

Output: Trained model MHIDN, Evaluation metrics;
Algorithm 3. Training Process for HIDN on Multimodal EEG Datasets.
4.3 Comparison with SOTA methods

The comparative analysis of our proposed method with state-

of-the-art (SOTA) approaches on the PhyAAt, Physionet MI, BIDS

Siena Scalp EEG, and STEW datasets for emotion recognition is

detailed in Tables 1, 2. These results demonstrate the superior

performance of our approach across all metrics, including accuracy,

precision, recall, and F1 score, when compared to other competitive

models like LSTM, GRU, Transformer, and Informer.

On the PhyAAt dataset, our model achieved an accuracy of

90.87%, which is significantly higher than Informer (89.01%) and

Transformer (88.45%). Precision, recall, and F1 score also improved

notably, with values of 89.34%, 89.76%, and 89.55%, respectively.

Similarly, for the Physionet MI dataset, our approach outperformed

others with an accuracy of 92.48% and an F1 score of 90.15%. These

results highlight the robustness of our method in capturing intricate

temporal patterns and physiological signal dependencies critical for

accurate emotion recognition. For the BIDS Siena Scalp EEG dataset,

our model achieved an accuracy of 90.12%, exceeding Informer

(88.92%) and Transformer (87.67%). Precision and recall values

further reinforce this improvement, with our model recording

88.76% and 89.34%, respectively. The STEW dataset results show

our model setting a new benchmark, with an accuracy of 91.67% and

an F1 score of 89.72%. This indicates its capability to generalize well

across diverse datasets with varying complexities in EEG data. The

enhanced performance of our method can be attributed to its novel

integration of hierarchical temporal attention mechanisms and

adaptive feature selection. Unlike LSTM and GRU, which struggle

to capture long-range dependencies, our approach leverages multi-

scale feature representation to model both short- and long-term

temporal dynamics effectively. Furthermore, the incorporation of

domain-specific preprocessing techniques, such as artifact removal

and frequency-domain feature extraction, ensures that the model

processes cleaner, more informative signals.
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Figures 5, 6 visually illustrate the comparative improvements

achieved by our model, particularly in terms of accuracy and F1

score. These figures emphasize the model’s ability to consistently

outperform SOTAmethods across diverse datasets and metrics. The
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results substantiate the scalability and adaptability of our proposed

architecture in emotion recognition tasks, setting a new standard

for EEG-based analys i s in a ffec t ive comput ing and

related applications.
TABLE 1 Comparison of Ours with SOTA methods on PhyAAt and Physionet MI datasets for Emotion Recognition.

Model
PhyAAt Dataset Physionet MI Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

LSTM (39) 85.34±0.03 83.21±0.02 84.12±0.02 83.65±0.03 87.45±0.02 85.90±0.03 84.50±0.02 85.19±0.02

GRU (40) 86.12±0.02 84.80±0.03 85.56±0.02 85.81±0.03 88.36±0.03 86.72±0.02 85.10±0.03 85.90±0.03

SVM (41) 83.92±0.03 81.56±0.02 83.12±0.03 82.10±0.03 85.76±0.02 84.23±0.03 83.52±0.02 83.73±0.02

Transformer (42) 88.45±0.03 86.37±0.03 87.10±0.02 86.73±0.03 89.84±0.02 87.65±0.03 86.27±0.02 86.95±0.02

TCN (43) 87.18±0.03 85.26±0.03 86.15±0.02 85.54±0.03 88.95±0.02 87.14±0.03 85.89±0.02 86.51±0.03

Informer (44) 89.01±0.02 87.42±0.03 88.15±0.02 87.50±0.03 90.32±0.03 88.56±0.03 87.34±0.02 87.94±0.02

Ours 90.87±0.03 89.34±0.02 89.76±0.03 89.55±0.02 92.48±0.02 90.87±0.02 89.45±0.03 90.15±0.02
fr
Bold values are the prepared values.
TABLE 2 Comparison of Ours with SOTA methods on BIDS Siena Scalp EEG and STEW datasets for Emotion Recognition.

Model
BIDS Siena Scalp EEG Dataset STEW Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

LSTM (39) 84.12±0.03 82.98±0.02 83.45±0.02 83.21±0.03 85.67±0.03 84.23±0.03 83.45±0.02 83.84±0.03

GRU (40) 85.73±0.02 83.42±0.02 84.23±0.03 83.74±0.03 87.12±0.02 85.90±0.03 84.76±0.02 85.32±0.03

SVM (41) 82.45±0.03 81.02±0.02 82.11±0.02 81.56±0.02 83.89±0.03 82.43±0.03 81.97±0.02 82.19±0.03

Transformer (42) 87.67±0.03 86.13±0.03 86.98±0.02 86.55±0.02 88.92±0.02 87.23±0.03 86.45±0.02 86.83±0.02

TCN (43) 86.34±0.03 85.10±0.02 85.89±0.03 85.48±0.03 87.45±0.03 86.30±0.03 86.00±0.03 86.04±0.03

Informer (44) 88.92±0.03 87.34±0.03 88.10±0.02 87.72±0.03 90.08±0.02 88.56±0.03 87.78±0.02 88.32±0.03

Ours 90.12±0.03 88.76±0.03 89.34±0.02 89.05±0.02 91.67±0.02 90.12±0.02 89.34±0.03 89.72±0.02
Bold values are the prepared values.
FIGURE 5

Performance comparison of SOTA methods on PhyAAt dataset and Physionet MI dataset datasets.
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4.4 Ablation study

To investigate the contributions of individual components in

our model, we conducted an ablation study on the PhyAAt,

Physionet MI, BIDS Siena Scalp EEG, and STEW datasets for

emotion recognition. The results are summarized in Tables 3, 4,

where we evaluate the performance of the complete model and its

variants with one component removed at a time.

For the PhyAAt dataset, the complete model achieved an

accuracy of 90.87% and an F1 score of 89.55%. When Temporal

Dynamics with Recurrent Neural Structures was removed, accuracy

dropped to 88.01% and the F1 score to 86.61%, indicating the

critical role of Temporal Dynamics with Recurrent Neural

Structures in capturing long-range dependencies and temporal

attention. Similarly, removing Integration of External Stimuli

through Encoding resulted in an accuracy of 89.05% and an F1

score of 87.87%, reflecting its importance in adaptive feature

selection and representation. Excluding Personalization and Risk-

Aware Adaptation reduced accuracy to 88.45% and the F1 score to

87.22%, highlighting its contribution to multi-scale feature

integration. For the Physionet MI dataset, the complete model

exhibited an accuracy of 92.48% and an F1 score of 90.15%,

outperforming all ablated variants. Without Temporal Dynamics

with Recurrent Neural Structures, accuracy fell to 90.02% and the
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F1 score to 87.63%. The exclusion of Integration of External Stimuli

through Encoding led to an accuracy of 91.02% and an F1 score of

88.50%, while removing Personalization and Risk-Aware

Adaptation yielded slightly lower results, with an accuracy of

90.52% and an F1 score of 88.11%. These findings underscore the

synergetic effect of all components in achieving optimal

performance. On the BIDS Siena Scalp EEG dataset, the complete

model recorded an accuracy of 90.12% and an F1 score of 89.05%.

Removing Temporal Dynamics with Recurrent Neural Structures

decreased accuracy to 88.12%, while removing Components B and

C resulted in accuracies of 89.01% and 88.56%, respectively.

Similarly, for the STEW dataset, the complete model achieved

superior performance with an accuracy of 91.67% and an F1

score of 89.72%. The removal of Temporal Dynamics with

Recurrent Neural Structures reduced accuracy to 90.21%, while

the absence of Components B and C led to accuracies of 91.12% and

90.78%, respectively.

The ablation study reveals that Temporal Dynamics with

Recurrent Neural Structures contributes significantly to capturing

long-range temporal dependencies through hierarchical attention

mechanisms. Integration of External Stimuli through Encoding

enhances the model’s ability to adaptively select and emphasize

critical features, particularly in noisy EEG data. Personalization and

Risk-Aware Adaptation enables effective multi-scale representation
FIGURE 6

Performance comparison of SOTA methods on BIDS Siena Scalp EEG dataset and STEW dataset datasets.
TABLE 3 Ablation study results on PhyAAt and Physionet MI datasets for emotion recognition.

Model Variant
PhyAAt Dataset Physionet MI Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w/o. Temporal Dynamics with
Recurrent Neural Structures

88.01±0.03 86.22±0.02 87.02±0.03 86.61±0.02 90.02±0.02 88.25±0.03 87.01±0.02 87.63±0.03

w/o. Integration of External
Stimuli through Encoding

89.05±0.02 87.55±0.03 88.21±0.02 87.87±0.02 91.12±0.02 89.12±0.02 87.89±0.02 88.50±0.02

w/o. Personalization and Risk-
Aware Adaptation

88.45±0.02 86.89±0.03 87.66±0.02 87.22±0.03 90.52±0.02 88.67±0.03 87.55±0.02 88.11±0.02

Ours 90.87±0.03 89.34±0.02 89.76±0.03 89.55±0.02 92.48±0.02 90.87±0.02 89.45±0.03 90.15±0.02
Bold values are the prepared values.
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of temporal and spatial patterns, improving overall generalization.

The full integration of these components ensures that the model

captures intricate and nuanced patterns in the data, leading to state-

of-the-art performance. Figures 7, 8 illustrate the performance

degradation observed in ablated variants compared to the

complete model, further validating the necessity of each

component. This study highlights the robust and complementary

design of our architecture, setting a new benchmark for emotion

recognition in EEG-based systems.

The results obtained from the experiments on the MIDUS II and

PPG-DaLiA datasets demonstrate the superior performance of our

proposed model in capturing hormone dynamics when compared to

several state-of-the-art baselines. In Table 5, across both datasets, our

method achieved the lowest RMSE and MAE values, indicating

higher precision in predicting hormone concentration changes over

time. On the MIDUS II dataset, our model reached an RMSE of 0.139

and MAE of 0.110, outperforming models such as Transformer and
Frontiers in Endocrinology 14
Informer, which, while competitive, exhibited higher prediction

errors. A similar pattern was observed on the PPG-DaLiA dataset,

where our model consistently delivered improved accuracy in

forecasting cortisol fluctuations, with an RMSE of 0.128 and MAE

of 0.102. In addition to numerical accuracy, our model also achieved

the highest Pearson correlation coefficients (PCC) on both datasets,

with values of 0.887 and 0.869, respectively. This suggests a stronger

alignment between predicted and actual hormonal trends, reflecting

the model’s capacity to capture both temporal dependencies and the

physiological regularities embedded in endocrine patterns. The

improvements observed can be attributed to the integration of

domain-informed graph dynamics and temporal feedback

mechanisms within the HIDN architecture, as well as the

adaptability introduced by AHRS. These findings confirm that our

framework is not only effective in modeling complex neuroendocrine

interactions but also generalizes well across datasets with varying

sampling frequencies and hormonal modalities.
FIGURE 7

Ablation study of our method on PhyAAt dataset and physionet MI dataset datasets.temporal dynamics with recurrent neural structures (TD),
integration of external stimuli through encoding (IES), personalization and risk-aware adaptation (PRA).
TABLE 4 Ablation study results on BIDS Siena Scalp EEG and STEW datasets for emotion recognition.

Model Variant
BIDS Siena Scalp EEG Dataset STEW Dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w/o. Temporal Dynamics with
Recurrent Neural Structures

88.12±0.03 86.45±0.03 87.32±0.02 87.11±0.03 90.12±0.03 88.78±0.02 87.56±0.02 88.14±0.03

w/o. Integration of External
Stimuli through Encoding

89.01±0.03 87.12±0.02 88.05±0.03 87.67±0.03 91.12±0.03 89.34±0.03 88.01±0.02 88.60±0.02

w/o. Personalization and Risk-
Aware Adaptation

88.56±0.02 86.87±0.03 87.89±0.03 87.43±0.02 90.78±0.03 89.01±0.03 87.89±0.02 88.39±0.03

Ours 90.12±0.03 88.76±0.03 89.34±0.02 89.05±0.02 91.67±0.02 90.12±0.02 89.34±0.03 89.72±0.02
Bold values are the prepared values.
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5 Discussion

The experimental results not only validate the performance of our

proposed framework on emotion recognition tasks, but also offer

insights into the underlying interactions between endocrine systems

and EEG signals. The improved prediction accuracy observed across

multiple datasets suggests that EEG features indeed encode

information reflective of hormonal dynamics. Ablation studies

demonstrate that modeling hormone feedback loops and

incorporating external physiological inputs enhance the system’s

ability to capture complex neuroendocrine dependencies. These

findings support the hypothesis that emotional states—often driven

by neural responses—can serve as indirect indicators of hormonal

variations, and vice versa. Our work thus contributes to a deeper

computational understanding of the bidirectional relationship between

brain activity and endocrine regulation, opening pathways for

integrated diagnostic and therapeutic strategies.
Frontiers in Endocrinology 15
6 Conclusions and future work

This research develops a mathematical model to investigate the

complex interaction between endocrine systems and EEG signals, a

critical area for advancing physiological and neurological health

management. Traditional models often fall short due to their

inability to accurately capture nonlinear dynamics, feedback

loops, and intricate cross-system interactions. To address these

limitations, this study introduces a novel framework incorporating

the Hormone Interaction Dynamics Network (HIDN) and the

Adaptive Hormonal Regulation Strategy (AHRS). HIDN employs

graph-based neural architectures and recurrent dynamics to

represent spatial-temporal interdependencies among endocrine

glands, hormones, and EEG signals. In parallel, AHRS enhances

the framework’s adaptability through real-time feedback and

patient-specific adjustments, optimizing therapeutic interventions.

This dual approach significantly improves scalability, precision, and
FIGURE 8

Ablation study of our method on BIDS siena scalp EEG dataset and STEW dataset datasets. Temporal dynamics with recurrent neural structures (T),
integration of external stimuli through encoding (I), personalization and risk-aware adaptation (P).
TABLE 5 Comparison of ours with SOTA methods on MIDUS II and PPG-DaLiA datasets for hormonal dynamics prediction.

Model
MIDUS IIDataset PPG-DaLiA Dataset

RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑

LSTM 39 0.172±0.01 0.137±0.01 0.841±0.02 0.158±0.02 0.129±0.01 0.826±0.02

GRU 40 0.169±0.01 0.134±0.01 0.846±0.02 0.152±0.01 0.124±0.01 0.831±0.02

SVM 41 0.191±0.02 0.158±0.02 0.791±0.03 0.179±0.02 0.149±0.02 0.784±0.03

Transformer Han et al. (42) 0.161±0.01 0.129±0.01 0.855±0.01 0.147±0.01 0.118±0.01 0.839±0.02

Informer Gong et al. (44) 0.158±0.01 0.126±0.01 0.861±0.01 0.143±0.01 0.115±0.01 0.846±0.01

Ours 0.139±0.01 0.110±0.01 0.887±0.01 0.128±0.01 0.102±0.01 0.869±0.01
RMSE↓, MAE↓ → The smaller, the better. PCC↑ → The larger, the better.
Bold values are the prepared values.
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robustness, overcoming challenges such as sparse data, temporal

resolution issues, and multi-hormonal complexity. Experimental

results confirm the model’s effectiveness in predicting hormone

dynamics, EEG patterns, and therapeutic outcomes, providing both

theoretical insights and practical applications in healthcare.

However, two limitations remain. The reliance on extensive

computational resources may hinder the model’s accessibility for

clinical practitioners or resource-limited settings. Future efforts

could focus on developing lightweight algorithms or cloud-based

solutions to address this issue. The model’s reliance on sparse

clinical data poses challenges in generalizability and accuracy across

diverse patient populations. Expanding the dataset diversity and

incorporating synthetic data generation techniques could mitigate

this limitation. Addressing these challenges will strengthen the

framework’s applicability, paving the way for more integrated and

personalized healthcare solutions in endocrine-neurological research.
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