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deep learning-based diagnostic
model for segmentation and
classification of diabetic foot
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Hui-Juan Zhu1, Li Xiao1, Na Zhao2, Xiao-Wen Wang2,
Bao-Lin Du2 and Da Zhang1*

1Department of Endocrinology, Air Force Medical Center, Air Force Medical University, Beijing, China,
2Chongqing Zhijian Life Technology Co., Ltd, Chongqing, China
Objective: This study aims to conduct an in-depth analysis of diabetic foot ulcer

(DFU) images using deep learning models, achieving automated segmentation

and classification of the wounds, with the goal of exploring the application of

artificial intelligence in the field of diabetic foot care.

Methods: A total of 671 images of DFU were selected for manual annotation of

the periwound erythema, ulcer boundaries, and various components within the

wounds (granulation tissue, necrotic tissue, tendons, bone tissue, and gangrene).

Three instance segmentation models (Mask2former, Deeplabv3plus, and Swin-

Transformer) were constructed to identify DFU, and the segmentation and

classification results of the three models were compared.

Results: Among the three models, Mask2former exhibited the best recognition

performance, with a mean Intersection over Union of 65%, surpassing

Deeplabv3’s 62% and Swin-Transformer’s 52%. The Intersection over Union

value of Mask2former for wound recognition reached 85.9%, with IoU values

of 80%, 78%, 62%, 61%, 47%, and 39% for granulation tissue, gangrene, bone

tissue, necrotic tissue, tendons, and periwound erythema, respectively. In the

wound classification task, the Mask2former model achieved an accuracy of

0.9185 and an Area Under the Curve of 0.9429 for the classification of Wagner

grade 1-2, grade 3, and grade 4 wounds.

Conclusion: Among the three deep learning models, the Mask2former model

demonstrated the best overall performance. This method can effectively assist

clinicians in recognizing DFU and segmenting the tissues within the wounds.
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1 Introduction

Diabetic foot ulcer (DFU) is one of the most severe and costliest

chronic complications of diabetes, with approximately 25% to 34%

of diabetic patients experiencing at least one episode of DFU in their

lifetime. If not treated promptly and appropriately, diabetic foot can

lead to severe consequences, including amputation and even death

(1). Systematic reviews suggest that the median delay for referral of

DFU patients from primary care specialists is between 7 to 31 days,

while the median time to initiate final treatment ranges from 6.2 to

56 days (2). In China, 80.8% to 95.6% of DFU patients face delays in

seeking medical care, with the average delay extending to 54.81 days

(3). The complexity of diabetic foot cases, the shortage of specialized

healthcare professionals, and the lack of experience in wound

assessment at primary healthcare institutions present significant

challenges for the early diagnosis and treatment of diabetic foot. As

the population of diabetic patients continues to grow, enhancing the

management of DFU has become increasingly urgent.

DFU of varying severity exhibit numerous visual characteristics,

such as granulation tissue, necrotic tissue, erythema, tendons,

bones, and gangrene. Traditional computer vision algorithms

based on machine learning primarily rely on multiple stages,

including feature sensing, image preprocessing, feature extraction,

feature selection, and inference prediction, to identify abnormal

regions (4, 5). These methods utilize differences in color and texture

descriptors on the surface of abnormal areas (e.g., wounds) and

employ classifiers such as support vector machines, neural

networks, random forests, or Bayesian classifiers to perform

binary classification (i.e., distinguishing between healthy skin and

ulcerated skin) (6–10). In recent years, with the rapid advancement

of computer vision technology, deep learning has demonstrated

exceptional effectiveness in processing DFU images. Han et al. (11)

enhanced the Faster Region-based Convolutional Neural Network

algorithm using K-means clustering to achieve automatic

recognition and localization of diabetic foot wounds according to

Wagner grades. Goyal et al. (12) proposed a deep learning-based

method for real-time detection and localization of DFUs. Huang

HN et al. (13), through transfer learning and the Faster R-CNN

algorithm, were able to perform image segmentation, distinguishing

between ulcers, sutures, and gangrene caused by vascular blockage

in DFU, achieving up to 90% accuracy in wound image detection.

Zhao Nan et al. (14) conducted a study involving 1,042 images of

DFU, with manual annotation of ulcer boundaries and different

color regions, achieving wound localization and area measurement.

Deep learning-based artificial intelligence (AI) technology has

shown great potential in the image recognition and lesion area

segmentation of DFU, providing a powerful tool to enhance patient

management and potentially improve the current challenges in

diagnosis and treatment. However, existing visual computing

research has largely focused on DFU recognition, wound

segmentation, and distinguishing between infected and non-

infected areas, while neglecting critical features such as tendons

and bones within the wound, which directly influence the grading of

diabetic foot. Additionally, current approaches have not achieved

simultaneous recognition of tissue classification and infection
Frontiers in Endocrinology 02
characteristics. This study aims to explore the optimization of

deep learning techniques for semantic segmentation of wound

and surrounding tissue areas, and to construct models for wound

feature recognition and grading diagnosis, with the goal of

developing an AI-based tool to assist in the recognition of

diabetic foot.
2 Material and methods

2.1 Patients and images

A total of 671 images of DFU were collected from patients

treated at the Air Force Medical Center between January 2015 and

December 2023. The diagnostic criteria for diabetic foot include

patients with newly diagnosed diabetes or a history of diabetes,

presenting with infections, ulcers, or tissue destruction in the foot,

usually accompanied by lower limb neuropathy and/or peripheral

arterial disease (15). The inclusion criteria for this study were as

follows: images of Wagner grade 1-4 DFU confirmed by

professional healthcare personnel; images clearly displaying the

ulcer area of the foot with sufficient resolution to accurately

distinguish tissue characteristics such as granulation tissue,

necrosis, tendons, bone, and gangrene; and images sourced from

various devices and conditions to enhance the robustness of the

model. Exclusion criteria included: poor-quality images, such as

those that are blurred, underexposed, or overexposed, or where key

information is obscured; ulcers not caused by diabetes or of unclear

etiology; incomplete image information with annotation errors or

missing critical details; images of unknown origin or those

involving copyright disputes; and any images that do not meet

ethical and legal requirements.
2.2 Data preprocessing

The collected images underwent preprocessing to improve

processing efficiency and accuracy. Given the substantial

variability in original dimensions (ranging from 3864×5152 to

1080×1920 pixels), we prioritized scaling over cropping to

preserve critical anatomical details and maintain automation.

Bilinear interpolation was employed for resizing: inserting new

pixels via interpolation during upscaling and averaging neighboring

pixels during downscaling. All images were standardized to

1024×1024 pixels through this scaling approach.

To enhance model robustness, we implemented five data

augmentation techniques in Figure 1:
1. Brightness Adjustment: Modifying the R, G, B channel

values of pixels to alter overall image brightness.

2. Contrast Adjustment: Enhancing the difference between

the brightest and darkest regions to improve image

hierarchy and visual impact.

3. Horizontal Flip: Mirroring the image along the vertical axis.

4. Vertical Flip: Mirroring the image along the horizontal axis.
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Fron
5. Transposition: Swapping rows and columns to invert the

image spatially.
2.3 Dataset for the study

A total of 671 DFU images were collected, with annotation work

conducted by an expert team from the Endocrinology Department

of the Air Force Medical Center. These physicians, who have

extensive experience in diabetic foot care, used Labelme software

for precise annotation. The annotations included the ulcer area,

granulation tissue, necrotic tissue, tendons, bone, gangrene, and

infection across seven categories. Specifically, 631 images included

granulation tissue, 458 included necrotic tissue, 130 included

tendons, 140 included bone, 122 included gangrene, and 264

included infection. This study utilized the Wagner classification

system (16), and considering the similarity in treatment strategies

between ulcers affecting the skin and soft tissue layers in Wagner

grades 1 and 2, we combined Wagner grades 1 and 2 into a single

category. This adjustment aimed to more precisely reflect the

characteristics of the wounds and the extent of tissue damage

while ensuring clear performance in the model’s classification tasks:
tiers in Endocrinology 03
W1-2 Grade: Wounds limited to the skin and soft tissue,

without bone involvement or abscess formation.

W3 Grade: Wounds have invaded deeper tissues, manifested

by bone exposure and/or tendon damage, but gangrene has

not yet occurred.

W4 Grade: Wounds accompanied by gangrene, indicating

tissue necrosis beyond the capacity for repair.
2.4 Deep learning procedure

In this study, we employed three different deep learning models:

Deeplabv3Plus, Swin-Transformer, and Mask2Former, chosen for

their distinct advantages in image segmentation tasks.

Deeplabv3Plus is a well-established model based on convolutional

neural networks (CNNs) with widespread application in semantic

segmentation (17); Swin-Transformer leverages the Transformer

architecture to handle long-range dependencies, making it suitable

for recognizing complex features (18); and Mask2Former combines

the global modeling capabilities of Transformers with the local

perception abilities of CNNs, making it particularly effective for

multi-label recognition tasks (19). Deeplabv3Plus uses the CNNs
FIGURE 1

Data augmentation techniques.
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model ResNet101 as its backbone, while Swin-Transformer and

Mask2Former use Transformer models based on self-attention

mechanisms as their backbone networks. CNNs have translation

invariance and local connectivity, primarily extracting local features

in images through convolution and pooling operations, whereas

Transformer network models utilize self-attention mechanisms and

multi-layer perception structures to capture global feature

representations through complex spatial transformations and

long-range feature dependencies. These models were pre-trained

on the publicly available ImageNet dataset (20), with the pre-

trained model parameters used as initialization parameters. The

collected DFU images were then used to fine-tune the models, with

training progress monitored through loss function values, accuracy

curves on the training and test sets, and other metrics until the loss

values were sufficiently low and the accuracy curves stabilized. The

overall workflow of the study is illustrated in Figure 2.
2.5 Evaluation of the performance of deep
learning models

To quantitatively assess the performance of the proposed

models, the DFU image set was divided into two subsets in an 8:2

ratio, used for model training and testing, respectively. We
Frontiers in Endocrinology 04
employed two key metrics: Intersection over Union (IoU) and

Dice coefficient to comprehensively evaluate the recognition and

segmentation performance of the three deep learning models on

DFU images. Both metrics quantify the overlap between the

predicted ulcer area by the model and the ground truth area

annotated by experts. A perfect match would yield IoU and Dice

coefficients of 1, indicating complete concordance between the

predicted and actual areas; conversely, values of 0 would indicate

no overlap. In addition to evaluating the models’ performance on

segmentation tasks through IoU and Dice coefficients, we also

assessed the diabetic foot Wagner grading task using metrics such

as precision, sensitivity, specificity, accuracy, F1 score, area under

the curve (AUC), and receiver operating characteristic (ROC)

curve. The specific calculations for each metric are detailed

in Table 1.
2.6 Hardware and software specifications

The training server used in this experiment was configured with

the CentOS Linux Release 7.4.1708 operating system, Intel(R) Xeon

(R) CPU, Nvidia GeForce RTX 3090 GPU, and CUDA Version

11.4. The AI framework was implemented using the Pytorch

framework, with OpenCV version 4.3.0.36.
FIGURE 2

Schematic diagram of the study flow.
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3 Result

3.1 Model construction and comparison

3.1.1 Training and inference efficiency
During 100 epochs of training, the DeeplabV3Plus model

exhibited faster training speed, completing the entire process in

approximately 11 hours, with an inference time of around 0.19

seconds per image. The Swin-Transformer model required a slightly

longer training period of about 14 hours and 30 minutes for 100

epochs, with an inference time of 0.42 seconds. The Mask2Former

model also had an extended training period, taking 13 hours and 10

minutes, which is attributable to its complex architecture and focus

on detailed features; however, its inference time was only 0.39

seconds, indicating that despite the longer training time, the model

is capable of delivering efficient real-time performance.

3.1.2 Wound segmentation performance
The segmentation results of the three models on DFU are

presented in Table 2 and Figure 3. In the wound segmentation

task, the IoU value for the Mask2Former model was 85.88%, closely

matching Swin-Transformer’s 85.9%. However, Mask2Former

outperformed in multi-label recognition tasks, achieving IoU
TABLE 2 Segmentation identification results of the three models in diabetic foot wounds:.

Model Indicator Wound Infection Granulation Necrosis Tendon Bone Gangrene

DeeplabV3Plus

IoU 78.48 45.45 65.77 39.12 26.20 32.25 64.22

ACC 84.72 61.06 79.93 49.14 27.45 37.51 69.41

Dice 87.94 62.50 79.35 56.23 41.52 48.77 78.21

mIoU 52.86

mAcc 60.46

mDice 66.44

Swin-transformer

IoU 87.36 47.22 78.52 59.18 47.95 48.76 77.84

ACC 92.71 59.5 88.19 73.26 58.63 73.12 85.85

Dice 93.25 64.15 87.97 74.35 64.82 65.56 87.54

mIoU 65.31

mAcc 76.80

mDice 77.60

Mask2former

IoU 85.88 45.14 78.78 59.53 48.72 53.45 77.14

ACC 89.60 50.62 86.67 72.0 63.12 76.61 89.31

Dice 92.40 62.20 88.13 74.63 65.52 69.66 87.09

mIoU 65.79

mAcc 76.84

mDice 78.00
TABLE 1 Calculation formulae.

Metric Formula Description

Precision TP
TP + FP

Correct positive predictions over all
positive predictions

Sensitivity TP
TP + FN

Fraction of correct positive predictions

Specificity TN
TN + FP

Fraction of correct negative predictions

Accuracy
(ACC)

TP + TN
TP + FPþ TN + FN

Correct prediction ratio

F1 Score 2TP
2TP + FPþ FN

The harmonic mean of precision
and recall

AUC (area
under

the curve)

snþ sp
2

Threshold-invariant prediction quality

DICE 2TP
2TP + FPþ FN

Coefficient for measuring overlap
between predicted and actual regions.

Similar to F1 score

IoU TP
TP + FPþ FN

Another coefficient for measuring the
overlap between predicted and

actual regions
sn, Sensitivity; sp, Specificity; TP, True Positives; FN, False Negatives; FP, False Positives; TN,
True Negatives.
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values of 78.78%, 59.53%, 48.72%, 53.45%, and 77.14% for

granulation tissue, necrotic tissue, tendons, bone, and gangrene,

respectively. Regarding the mean Intersection over Union (mIoU)

on the test set, Mask2Former achieved 65.79%, Swin-Transformer

65.31%, and DeeplabV3Plus 52.86%. These results indicate that

while Mask2Former and Swin-Transformer performed comparably

in single wound segmentation, Mask2Former demonstrated a clear

advantage in multi-label recognition tasks.

3.1.3 Infection recognition ability
In our study, we compared the performance of the three deep

learning models in identifying the presence or absence of infection

in diabetic foot wounds (Table 3, Figure 4). The DeeplabV3Plus

model exhibited a sensitivity of 0.8868 in infection state recognition

but was slightly weaker in specificity, with a value of 0.7317,

resulting in an overall accuracy of 0.7926 and an Area Under the

Curve (AUC) of 0.8093. The Swin-Transformer model showed

balanced performance in recognizing both infected and non-

infected states, with a sensitivity of 0.7925 and a specificity of

0.8780, achieving an accuracy of 0.8444 and an AUC of 0.8353. The

Mask2Former model performed best across all evaluation metrics,
Frontiers in Endocrinology 06
particularly in accuracy and AUC, where it achieved 0.8519 and

0.8353, respectively.

3.1.4 Grading diagnosis of DFU
In the task of grading DFU, the Mask2Former model

demonstrated the best overall performance (Table 4, Figure 5).

The Mask2Former model exhibited high precision and specificity

across all grade classification tasks and achieved the best results in

overall accuracy (ACC) and AUC, with ACC at 0.9185 and AUC at

0.9429. The DeeplabV3Plus model achieved corresponding values

of 0.8148 and 0.8447, while the Swin-Transformer model had an

ACC of 0.9037 and an AUC of 0.9263. These results highlight the

superior performance of the Mask2Former model in the grading

diagnosis of DFU.
4 Discussion

This study successfully constructed and compared the

performance of three deep learning models (Mask2Former,

DeeplabV3Plus, and Swin-Transformer) in the recognition and
FIGURE 3

Demonstration of three model segmentation tasks. Granulation (red), Necrotic tissue (yellow), Bone (green), Tendon (cyan), Infection (blue),
Gangrene (purple).
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segmentation of DFU images. The results revealed the significant

advantages of the Mask2Former model in terms of mean accuracy,

segmentation precision, and grading diagnosis, achieving effective

AI-based wound feature recognition and Wagner grading.

Previous studies have focused on segmenting and identifying

the extent of the wound area and structural regions within DFU

using deep learning. Can Cui et al. (21)proposed a CNN-based

method for precise wound area segmentation, achieving an

accuracy of 72%. The 2022 DFU Segmentation Challenge (22)

showcased the latest advancements in DFU segmentation, where

the winning team achieved a Dice score of 0.7287 in the wound

recognition task. Our results indicate that the Mask2Former model

achieved an IoU of 85.88% in wound segmentation tasks, and

reached a Dice score of 0.9240, with the Swin-Transformer model

achieving an even higher Dice score of 0.9325. Our models offer

superior accuracy in wound segmentation. The core innovation of

the Mask2Former model lies in its mask attention mechanism,

which enhances the precision and efficiency of local feature

extraction by focusing on and optimizing cross-attention

processing within the predicted mask region. Notably, the unified
Frontiers in Endocrinology 07
architecture and ease of training of Mask2Former enable it to

effectively adapt to DFU image recognition without requiring

specific adjustments (19).

Compared to earlier studies (13, 14, 23, 24), we have achieved

significant progress in the accuracy of tissue recognition within

diabetic foot wounds. Our study not only accomplished precise

segmentation and delineation of the wound area but also extended

to the identification of necrotic tissue, tendons, bone, and gangrene

within the wound. Detailed wound segmentation and tissue

recognition are critical steps in managing DFU. By accurately

distinguishing between granulation tissue, necrotic tissue, tendons,

bone, gangrene, and the periwound erythema, we can provide a clear

basis for ulcer severity grading, as well as offer precise information for

prognosis assessment and treatment planning. For instance, the

presence of necrotic tissue indicates the need for debridement.

Exposed bone is at risk of osteomyelitis, which can increase the

likelihood of amputation, prolong hospitalization, extend antibiotic

treatment duration, and delay healing (25).

Diabetic foot infection (DFI) is the most common reason for

hospitalization among patients with diabetic-related foot ulcers and
FIGURE 4

ROC curves of the three models for identifying the presence of infection in diabetic wounds.
TABLE 3 Results of the three models in recognizing the presence or absence of infection in diabetic foot wounds:.

Model Class Precision Sensitivity Specificity F1 ACC AUC

DeeplabV3Plus
infections 0.6812 0.8868 0.7317 0.7705

0.7926 0.8093
non-infectious 0.9091 0.7317 0.8868 0.8108

Swin-transformer
infections 0.8077 0.7925 0.8780 0.8000

0.8444 0.8353
non-infectious 0.8675 0.8780 0.7925 0.8727

Mask2former
infections 0.9231 0.6792 0.9634 0.7826

0.8519 0.8353
non-infectious 0.8229 0.9634 0.6792 0.8876
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is a major cause of lower limb amputation. Only about 46% of

infected foot ulcers heal within a year (with 10% recurring), and

15% of patients die, while 17% require lower limb amputation (26).

Goyal M et al. (27)developed a novel dataset and superpixel color

descriptor technique combined with an ensemble CNN model,

effectively improving the recognition efficiency of ischemia and

infection, achieving an infection recognition accuracy of 73%.

Yogapriya J et al. (28)constructed the Diabetic Foot Infection

Network (DFINET), specifically designed to assess infection and

non-infection states in DFU images, with a recognition accuracy of

91.98%. In this study, the Mask2Former model achieved an

infection recognition accuracy (ACC) of 0.8519 and an AUC of

0.8353. Previous studies have primarily focused on identifying the

presence of infection, but delineating the extent of infection is not
Frontiers in Endocrinology 08
only essential for distinguishing between mild, moderate, and severe

infections but also directly influences the choice of antibiotics and

treatment duration (29). This study also developed a model for

determining the extent of diabetic foot infection, although model

performance still needs improvement. This may be due to image

quality and the variability in how annotators define the extent

of infection.

Diabetic foot prognosis is closely linked to Wagner grading. In

this study, AI-based wound feature recognition was integrated with

the Wagner system to achieve automated grading. Notably, Wagner

grade 5 cases (characterized by extensive necrosis and requiring

urgent surgical intervention) were excluded, as their management

relies on comprehensive clinical evaluation rather than image

analysis alone. The Mask2Former model demonstrated robust
FIGURE 5

ROC curves of three models for grading diabetic foot wounds.
TABLE 4 Results of the three models in grading diabetic foot wounds:.

Model
Disaggregated
indicators

Precision Sensitivity Specificity F1 ACC AUC

DeeplabV3Plus

W1-2 0.7765 0.9706 0.7164 0.8628

0.8148 0.8447W3 0.9 0.439 0.9787 0.5901

W4 0.8667 1.0 0.9633 0.9286

Swin-transformer

W1-2 0.9014 0.9412 0.8955 0.9209

0.9037 0.9263W3 0.9143 0.7805 0.9681 0.8421

W4 0.8966 1.0 0.9725 0.9455

Mask2former

W1-2 0.9545 0.9265 0.9552 0.9403

0.9185 0.9429W3 0.9211 0.8537 0.9681 0.8861

W4 0.8387 1.0 0.9541 0.9123
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performance in distinguishing Wagner grades 1–4, with AUC

values of 0.97 (grades 1–2), 0.82 (grade 3), and 0.78 (grade 4).

This AI-assisted approach addresses critical challenges in diabetic

foot care—including limited expertise and time constraints—by

providing efficient, objective decision support for severity

assessment and treatment prioritization.

While our study advances wound feature recognition and

grading in DFUs, several limitations warrant attention:
Fron
1. Narrow applicability: The model focuses solely on DFU

wound characterization and lacks utility for differential

diagnosis of non-diabetic foot lesions.

2. Data constraints: The pilot-scale dataset (n=671 images)

and absence of external validation limit generalizability.

Future work will expand sample diversity and incorporate

multi-center data.

3. Image standardization: Variability in image quality (e.g.,

l ighting, angles) may impair model robustness.

Standardized imaging protocols and scale integration will

enhance segmentation accuracy and enable wound

area quantification.

4. Infection localization: While infection presence detection is

reliable, precise spatial delineation requires improved

annotation strategies and advanced algorithms.

5. Clinical integration: Augmenting image analysis with clinical

data (e.g., vascular status, wound location) could refine

prognostic predictions and personalize treatment plans.
The Mask2Former model achieves high-precision segmentation

and classification of DFUs, excelling in identifying critical tissue

components (necrotic tissue, tendons, bone) and Wagner grading.

By automating severity assessment, it addresses clinical challenges

such as diagnostic delays and expertise shortages, particularly in

resource-limited settings. These capabilities lay the groundwork for

intelligent DFU management systems, supporting telemedicine and

real-time monitoring to optimize patient outcomes.
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