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systemic metabolic disorder characterized by compromised bone strength and

increased fracture risk. Exosomes, extracellular vesicles measuring 40–160 nm in

diameter, are critical mediators of intercellular communication. Among their

bioactive components, microRNAs (miRNAs) have garnered attention for their

role in the pathogenesis of Osteoporosis. Through complementary binding to

the 3′ untranslated regions of target genes, miRNAs regulate key processes such

as bone formation, bone resorption, angiogenesis, and bone immunity. This

review provides a comprehensive summary of the regulatory roles and

underlying mechanisms of miRNAs in osteoporosis, offering insights into

potential therapeutic strategies.
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GRAPHICAL ABSTRACT
1 Introduction

Osteoporosis (OP) is a metabolic bone disease characterized by

reduced bone mass and deterioration of bone microarchitecture,

resulting in increased bone fragility and susceptibility to fractures

(1, 2). In recent years, OP has become increasingly prevalent among

the elderly, contributing to greater fracture risk, diminished quality

of life, and increased mortality in severe cases (3). According to the

International Osteoporosis Foundation, osteoporosis imposes a

substantial global burden, with approximately 1 in 3 women and

1 in 5 men aged over 50 experiencing osteoporotic fractures (4).

Using the WHO definition, OP affects approximately 6.3% of men

and 21.2% of women over 50 globally, suggesting approximately

500 million people may be affected (5). These trends underscore the

urgent need to address OP as a significant global public health

challenge, especially in the context of an ageing population.

Exosomes are double-layered lipid membrane vesicles, 40–160

nm in diameter, produced within the endosomal compartments of

most eukaryotic cells, and primarily contain biomolecules such as

proteins, RNAs, and lipids that play significant roles in intercellular

communication (6, 7). MicroRNAs (miRNAs), critical epigenetic

regulators, participate in bone development, homeostasis, and

repair processes by modulating the differentiation and activity of

osteoblasts and osteoclasts, and are strongly linked to osteoporosis

pathogenesis (8, 9). miRNA expression is regulated at multiple

levels, including epigenetic mechanisms such as DNA methylation

and histone modifications, as well as proteins regulating their

maturation. Furthermore, miRNA expression is significantly
Frontiers in Endocrinology 02
influenced by environmental factors such as diet (e.g., vitamin D),

exercise, pharmaceuticals, hormones, smoking, and even circadian

rhythms, which alter their circulating levels (8). It has been found

that miRNAs, as important active components of exosomes, can be

transported to recipient cells via exosomes, thereby affecting the

post-transcriptional expression of target genes and regulating the

life activities of recipient cells (10, 11). Increasing evidence indicates

that exosomal miRNAs may exert influence over the skeletal

microenvironment by regulating gene expression through post-

transcriptional gene silencing, which is either directly or

indirectly implicated in the bone remodeling process (12–14).

Several studies have reviewed the importance of miRNAs in the

pathobiology of human disease (15, 16). miRNAs, acting upstream

in the gene expression pathway, exhibit changes in circulating levels

that can earlier reflect biological effects in the skeletal system, thus

making them more sensitive potential biomarkers than classical

protein biomarkers (8). The aim of this review is to provide an

overview of the role of exosomal miRNAs in bone remodeling and

their regulatory mechanisms in OP.
2 The biogenesis of miRNAs

miRNAs are small endogenous non-coding RNA molecules,

typically 19–25 nucleotides in length (17). In 1993, Victor Ambros

and colleagues first identified the lin-4 gene as being involved in the

developmental regulation of the nematode Caenorhabditis elegans

(18). This discovery marked lin-4 as the first member of the miRNA
frontiersin.or
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family. Generally, miRNA genes are transcribed into primary

miRNAs (pri-miRNAs) by RNA polymerase II. These pri-

miRNAs are subsequently processed into precursor miRNAs (pre-

miRNAs) by the nucleases Drosha and its cofactor DGCR8 (19).

Pre-miRNAs are then transported from the nucleus to the

cytoplasm by the Exportin-5 complex. In the cytoplasm, the

enzyme Dicer cleaves pre-miRNAs, yielding mature double-

stranded miRNAs. These mature miRNAs are loaded onto the

Argonaute protein, forming the miRNA-induced silencing

complexes (19). Within these complexes, one strand of the

miRNA duplex is rapidly degraded, while the other strand—the

functional mature miRNA—bind to the 3’ untranslated regions (3’

UTRs) of target mRNAs (Figure 1). This binding regulates gene

expression post-transcriptionally by either inhibiting translation or

inducing degradation of the target mRNAs. Thus, miRNAs play

critical roles in various cellular biological processes.

The functional role of miRNAs primarily depends on their

ability to bind to the 3’ UTRs of target mRNAs, thereby regulating

gene expression (20). Numerous studies have demonstrated that

miRNAs are widely distributed across various human tissues and

organs, significantly affecting essential biological processes such as

proliferation, apoptosis, and differentiation (21, 22). In addition to

their roles in normal physiology, miRNAs are pivotal in various

pathological conditions, such as cancer, pulmonary fibrosis, and

diabetes (23). Notably, the expression levels of specific miRNAs can

be modulated to regulate target gene expression, thus influencing

normal cellular activities (24). Furthermore, miRNAs function

within regulatory networks, as individual miRNAs may target
Frontiers in Endocrinology 03
multiple genes, and individual genes can be regulated by multiple

miRNAs, highlighting the complexity of their regulatory roles (25).
3 The exosomal miRNAs linked to OP

OP, a prevalent and serious bone disease, is characterized by

reduced bone mineral density and increased susceptibility to

fractures. It primarily results from an imbalance between

osteoblast-mediated bone formation and osteoclast-mediated

bone resorption (26). However, the pathogenesis of OP extends

beyond bone remodeling disruptions to involve factors such as

estrogen deficiency, oxidative stress, and inflammation (27, 28).

Emerging evidence indicates that dysregulated microRNA

(miRNA) expression can significantly influence osteoblast

differentiation and activity, contributing to bone remodeling

imbalances and the progression of OP (29). The multifaceted

nature of OP underscores the need to comprehensively

understand its underlying mechanisms and to identify novel

therapeutic targets.

In recent years, the regulatory roles of miRNAs in OP -

particularly those encapsulated within exosomes - have attracted

considerable attention (30–32). These miRNAs play critical roles in

modulating osteoblast and osteoclast proliferation and

differentiation, thereby maintaining the delicate equilibrium

between bone formation and resorption (Figure 2) (33).

Bioinformatics analyses have revealed distinct miRNA expression

patterns associated with postmenopausal osteoporosis (34).
FIGURE 1

Production and action pathway of exosomal miRNAs.
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Notably, a comparative study of patients with osteoporotic versus

non-osteoporotic hip fractures identified five miRNAs significantly

elevated in the serum and bone tissue of osteoporotic patients (35).

Additionally, numerous studies have highlighted the pivotal role of

exosomal miRNAs in OP pathogenesis (36–38). For example,

research investigating miRNA levels in serum samples from

postmenopausal women with osteoporosis identified 331

differentially expressed miRNAs, including 122 upregulated and

209 downregulated miRNAs compared to controls (39).

Collectively, these findings illustrate the intricate relationship

between miRNAs and OP pathogenesis, highlighting potential

therapeutic targets. This review therefore aims to further elucidate

these miRNA-disease connections and facilitate the development of

innovative treatment strategies.
4 The regulatory roles of miRNAs in OP

4.1 Role of miRNAs in regulating bone
formation

Bone formation is a critical process within bone remodeling,

involving the transformation of bone marrow mesenchymal stem

cells (BMSCs) into osteoblasts. These osteoblasts are essential for

secreting collagen fibers and facilitating bone matrix mineralization

(40). Exosomal miRNAs, as remarkable regulators, fine-tune the

expression of factors associated with bone formation, guiding

osteoblast differentiation and function while influencing the

intricate process of bone reconstruction (41). Dysregulated

miRNA expression has been identified as a significant
Frontiers in Endocrinology 04
pathological factor impairing bone formation. miRNAs regulate

osteogenic differentiation and bone formation through key

signaling pathways, including the transforming growth factor b
(TGF-b)/bone morphogenetic protein (BMP) pathway, the

Wingless/Int-1 (Wnt)/b-catenin pathway, and the Notch

signaling pathway (42).

Consistent with these roles, accumulating evidence highlights

the sophisticated role of miRNAs in orchestrating osteogenesis

(Table 1). miRNAs achieve this by either regulating key

transcription factors through complex signaling cascades or

directly targeting osteoblast proliferation and differentiation (43),

emphasizing their potential as crucial mediators in bone health and

promising therapeutic targets for bone-related disorders.

The Runt-related transcription factor (Runx) family is highly

conserved and plays a vital role in organ development, cell

metabolism, and stem cell differentiation (44). This family

includes Runx1, Runx2, and Runx3, with Runx2 being essential

for bone development by regulating osteoblast-mediated bone

formation via various signaling pathways (45). Zhang et al.

identified a set of 11 Runx2-targeted miRNAs, including miR-23a,

miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-

205, miR-217, miR-218, and miR-338, which exhibit lineage-

specific expression patterns in mesenchymal cells. Among these,

all except miR-218 showed a negative correlation with Runx2

expression (46). Most of these miRNAs have been previously

shown to influence osteogenic differentiation (47–50). Notably,

Zhang et al. also identified Runx2 as a downstream target of miR-

30a-5p, where long non-coding RNA (lncRNA)-XIST promoted

osteogenic differentiation in BMSCs by competitively binding miR-

30a-5p and subsequently upregulating Runx2 expression (51).
frontiersin.or
FIGURE 2

Regulation of exosome miRNAs in bone remodeling.
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Additionally, Liu et al. observed increased miR-338-3p expression

in an ovariectomy-induced rat osteoporosis model, reporting that

miR-338-3p inhibited osteogenic differentiation by targeting both

Runx2 and fibroblast growth factor receptor 2 (FGFR2) (52).

Moreover, studies have demonstrated that specific exosomal

miRNAs (e.g., miR-150-3p, miR-1275, and miR-21) enhance

osteoblast differentiation and bone formation by upregulating

Runx2 expression (53–55). These findings underscore the critical

regulatory network involving Runx2 and miRNAs in bone biology.

Bone morphogenetic protein 2 (BMP-2) plays a crucial role in

guiding mesenchymal stem cells (MSCs) towards becoming

osteoblasts. BMP-2 achieves this by interacting with enzyme

receptors on target cells, regulating the Smad signaling pathway,

and ultimately activating osteogenic genes, thereby facilitating the

formation of new bone (56). Studies have demonstrated that

miRNAs such as miR-98 and miR-153 inhibit osteoblast

proliferation and differentiation by directly targeting BMP-2,

consequently influencing bone formation processes (57, 58). In

human bone marrow mesenchymal stem cells (hBM-MSCs), miR-

214 down-regulates the binding of BMP-2 expression to 3’ UTRs,

and silencing miR-214 enhances osteogenic differentiation (59).

Similarly, miR-204’s direct interaction with BMP-2 mRNA

significantly impairs the differentiation of rat bone marrow MSCs
Frontiers in Endocrinology 05
(50). Maintaining a balance between osteogenic and adipogenic

differentiation of MSCs is crucial for bone homeostasis (60).

Inhibiting adipogenic differentiation, thus favoring osteogenic

differentiation, represents a strategy to mitigate bone loss and

enhance bone mass. MiR-146b-5p inhibits adipogenic

differentiation of BMSCs from children with aplastic anemia by

targeting SIAH2 and reducing PPARg stability (61). Furthermore,

scholars have found that miR-140 expression is downregulated in

the serum of neonatal patients with developmental dysplasia,

implying a potential role in neonatal bone formation, although its

specific mechanism remains unreported (62).
4.2 Role of miRNAs in regulating bone-
resorption

Previous research has demonstrated that the receptor activator

of nuclear factor kB ligand (RANKL)/receptor activator of nuclear

factor kB (RANK)/osteoprotegerin (OPG) signaling pathway plays

a pivotal role in regulating bone metabolism. RANKL, a key

initiator of osteoclast differentiation, promotes the transformation

of macrophages into osteoclasts by stimulating the expression of the

transcription factor nuclear factor of activated T-cells cytoplasmic 1

(NFATc1). In contrast, OPG acts as a decoy receptor, binding to

RANKL and thus inhibiting the RANKL/RANK interaction, which

mitigates osteoclast activation and differentiation (63–65).

A study has demonstrated that the overexpression of miR-503 in

ovariectomized mice directly inhibits the RANKL/RANK signaling

pathway, reducing osteoclast activity (66). Several microRNAs, such

as miR-124, regulate osteoclast differentiation by targeting NFATc1

mRNA. Specifically, miR-124 suppresses NFATc1 expression,

affecting osteoclast differentiation through both RANKL-dependent

and RANKL-independent pathways (67). In another study, Li et al.

identified NFATc1 as a direct target of miR-193-3p. Overexpression

of miR-193-3p inhibited NFATc1 expression, leading to reduced

bone resorption in ovariectomized (OVX) mice (68). Additionally,

recent research revealed that lncRNA-MIRG, acting as a competing

endogenous RNA for miR-1897, inhibits miR-1897 expression. This

inhibition enhances NFATc1 expression, promoting osteoclast

differentiation from monocytic macrophages and exacerbating bone

resorption in osteoporosis patients (69). Experimental data

confirmed that increased miR-21 expression correlates with higher

RANKL levels, reduced OPG concentrations, an increased RANKL/

OPG ratio, and accelerated bone resorption, ultimately contributing

to the progression of osteoporosis (70). Furthermore, another study

demonstrated that knocking downmiR-21 in mice reduced osteoclast

function and number, resulting in increased trabecular bone volume

and decreased bone resorption (71). These findings underscore the

critical regulatory role of miRNAs in the RANKL/RANK/OPG

signaling pathway and their potential as therapeutic targets in OP

management. Moreover, miR-27a modulates estrogen-related

processes by targeting the expression of PPARg, thereby inhibiting

osteoclast differentiation and bone resorption (72). Similarly, miR-

146a has been identified as a key regulator in osteoclast formation.
frontiersin.or
TABLE 1 miRNAs that play a key role in bone formation.

miRNAs Target genes
or pathways

Bone
formation

References

miR-23a Runx2 (-) (46)

miR-30c Runx2 (-) (46)

miR-34c Runx2 (-) (46)

miR-133a Runx2 (-) (46)

miR-135a Runx2 (-) (46)

miR-137 Runx2 (-) (46)

miR-204 BMP-2/Runx2 (-) (46, 50)

miR-205 Runx2 (-) (46)

miR-217 Runx2 (-) (46)

miR-218 Runx2 (+) (46)

miR-338 Runx2 (-) (46)

miR-30a-5p Runx2 (-) (51)

miR-338-3p Runx2 (-) (52)

miR-150-3p Runx2 (+) (53)

miR-1275 Runx2 (+) (54)

miR-21 Smad7 (+) (55)

miR-98 BMP-2 (-) (57)

miR-153 BMP-2 (-) (58)

miR-214 BMP-2 (-) (59)
(-) on behalf of the negative control; (+) represents positive regulation.
g

https://doi.org/10.3389/fendo.2025.1544944
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Meng et al. 10.3389/fendo.2025.1544944
Deletion of miR-146a impairs osteoclast-mediated bone resorption,

offering protection against OVX-induced bone loss (73). Together,

these findings highlight the therapeutic potential of exosomal

miRNAs for targeting osteoclast function in osteoporosis treatment.

Future research is essential to further explore miRNA-dependent

pathways that regulate osteoclast function, offering deeper insights

into their role in bone diseases and paving the way for novel

therapeutic strategies (Table 2).
4.3 Role of miRNAs in regulating
angiogenesis

Bone formation and angiogenesis are closely interconnected

processes. Angiogenesis plays a critical role in promoting bone

formation and maintaining bone homeostasis, particularly during

bone development and fracture healing, where angiogenesis and

osteogenesis are coupled (74). Vascular endothelial growth factor

(VEGF) secreted by osteoblasts is an important regulator of the

coupling of osteogenesis and angiogenesis; in particular, VEGFA, as

a major pro-angiogenic factor, can attract endothelial cells to bone

tissue and directly regulate the differentiation of osteoblasts and

osteoclasts, thereby affecting bone metabolism (75). Dysregulated

miRNA expression can lead to abnormal angiogenesis, therefore

miRNAs can be used as potential targets to regulate angiogenesis

and thus participate in the regulation of bone remodeling.

Several studies have shown that VEGFA plays an important

regulatory role in OP (76, 77). Duan et al. found that osteogenic

differentiation was decreased by miR-16 upregulation and increased

by miR-16 downregulation (78). To further determine the

regulatory role of miR-16 in OP, Yu et al. identified miR-16-5p as

a poten t i a l miRNA targe t ing VEGFA mRNA us ing

TargetScanHuman and DIANA software, and found that miR-16-

5p can able to inhibit osteogenic differentiation by downregulating

VEGFA expression (79). In addition, both miR-214-3p and miR-

195 were found to be negative regulators of angiogenesis (80, 81).

Differently, miR-214-3p was able to inhibit angiogenesis by

downregulating VEGF expression and releasing negatively
Frontiers in Endocrinology 06
regulated angiogenic signals, whereas miR-195 inhibited bone-

derived differentiation and angiogenesis in MSCs by decreasing

the paracrine effect of MSCs on angiogenesis. Similarly, miR-181c-

5p, an anti-angiogenic miRNA, is involved in regulating bone

remodeling process by targeting and regulating the expression of

Frizzled-related protein-1 (SFRP1), a negative regulator of

osteoblasts, and activating the Wnt/b-catenin signaling pathway

(82–84).

In addition, there is evidence that miR-29a, miR-126 and miR-

136-3p all have positive effects on angiogenesis (85–87). Among

these, miR-29a can effectively promote angiogenesis and

osteogenesis in mice, while miR-126 and miR-136-3p are able to

promote angiogenesis to accelerate the process of bone formation

by triggering the production of a response signal in human

umbilical vein endothelial cells (HUVEC), providing a new

therapeutic for OP. These miRNAs represent promising

therapeutic targets for the treatment of osteoporosis (Table 3).
4.4 Role of miRNAs in regulating
osteoimmunology

OP is increasingly recognized as an inflammatory bone disease

characterized by a close interplay between immune cells and skeletal

tissues (88, 89). In addition to inflammatory cytokines such as

interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a) and

macrophage colony-stimulating factor (M-CSF), immune cells

produce high levels of reactive oxygen species (ROS), which

activate osteoclastogenic bone resorption (90). ROS are a major

cause of oxidative stress (OS), which exacerbates injury (91). Taken

together, inflammatory cytokines and immune cell-derived ROS

interact directly or indirectly with osteoblasts, leading to an

inflammatory response that drives the development of OP and

regulates communication between the skeletal and immune

systems (Table 4).
TABLE 2 miRNAs that play a key role in bone resorption.

miRNAs Target genes
or pathways

Bone
resorption

References

miR-124 NFATc1 (-) (67)

miR-
193-3p

NFATc1 (-) (68)

miR-1897 NFATc1 (-) (69)

miR-21 OPG (+) (70)

miR-27a PPARg (-) (72)

miR-146 / (+) (73)

miR-503 RANKL/RANK pathway (-) (66)
TABLE 3 miRNAs that play a key role in angiogenesis.

miRNAs Target genes
or pathways

Angiogenesis References

miR-16 VEGFA (-) (79)

miR-
214-3p

VEGF (-) (80)

miR-195 VEGF (-) (81)

miR-
181c-5p

SFRP1/Wnt pathway (+) (84)

miR-29a / (+) (85)

miR-126 SPRED1/Ras/Erk
signaling pathway

(+) (86)

miR-
136-3p

PTEN (+) (87)
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Cheng et al. found that IL-6 is a direct target gene of miR-223-

