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Aim: Endometriosis is characterized by immune evasion and progressive

inflammation. This study aimed to identify key genes related to immune and

inflammation in endometriosis.

Methods: Differentially expressed genes between patients with and without

endometriosis were identified from the GEO database. Furthermore, immune-

and inflammation-related genes (IRGs) were identified by intersecting the

differentially expressed genes with known immune and inflammatory genes.

Functional analyses of the GO and KEGG pathways of these genes were

performed. Subsequently, three machine learning models—LASSO regression,

SVM-RFE, and Boruta—were conducted to identify the potential key genes in

endometriosis. Finally, the expressions of key genes in endometriosis were

verified in two validation cohorts using an online database and qRT-PCR, and

their immunoregulatory properties were verified.

Results: A total of 13 differentially expressed IRGs were identified. Using machine

learning algorithms, five key genes were selected in the endometriosis: BST2,

IL4R, INHBA, PTGER2, and MET. Furthermore, the three hub genes exhibited

consistent trends across both training and validation datasets. The three keys also

correlated with infiltrated immune cells, checkpoint genes, and immune factors

in various degrees. Finally, validation analysis using the online database and qRT-

PCR confirmed that MET expression aligned with outcomes from both training

and validation datasets.

Conclusion: Three immune- and inflammation-related genes were identified as

potential biomarkers of endometriosis, providing new insights into the molecular

mechanisms underlying immune function in endometriosis. The immune-related

function of MET, particularly its correlation with NK cell activity in endometriosis,

will be the focus of future studies.
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1 Introduction

Endometriosis(EM) is one of the most prevalent gynecological

diseases, with a 10%-15% prevalence rate among women of

reproductive age (1). It is estimated that endometriosis affects

approximately 190 million women worldwide (2). It clinically

manifests as severe pelvic pain and reduced fertility and is

characterized by the presence and growth of endometrial tissue

outside the uterus. This disease significantly impairs patients’

quality of life and imposes a heavy burden on the healthcare

systems (3, 4). The progression of the disease is slow and often

takes 7-10 years before the onset of symptoms, resulting in delays in

diagnosis and optimal treatment (5). The pathogenesis of

endometriosis remains poorly understood. Despite decades of

research, noninvasive diagnostic markers for endometriosis are

lacking, and no curative treatment is available. Therefore, it is

imperative to identify the potential diagnostic biomarkers and

molecular mechanisms of endometriosis to improve early

diagnosis and treatment.

The widely accepted theory of endometriosis pathogenesis is a

combination of retrograded menses and the immunosuppression

hypothesis. Disturbances of the immune microenvironment

are critical factors in the pathophysiology and development of

endometriosis (6). Endometriosis is a chronic inflammatory disorder

characterized by immune evasion and progressive inflammation (7).

Inflammation resulting from immune dysregulation is the primary

mechanism involved in cell proliferation and infiltration (8).

Consequently, it is important to explore the genes associated with

immune response and inflammation related to endometriosis.

Owing to the widespread adaptation of computer-based

technology in the health sector and the subsequent availability of

large health databases, disease prediction, and medical informatics

have recently gained attention from the data science research

community (9). Machine learning algorithms have also been

extensively applied to screen genes associated with diseases (10,

11). Abnormal immune and inflammatory changes may be

responsible for major symptoms of endometriosis and contribute

to the development of endometriosis and the growth of endometrial

tissue (12). Building on these characteristics, this study aims to

identify novel and important genes as diagnostic markers and

therapeutic targets with endometriosis by constructing and

validating immune-related and inflammation-related genes (IRGs)

using machine learning algorithms. We identified three critical

genes and verified their potential as diagnostic markers.

Furthermore, we analyzed the potential relationship between key

genes and their immunoregulatory properties, demonstrating the

significant role of these genes in the immunopathogenesis of
Abbreviations: IRG, immune-related and inflammation-related gene; PPI,

Protein-Protein Interaction Network; SVM, Supports vector machines; RF,

Random forest; GEO, Gene expression omnibus; GSVA, Gene set variation

analysis; ANN, artificial neural network; GO, Gene ontology; KEGG, Kyoto

encyclopedia of genes and genomes; AUC, Area under the curve; qRT-PCR,

Quantitative reverse-transcription polymerase chain reaction; PCA, Principal

component analysis; DCA, Decision curve analysis.
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endometriosis. Finally, MET’s downregulation in the online

database and clinical samples from the endometriosis group

versus the control group. In conclusion, this study offers a novel

perspective for the diagnosis and treatment of endometriosis at the

molecular level.
2 Materials and methods

2.1 Collection of tissue samples

This study was approved by the Medical and Ethics Committees

of Fujian Maternity and Child Health Hospital (No. 2023KY140-

KS001), and informed consent was obtained from each patient prior

to enrollment. Ectopic endometrial tissue from two patients with

broad ligament endometriosis, three patients with sacral ligament

endometriosis, and five patients with ovarian endometriosis (all in

the follicular phase, n = 10) (EM group) and 10 eutopic endometrial

tissues from women (follicular phase,n = 10) with tubal factor

infertility without endometriosis (control group). All 20 women

underwent hysteroscopy and laparoscopy surgery at the

Department of Obstetrics and Gynecology, Fujian Maternity and

Child Health Hospital, between Oct 2023 to Jun 2024.
2.2 Data acquisition and processing

In this study, the gene expression datasets GSE7305, GSE23339,

and GSE7307 were obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). The study design is illustrated in

Figure 1. The training dataset GSE7305 comprised 10 samples

without endometriosis and 10 samples with endometriosis, which

were sequenced using GPL570 technology. The validation dataset

GSE23339, comprising 9 non-endometriosis and 10 endometriosis

samples, was sequenced using GPL6102. Additionally, GSE7307,

which included 18 endometriosis and 18 non-endometriosis

samples, was sequenced using GPL570.

Clinical information and sequencing data were obtained in

compliance with GEO requirements. Data filtering, background

correction, log2 transformation, and normalization were performed

on the datasets.
2.3 Identification of differentially expressed
IRGs

The differentially expressed genes (DEGs) between the

endometriosis and non-endometriosis groups were analyzed using

the LIMMA package in R Studio. Adj.P <0.05 and |log2FC| >1.0

were set to determine the significant differentially expressed genes

in patients with endometriosis.

This study intersected the differentially expressed genes with

immune-related genes and inflammatory-related genes as the

differential expressed IRGs using the R package ‘ggVenndiagram ‘.
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2.4 Functional enrichment analysis
and construction of protein-protein
interaction network

To identify specific biological pathways in IRGs, we conducted a

comprehensive analysis. The R package ‘clusterProfler’ was used to

perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses to identify the functions and pathways.

Visualization of the results was achieved using the R package ‘ggplot2’.

GO annotations encompassed threemain categories: biological processes

(BP), cellular components (CC), and molecular functions (MF).

To construct the Protein-Protein Interaction (PPI) Network,

the differentially expressed IRGs were simultaneously input into the

STRING database (https://cn.string-db.org/), with the species

defined as Homo sapiens and the PPI Network parameter set to

0.4 (medium confidence). Subsequently, Cytoscape (https://

cytoscape.org/) was employed to visualize the protein-protein

interaction network.
2.5 Machine learning and screening for
potential key genes

To select disease diagnostic markers in the above IRGs, we

developed three machine-learning models: LASSO regression,

SVM-RFE, and Boruta. The potential key genes were determined

by overlapping LASSO regression analysis, SVM analysis, and the

Boruta algorithm results.
2.6 Identification and validation of the key
genes

The validation datasets GSE23339 and GSE7307 were utilized to

identify the expression trend of potential key genes. Furthermore,
Frontiers in Endocrinology 03
both the training and validation cohorts were utilized to evaluate

the discriminative ability of hub genes in distinguishing

endometriosis from non-endometriosis samples. The diagnostic

performance of these hub genes was assessed by plotting the

AUC using the R package ‘pROC’.

To further evaluate the predictive capability of the key genes,

we developed a nomogram using the R package ‘rsm’ with the

training set. The predictive performance of the nomogram

model was assessed through calibration curves and decision curve

analysis (DCA).
2.7 Gene-gene interaction networks and
enrichment pathway analysis of key genes

GeneMANIA (https://genemania.org/) searches through

extensive, publicly available biological datasets to identify functionally

related genes. We constructed Gene–Gene Interaction (GGI)

networks for key genes using the GeneMANIA platform and

selected the top 20 most relevant genes as well as the seven most

important pathways associated with the three key genes.

Gene Set Enrichment Analysis (GSEA) was performed for each

key gene to explore the potential functions of the three key genes.

First, we performed Spearman correlation analysis on the training

set to assess the relationship between each key gene and all other

genes using the R package ‘psych’. Then the enrichment analysis of

GSEA was conducted using the R package ‘clusterProfiler’, based on

the KEGG background gene set. The results were screened using the

criteria |NES|>1 and p <0.05.
2.8 The construction and verification of the
artificial neural network model

The training cohort was utilized to develop the Artificial Neural

network (ANN) model, while the validation cohort was used for

signature validation. The discrimination and net clinical benefit of

the ANN model were assessed using a Receiver operating

characteristic (ROC) curve.
2.9 Analysis of the relationship between
key genes and immunoregulatory
properties

2.9.1 Immune cell infiltration pattern
To elucidate the differences in infiltrated immune cells between

the control and EM samples, the training cohort was analyzed using

ssGSE(single sample gene set enrichment analysis), yielding

enrichment scores for 28 immune cells based on immune-related

genes referenced in the literature (PMID:28052254). Spearman’s

correlation analysis was conducted to investigate the relationship

between hub gene expression and immune cell abundance using the

‘psych’ package in R Studio. The results were visualized using the R

package ‘ggplot2’. Statistical significance was set at P <0.05.
FIGURE 1

The study design. DEGs, differential expressed genes; ROC, Receiver
Operator Characteristic; GSEA, Gene Set Enrichment Analysis; GGI,
Gene-Gene Interaction Network; ANN, Construction of artificial
neural network.
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2.9.2 Correlation between key genes with
immune checkpoints

This study involved a comparison of 53 immune checkpoints

[PMID: 36979463, PMID: 36793711]. We analyzed differences

in immune cell scores between the disease and control groups

using the rank sum test and visualized the results with boxplots.

Following this, we conducted Spearman’s correlation analysis to

investigate the relationship between key genes and 18 differential

immune checkpoints.

2.9.3 Correlation with immune factors
The relationships between key genes and different immune

factors, including 24 chemokines, 14 immunosuppressive factors,

and 27 immunostimulatory factors, were evaluated using

Spearman’s correlation analysis.
2.10 Validation of key genes in an online
database (Turku Endometriosis Database)

The online Turku Endometriosis Database (https://endometdb.

utu.fi) was used to validate the expression of five key genes in

various tissues of patients with EM.
2.11 RNA isolation, reverse transcription,
and real-time RT-PCR

Total RNA was extracted from the ectopic endometrial tissues

of the EM group and endometrial tissues of the control group using

TRIzol reagent (RNAprep Pure Tissue Kit, TIANGEN, Beijing,

China) and was then reverse-transcribed into cDNA using the

Primescript reverse transcription reagent kit (Takara, Dalian,

China) following the manufacturer’s instructions.

Real-time PCR was performed using 2×SG Fast qPCR Master

Mix (BBI, Roche, Switzerland) on a LightCycler480II Real-Time

PCR System (Roche, Rotkeruz, Switzerland). A 10ul PCR reaction

that included 1ul of cDNA, 5ul of sybrGreen qPCRMaster Mix, and

0.2ul of each primer was prepared and adjusted to the final volume

with double distilled H2O (ddH2O). b-actin was used as the

internal control for each run. Reactions were performed

according to the manufacturer’s protocol. The relative mRNA

expression ratio was quantified using the 2 (-DDCt) method. The

Real-time RT-PCR primers used are listed below.

H-MET-F 5’ AATCTTGGGACATCAGAGGGT 3’

H-MET-R 5’ TAATGTATGCTCCACAATCACTTCT 3’

H-b-actin-F 5’ TAGTTGCGTTACACCCTTTCTTG 3’

H-b-actin-R 5’ TCACCTTCACCGTTCCAGTTT 3’
2.12 Western blotting

After extraction of total tissue proteins from RIPA lysates

(Servicebio, Wuhan), protein concentrations were quantified using
Frontiers in Endocrinology 04
the BCA Protein Quantitative Assay Kit(Jabes Biotechnology

Guangzhou). The proteins were denatured by boiling at 100°C for 10

min. Subsequently, the protein samples (40 ugs per well) were separated

via electrophoresis on a 10% SDS-PAGE gel and transferred to a PVDF

membrane(Millipore, USA). The membrane was incubated with a

primary antibody rabbit anti-MET antibody(Abclonal Wuhan) and

rabbit anti-b-actin(Affinity USA) at 4°C overnight). The next day, after

washing the PVDF membrane three times with TBST (Servicebio

Wuhan), it was incubated with anHRP-conjugated secondary antibody

for 2 h at room temperature on an orbital shaker. Lastly, the membrane

was exposed for imaging using ImmobilonWestern Chemiluminescent

HRP Substrate (Servicebio, Wuhan). The development was carried out

in a dark room, and the grayscale values of the target bands were

analyzed after taking photographs.
2.13 Statistical analysis

Statistical analyses were conducted using Student’s and Mann-

Whitney tests with Prism version 10.0 Graphpad software. A P-

value of<0.05 was considered statistically significant.
3 Result

3.1 Identification of differentially expressed
IRGs in EM

We screened 1189 differentially expressed genes(DEGs)

between EM and control samples in the GSE7305 dataset,

including 634 upregulated and 555 downregulated DEGs

(Supplementary Table S1). Volcano and heat maps of the DEGs

are shown in Figures 2A, B.

To screen differential expressed IRGs, we further overlapped

DEGs and immune-related and inflammatory-related genes, and 13

IRGs were acquired, including BST2, C3AR1, IL4R, OSMR,

INHBA, CXCL8, PTGER2, CCL2, CD14, ADM, IL7R, MET, and

C5AR1 (Figure 2C).
3.2 Functional enrichment analysis of
differential expressed IRGs

To investigate potential interactions among these genes, we

performed the analysis of the protein-protein interaction (PPI)

network involving 13 candidate genes. Fifteen interaction pairs,

consisting of 9 genes, were identified. Refer to Figure 2D.

Subsequently, we annotated the 13 genes using the KEGG

pathway and GO function to investigate the biological

significance of each gene. A total of 217 Gene Ontologies (GOs)

and 24 Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways were enriched, as indicated in Supplementary Tables S2,

S3. The primary enriched terms in the GO-CC category were

‘secretory granule membrane ’ , ‘external side of plasma
frontiersin.or
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membrane’, and ‘azurophil granule membrane’. In the GO-BP

category, the top term included ‘response to molecules of

bacterial origin’, ‘regulation of chemotaxis’, ‘positive regulation of

response to external stimulus’, and ‘neutrophil chemotaxis’

(Figure 3B; P<0.05). Additionally, the GO-MF categories were

predominantly enriched in ‘ immune receptor activity ’ ,
Frontiers in Endocrinology 05
‘complement receptor activity’, and ‘cytokine receptor activity’

(Figures 2E–G; P<0.05). To further determine the potential

signaling pathway, we analyzed the KEGG pathway. As

Figures 2E-H indicated the IRGs were significantly enriched in

several KEGG pathways, such as ‘cytokine-cytokine receptor

interaction,’ ‘Alcoholic liver disease,’ and ‘Malaria,’ among others.
FIGURE 2

Identification of DEGs and functional enrichment analysis of differential expressed IRGS. (A) The heatmap and (B) volcano plot of differentially
expressed genes (DEGs) between EM and control samples. (C) The venngram of DEGs and IRGs. (D) Analysis of PPI. (E–H) Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of differential expressed IRGs.
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These results indicate that certain IRGs may play a role in the

immune response.
3.3 Identification of key genes

We use three machine learning models to screen potential hug

genes. LASSO regression analysis, SVM-RFE analysis, and the

Boruta algorithm were employed to identify key genes in the

training dataset (Figures 3A–C). We screened meaningful five key

genes: BST2, IL4R, INHBA, PTGER2, and MET. These genes
Frontiers in Endocrinology 06
resulted from the intersection of 9 genes from LASSO, 5 genes

from SVM-RFE, and 12 genes from Boruta (Figure 3D).
3.4 Validation of the key genes

Two validation datasets were used to confirm the differential

expression of the hub genes and to demonstrate their diagnostic

capacity for endometriosis (Figure 4A). The three hub genes

exhibited consistent trends across both training and validation

datasets. Two genes exhibited an up-regulated trend, while one
FIGURE 3

Screen for potential key genes. (A) Genes identifed by the LASSO regression analysis. (B) Optimal biomarker selection using the SVM-RFE analysis.
(C) The 12 genes selected by the Boruta algorithm. (D) Venn diagram showing the potential key genes intersected by LASSO, SVM, and Boruta.
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gene displayed a down-regulated trend in the endometriosis groups

across both the training and validation databases.

The three genes were identified as key targets and their ability to

differentiate between EM samples and control samples was

evaluated using ROC analysis. The area under the curve (AUC)

values of the three key genes were greater than 0.8 in both the
Frontiers in Endocrinology 07
training and validation sets, indicating their strong diagnostic value

in EM (Figure 4B).

We also developed a nomogram model to assess the predictive

ability of key genes. The calibration curve indicated the high accuracy

of the nomogram model in predicting EM (Figure 4C). DCA

indicated potential benefits for patients utilizing the nomogram
FIGURE 4

Identification and Validation of key genes. (A) Expression profiles of 5 potential key genes between EM and control group in the training and 2 test
cohorts. (B) Receiver operating characteristics (ROC) curves of 3 key genes in training and test cohorts. (C) Nomogram displaying the predicted risk
for EM based on the KEY genes. (D) