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Adipose tissue is an endocrine organ that signals energy status to the

hypothalamic–pituitary–gonadal axis to regulate reproductive function.

Notably, in mammals, adipose tissue biology—adipose tissue expansion and

body fat distribution—is closely linked to the onset of puberty. Some studies

showed that early adipose tissue development continues into childhood or

adulthood, indicating its potential impact on reproductive function. Factors

such as maternal obesity, childhood body mass index gain, and adolescent

obesity significantly contribute to early puberty onset and negative

reproductive events including menstrual irregularity, polycystic ovary

syndrome, and male infertility. However, the connection between adipose

tissue development before adulthood (prenatal stage and childhood) and

reproductive function has not yet been fully investigated and reviewed. In this

study, we present a comprehensive review of hormonal and inherent

dimorphisms on adipose tissue development; there is a novel discussion about

the link between adipose tissue expansion tracking throughout early life stages

and reproductive disorders. Our study aims to elucidate how adipocyte

development during critical periods of life can affect future reproductive health

from sexual maturation to fertility and points to the clinical significance of further

unlocking the underlying mechanism and weight management. As such, early

prevention and long-term management for weight control might be considered

as effective measures to mitigate obesity-induced reproductive comorbidities.
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1 Introduction

Adipose tissue (AT) participates in a wide range of physiological and pathological

processes such as energy metabolism, inflammation, reproduction function, and several types

of cancers. Obesity, literally the excess of white adipose tissue (WAT), is a global concern of

metabolic health that contributes to earlier pubertal development, impaired fertility, and

polycystic ovary syndrome (PCOS) (1–3). With the rates of overweight and obesity

increasingly growing in children, an increasing number of studies have revealed the

prevalence of obesity-associated reproductive disorders in children and adolescents.
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Substantial studies have explored the connection among AT, puberty,

and gonadal function. AT development begins in prenatal life and

infancy, and tracks into childhood; it influences sexual maturation

(4–7). Furthermore, childhood obesity is associated with precocious

puberty, hyperandrogenism, suppression of gonadotropins, and the

development of PCOS (8–11). This review discusses hormonal and

inherent dimorphisms on AT development and provides a broad

description of AT development during fundamental life stages and its

role in puberty and later reproductive function.
2 The characteristics of adipose tissue

In mammals, AT primarily consists of WAT and brown AT

(BAT). BAT plays a thermogenic role and is essential for maintaining

body temperature. As an endocrine organ, it is considered as a

metabolic pool for glucose, lipid, and branched-chain amino acids,

and is related to metabolic diseases such as overweight and obesity

(12). In humans, BAT mainly exists in fetuses and newborns to

enhance neonatal survival, but decreases shortly after birth (13).

WAT stores excess energy in the form of triglyceride and secretes

various hormones that regulate energy metabolism.WAT is generally

classified as subcutaneous AT (SAT) and visceral AT (VAT). SAT

depots are mainly the abdominal, gluteal, and femoral types, but

VAT, the so-called intraabdominal fat depot, is associated with

internal organs. Women generally have more fat accumulation

than men. Men accumulate more fat in the upper body (central

obesity), which is associated with the development of cardiovascular

disease, insulin resistance, and type 2 diabetes mellitus (14–16).

Women accumulate more in the lower body (peripheral obesity),

which protects against metabolic disorders (14).

AT development is a dynamic and proliferative process

involving adipogenesis and remodeling through differentiated

adipocyte precursor cells (APCs). The expansion of fat mass can

occur through an increase in the average size of fat cells and/or

number of adipocytes. In adults, enlarged fat cells are a key feature

of increased fat storage in fat depots, whereas in children with

obesity, there is a significant increase in both adipocyte number and

cell size (17–19). From 6 months to 1 year of age, cell size increased

to adult levels and then decreased until 2 years of age, during which

larger adipocytes contributed to an increase in fat depots. After 2

years of age, cell size did not change significantly until early

adolescence age (19). Adipocyte number significantly increases

only after age 10. In contrast, significant increases in cell number

and size in obese children were observed throughout all ages (19).

Overall, the changes in adipocytes for childhood obesity are

characterized by adipocyte hypertrophy and hyperplasia.

3 The hormonal and inherent
dimorphisms on adipose tissue
development during puberty

Puberty is another important period for the hypercellularity of

AT. For mammalian females, body fat increases during puberty
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onset and is predominantly localized in gluteofemoral fat depots,

which is profoundly associated with the start of menarche (20, 21).

For men, they also gain body fat during puberty, but lean mass

mostly increases before a growth spurt to deplete body fat (22). This

makes AT less remarkable on male pubertal development; however,

it is still important in male puberty initiation (23). Sex differences

exist in body fat distribution during puberty. In men, an android

shape, which is mainly fat in the abdominal area, develops

principally during this period. In women, fat is centered on the

hips and remains gynecoid during puberty.

Sex steroid hormones (estrogen and androgen) are considered

to be the main cause of sex differences in fat distribution. The

mechanism underlying the sex- and depot-specific fat distribution

remains poorly understood. Gonadal hormones, including estrogen

(E2), progesterone, and androgen, have their receptors expressed in

both VAT and SAT depots. In women, SAT has higher expressions

of estrogen receptors (ERs) and progesterone receptors (PRs) than

androgen receptors (ARs). Estrogen promotes subcutaneous fat

depot only after sexual maturation in women (24). Moreover, its

receptor ERa signaling in women leads to subcutaneous fat accrual

and the reduction of visceral adipocyte mass, but ERb may inhibit

the effect of E2 on adipocytes after sex maturation (25–27). In both

female and male mouse models, epididymal, perirenal, and inguinal

WAT weighed more in ERa knockout (aERKO) mice than in their

wild-type control (28). Moreover, androgen and adrenal steroids

such as dehydroepiandrosterone (DHEA), dehydroepiandrosterone

sulfate (DHEAS), and some subtypes of 17-b hydroxysteroid

dehydrogenase (HSD) isoenzymes are also associated with body

fat distribution in women. Visceral adiposities were positively

associated with omental 20a-HSD level and 3a-HSD-3 level (29).

However, the association between plasma androgen levels and

visceral fat accumulation is not always consistent.

As in female AT, ER is also expressed in male AT. Estrogen

treatment decreased adipocyte size in male rats (30). aERKO male

mice showed increased WAT, especially in epididymal, perirenal,

and inguinal depots (28). In men, visceral fat accumulation is

inversely associated with circulating testosterone (cT) levels and

sex hormone-binding globulin (SHGB) (31–33), and testosterone

treatment decreases abdominal subcutaneous and gluteal depots in

female-to-male transsexuals (34). Additionally, androgen receptor

knockout (ARKO) mice develop late-onset visceral adiposity and

total fat mass (35–37).

Several lines of evidence suggested that local androgen

metabolism in AT could affect body fat distribution. DHEA, an

adrenal precursor to the formation of active steroids, has been

found to be negatively associated with abdominal fat accumulation

in men (38). Peripheral androgen metabolites (PAMs), such as 5a-
androstane-3a and 17b-diol glucuronide (3a-diol-G), are positively
associated with visceral fat accumulation (39). Steroid-inactivating

enzymes, such as the aldoketoreductase 1C (AKR1C) family, which

are mostly responsible for androstenedione (DHT) inactivation, are

highly expressed in AT and are positively related to omental

adipocyte size and visceral fat accumulation (29, 40–42). From

the evidence above, local androgens might play a more significant

role in fat accumulation than circulating androgens in men.
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Some androgen-metabolizing enzymes are identified in AT and

might indirectly contribute to depot differences. 5a-Reductase type
1 (SRD5A1), an androgen-metabolizing enzyme, and its metabolites

increased with obesity in humans (43–45). Other steroid-

metabolizing enzymes, such as 3b-hydroxysteroid dehydrogenase

(HSD) type 1; 17b-HSD types 2, 3, 7 and 12; and 17a-hydroxylase,
have also been detected in AT, but their role in fat depots remains

unknown. Furthermore, evidence has shown an association

between gonadotropin levels and adipocytes. Li et al. discovered

that gonadotropin-releasing hormone receptors (GnRHRs) are

expressed in human adipocytes, and the activation of GnRHR

could increase the cell number of preadipocytes and the

accumulation of lipid droplets by inhibiting AMPK pathways

(46). Thus, gonadal hormones, steroid hormones, and their

metabolizing enzymes are likely to participate in adipocyte

differentiation. Regional variation and intra-adipocyte hormone

metabolism might explain the heterogeneity of hormonal effects

on fat distribution. The roles of sex hormones, their receptors, and

steroid-metabolizing enzymes in adipogenesis and adipolysis within

fat depots are concluded in Figure 1.

Except for gonadal hormones, sex chromosomes might

inherently determine sex differences in adipocyte biology.

Gonadectomized mice with XX versus XY gain more weight and

adiposity, particularly inguinal WAT, indicating the effect of X

chromosome on weight gain independent of gonadal steroids (53).

These genetic studies show that an increased number of X

chromosomes, rather than the Y chromosome, leads to differences
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in adiposity. The presence of two X chromosomes (XX and XXY

mice with gonadectomy) led to higher body weight/fat than one X

chromosome (XY and XO mice with gonadectomy), while the

presence of the Y chromosome did not have an effect (53). Thus,

these results implicated the X chromosome gene as a direct cause of

sex differences in fat distribution.

Sexually dimorphic genes and epigenetic modification in gene

expressions have been identified as contributing factors in AT biology.

A review of these genes can be found in references (54–56). In

conclusion, sex differences in body fat distribution during puberty

are not solely determined by the secretion of gonadal hormones, but

rather by a more complex interplay of depot-specific adipocyte

differentiation, hormonal signaling, and genetic modifications.
4 The association between adipose
tissue during early life stage and
puberty

The development and expansion of AT begins in the fetus and

extends throughout the lifespan. Rapid fat accrual occurs during the

late prenatal period and infancy. Studies have indicated that adiposity

in prenatal life and infancy tracks into childhood, and is associated

with childhood obesity and body composition (4, 5, 57–59). Thus, the

link between adiposity during this period and puberty has drawn

much attention. Clinical studies have shown that early weight gain in
FIGURE 1

Sex differences caused by gonadal hormones and steroid-metabolizing enzymes on adipose tissue development. Both women and men have ER,
PR, and AR expressed in adipocytes but their role in adipogenesis and adipolysis shows sex differences and depot differences. This image shows the
roles of sex hormones, their cognate receptors, and steroid-metabolizing enzymes in VAT and SAT in mice models and human. ↑, increase; ↓,
decrease; ER, estrogen receptor; E2, estrogen; PR, progesterone receptor; AR, androgen receptor; VAT, visceral adipose tissue; SAT, subcutaneous
adipose tissue; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; ERKO, estrogen receptor knockout; ARKO, androgen
receptor knockout; HSD, hydroxysteroid dehydrogenase; cT, circulating testosterone; SRD5A1, 5a-reductase type 1; AKR1C2/AKR1C3,
aldoketoreductase 1C family; PAM, peripheral androgen metabolites (47–52).
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infancy and the trajectories of body mass index (BMI) percentage

during early childhood predict younger ages at menarche and the

onset of breast development (7, 60–63). In a retrospective

longitudinal study, the timing of menarche and thelarche showed

an inverse relationship with the change in z-score from birth weight

(64). Furthermore, restricted fetal growth and prenatal maternal fat

also affect pubertal development. Girls born small-for-gestational age

(SGA) reach all pubertal markers at an earlier mean age than those

born appropriate-for-gestational age (AGA), except for breast

development, while boys born SGA and large-for-gestational age

(LGA) achieved puberty earlier than those born AGA (6).

Maternal obesity, even before pregnancy, is associated with earlier

pubertal development in offspring (65–72). The mechanism linking

maternal fat to offspring puberty remains to be elucidated. In rat

models, maternal high-fat diet during the early postnatal period

induced increased Kiss1 expression in the ARC and early puberty

onset in female offspring (73). A study conducted by Lam et al. found

that MC3R, expressed in KNDy neurons of the hypothalamic arcuate

nucleus, could be activated as an intermediary signaling pathway to

relay nutritional status to childhood growth and the timing of puberty

(74). Increased endogenous estradiol in the progeny of obese rats is

associated with precocious puberty and altered follicular development

in adulthood (75). These findings underscore the importance of AT

development during the prenatal period and childhood in determining

their susceptibility to early pubertal maturation (Figure 2).
5 The association of adipose tissue
during childhood and adolescence
and puberty

Puberty is a critical process of sexual maturation and is

characterized by a growth spurt. Prior to puberty, there are

minimal sex differences in body composition, but differences in

AT development become more apparent from puberty. Sexual

dimorphism in regional fat patterning emerges, with girls

exhibiting less waist and more hip fat than boys from puberty to

early adulthood (76–78). Several studies have established a link

between childhood adiposity and puberty. Childhood obesity is

closely associated with earlier sexual maturation in girls (79, 80),

whereas the relationship between obesity and pubertal timing in

boys remains controversial (79, 81). A growing number of studies

have shown that obesity in boys is also associated with early puberty

onset (80, 82–86). The onset and progression of puberty in boys are

positively related to weight and BMI (87). In a body composition

analysis study, boys with high-level percentage of body fat (BFP)

had an increased risk of earlier pubertal onset (88). These results

might be attributable to the accurate assessment of testicular

volume using a Prader orchidometer and BMI z-score or body

composition metrics as indicators of body fat. Despite the link

between adiposity during childhood and pubertal development,

there is a lack of data on the link between body composition in

children aged 2 to 5 years and the onset of puberty. This gap is
Frontiers in Endocrinology 04
largely due to the lack of age-specific body composition evaluation

and a longer follow-up period.
6 Adipose tissue before puberty and
adulthood reproductive outcomes

Overweight or obesity during childhood and adolescence is

associated with impaired reproductive functions. In girls, obesity,

especially central obesity, is associated with a high risk of menstrual

irregularity and PCOS (10, 89–92). Weight loss is associated with

improvement in PCOS symptoms. Among prepubertal girls, BMI is

significantly and positively associated with free testosterone, and

obese girls have a high risk of hyperandrogenemia. A cohort study

recruiting individuals followed from birth to age 50 years (93)

indicated that, in early childhood (age 3–6 years), there was no

significant association between underweight, overweight, or obesity

and any fertility outcomes, but obesity at age 11–15 years was

associated with a higher risk of decreased fecundability and

childlessness in adulthood, independent of PCOS.

Unlike girls, there is less evidence about the direct correlation

between AT before puberty and male reproductive dysfunction. In

male inferti l i ty , obesity is associated with disrupted

spermatogenesis, reduced semen quality, and erectile dysfunction

(94, 95). Several studies have reported a link between hypogonadism

and obesity in adolescent men (96, 97). However, it remains unclear

whether reproductive impairments related to obesity begin during

childhood or adolescence. Genetic obesity syndromes offer new

insight that early-onset obesity is presumably a contributing factor

for reproductive impairments as obesity syndromes (e.g., Prader–

Willi syndrome, Cohen syndrome, and Bardet–Biedl syndrome)

often present with intractable obesity at an early age as well as

hypogonadism and irregular menses (9, 98). The relationship

between obesity during critical life stages and reproductive

disorders is detailed in Figure 2. Conversely, Ramlau-Hansen

et al. found that prepubertal BMI was not significantly associated

with semen quality (99). The inconsistency might result from the

lack of longitudinal evaluation of BMI change, not excluding the

possibility of weight loss before semen collection. Little evidence

from rat models has explored the effects of prepubertal obesity on

gonadal function. In a rat model, prepubertal obesity resulted in a

reduced number of Leydig cells, the decreased expressions of

steroidogenic acute regulatory protein (StAR), and compromised

ovarian oxidative stress and DNA repair (100, 101). These

preliminary data provide a possibility that inconspicuous lesions

exist in reproductive systems in the context of exposure to early-

onset overweight or obesity.
7 Discussion

AT distribution is shaped by gonadal hormones, steroid-

metabolizing enzymes, and genetic modification during puberty;
frontiersin.org

https://doi.org/10.3389/fendo.2025.1543787
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ning et al. 10.3389/fendo.2025.1543787
AT development during early life stages has a close relationship

with puberty timing and later reproductive function. Substantial

evidence has shown that obesity (maternal obesity or obesity during

infancy, childhood, and adolescence) contributes to high risks of

precocious puberty, PCOS, and impaired fertility. Thus, weight

management during early life stages should receive more attention,

as it might be effective to improve reproductive outcomes in young

adults. However, the mechanisms underlying sexual dimorphism in

fat distribution, particularly the role of gonadal and steroid

hormones in mediating depot-specific variations across distinct

adipose depots, remain to be fully elucidated. In clinical practice,

the early identification of obesity-associated reproductive

dysfunction remains unclear, and there is still lack of evidence to

assess the long-term impact of childhood obesity—whether

transient or persistent—on adult reproductive outcomes. Future

studies should focus on clarifying the mechanism whereby adiposity

during early life stages leads to impaired reproductive function.

Longitudinal cohort studies are needed to assess the effectiveness of
Frontiers in Endocrinology 05
weight management interventions in improving reproductive

outcomes during young adulthood.
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FIGURE 2

The connection between obesity during critical life stages and reproductive disorders. Adiposity at each developmental stage prior to puberty onset
might last toward the next life stages. Perinatal factors (maternal obesity, SGA, LGA, and infant obesity) are closely related to precocious puberty.
Obesity during childhood and adolescence is related to high risks of multiple reproductive disorders such as PCOS, hyperandrogenemia,
hypogonadism, and impaired fertility. SGA, small for gestational age; LGA, large for gestational age; PCOS, polycystic ovary syndrome.
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