3p, which inhibits the persistent pro-inflammatory response by

suppressing IL-6 expression, thereby improving the bone

microenvironment and regulating bone metabolism (92). Other

studies have shown that miRNAs such as miR-495, miR-200c, miR-
Frontiers in Endocrinology 07
146a, miR-27a can promote bone formation by directly or indirectly

down-regulating IL-6 (93–96). TNF-a inhibits osteoclast activity

and stimulates osteoblast proliferation and differentiation at certain

stages of differentiation (97), an effect which is improved by

transfection of miR-122 mimics, reducing TNF-a stimulation in

the organism, and reducing apoptosis (98). In addition, M-CSF acts

as a regulator of osteoclasts and is able to induce osteoclast

differentiation. miR-21, miR-143-3p and inhibition of miR-146a

reduce osteoclast activity and inhibit osteoclast differentiation by

reducing the amount of M-CSF in the bone microenvironment,

thereby reducing bone loss (73, 99, 100).

Moreover, oxidative stress and exosome-derived miRNAs

significantly influence OP pathogenesis (101, 102). Ye et al. found

that miR-125a-5p and ROS were upregulated during osteogenic

induction of hADSCs in vitro, suggesting that miR-125a-5p may

reduce osteoblasts by exacerbating ROS damage and inhibiting

VEGF expression, thereby reducing osteoblast sexual bone

formation (103). Notably, forkhead box O1 (FoxO1), an

important protein that protects bone from oxidative damage, is

able to inhibit osteogenic differentiation by reducing ROS levels in
TABLE 4 miRNAs that play a key role in osteoimmunology.

miRNAs Target
genes or
pathways

Osteoimmunology References

miR-223-3p IL-6 (+) (92)

miR-122 TNF-a (+) (98)

miR-146a M-CSF (-) (73)

miR-21 M-CSF (+) (99)

miR-143-3p M-CSF (+) (100)

miR-125a-5p ROS, VEGF (-) (103)

miR-424 FGF2 (+) (105)
FIGURE 3

The role of miRNAs in osteoporosis.
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cells (104). Furthermore, FoxO1 inhibited miR-424 expression and

promoted cell proliferation and osteogenic differentiation, in part

through the miR-424/FGF2 pathway (105).
5 Discussion

OP is a complex systemic metabolic disease characterized by

multiple interacting mechanisms and pathways, as well as intricate

communication between mesenchymal stromal cells, immune cells,

and other biological cell types. This communication occurs either

through direct cell-to-cell contact or via secreted factors, which are

often transported by extracellular vesicles such as exosomes.

Current treatments for OP primarily focus on inhibiting

osteoclast proliferation and activation to reduce the rate of bone

resorption. However, although drugs like bisphosphonates,

denosumab, and estrogens are commonly used, long-term

administration of these agents is associated with significant

adverse effects and limited efficacy; moreover, the fundamental

pathophysiological mechanisms of osteoporosis are not yet fully

understood (106). As a result, there is a pressing need for further

research into the molecular mechanisms regulating bone

metabolism. Identifying low-toxicity, highly efficient drug targets

that promote bone health could provide innovative strategies and

methods for the prevention and treatment of OP.

miRNAs have the potential to serve as an early diagnostic

biomarker for OP as well as a means of detecting the progression

of this disease (64). Utilizing miRNAs that regulate osteoporosis

pathogenesis could represent an effective therapeutic approach. For

instance, miR-375 has been identified in the serum of

postmenopausal women with an elevated risk of osteoporosis,

serving as a potential marker of disease progression (107).

Furthermore, prolonged administration of bisphosphonates has

been associated with inhibited bone formation due to the

overexpression of miR-30a-5p (108). It is noteworthy that, due to

their multi-pathway and multi-target regulatory ability, the same

miRNAs may regulate different targets, and multiple miRNAs may

regulate the same or different mechanisms through the same or

different targets. Consequently, the identification of specific

miRNAs and their molecular targets and regulatory mechanisms

involved in bone metabolism is an essential preliminary step in the

development of clinical applications.

The role of miRNAs in exosomes in the aetiology and

progression of OP has become a focus of research in recent years.

These miRNAs regulate the proliferation and differentiation of

osteoblasts and osteoclasts, influence angiogenesis, and participate

in processes such as bone immunology. The present review provides

a comprehensive overview of the role of multiple miRNAs in the

regulation of osteoporosis genesis mechanisms (Figure 3). However,

as there is no one-to-one correspondence between miRNAs and

genes, specific miRNAs may affect multiple genes, which may result

in potential side effects. Consequently, miRNA-based
Frontiers in Endocrinology 08
pharmaceutical agents for the management of osteoporosis have

yet to be subjected to clinical trials.

The discovery of miRNAs and their regulatory roles in bone

metabolism is closely linked to the development of new diagnostic

and therapeutic techniques for OP. To translate these insights into

clinical practice, comprehensive basic and clinical research is

required to develop novel and more effective osteoporosis

treatments. In the era of precision medicine, exploring exosomal

miRNAs and their functions offers a unique approach to unraveling

the molecular mechanisms of OP. miRNAs, as the main active

components secreted by exosomes, have the unique advantage of

being fine and precise, which will make this a reliable, sensitive and

advanced technology for the treatment of OP in future studies.
Author contributions

FM: Writing – review & editing, Writing – original draft. CY:

Investigation, Writing – review & editing. NL: Writing – review &

editing. WH: Writing – original draft, Supervision.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by the National Natural Science Foundation of China Youth Science

Fund, grant number 82004087.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1544944
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Meng et al. 10.3389/fendo.2025.1544944
References
1. Yang J, Jiang T, Xu G, Liu W. Bibliometrics analysis and visualization of
sarcopenia associated with osteoporosis from 2000 to 2022. J Pain Res. (2023)
16:821–37. doi: 10.2147/jpr.S403648

2. Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, et al. Integrative bone
metabolomics-lipidomics strategy for pathological mechanism of postmenopausal
osteoporosis mouse model. Sci Rep. (2018) 8:16456. doi: 10.1038/s41598-018-34574-6

3. Liu H, Song P, Zhang H, Zhou F, Ji N, Wang M, et al. Synthetic biology-based
bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate
osteoporosis. J Extracell Vesicles. (2024) 13:e12429. doi: 10.1002/jev2.12429

4. Foundation IO. Epidemiology of osteoporosis and fragility fractures[EB/OL] (2025).
Available online at: https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-
osteoporosis-and-fragility-fracturesref_bottom_6 (Accessed June 16, 2025).

5. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N. A
reference standard for the description of osteoporosis. Bone. (2008) 42:467–75.
doi: 10.1016/j.bone.2007.11.001

6. Yao Y, Jiang Y, Song J, Wang R, Li Z, Yang L, et al. Exosomes as potential
functional nanomaterials for tissue engineering. Adv Healthc Mater. (2023) 12:
e2201989. doi: 10.1002/adhm.202201989

7. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake.
Int J Mol Sci. (2023) 24. doi: 10.3390/ijms24021337

8. Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as epigenetic markers
in osteoporosis and bone fracture risk: A step forward in personalized diagnosis. Front
Genet. (2019) 10:1044. doi: 10.3389/fgene.2019.01044

9. Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone.
(2021) 143:115760. doi: 10.1016/j.bone.2020.115760

10. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA:
trafficking, sorting, and function. Genomics Proteomics Bioinf. (2015) 13:17–24.
doi: 10.1016/j.gpb.2015.02.001

11. Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, et al. Exosome biogenesis,
secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif.
(2020) 53:e12857. doi: 10.1111/cpr.12857

12. Zeng ZL, Xie H. Mesenchymal stem cell-derived extracellular vesicles: a possible
therapeutic strategy for orthopaedic diseases: a narrative review. Biomater Transl.
(2022) 3:175–87. doi: 10.12336/biomatertransl.2022.03.002

13. Kim O, Tran PT, Gal M, Lee SJ, Na SH, Hwangbo C, et al. RAS−stimulated
release of exosomal miR−494−3p promotes the osteolytic bone metastasis of breast
cancer cells. Int J Mol Med. (2023) 52. doi: 10.3892/ijmm.2023.5287

14. Liu M, Sun Y, Zhang Q. Emerging role of extracellular vesicles in bone
remodeling. J Dent Res. (2018) 97:859–68. doi: 10.1177/0022034518764411

15. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the
management of cancer and other diseases. Nat Rev Drug Discov. (2017) 16:203–22.
doi: 10.1038/nrd.2016.246
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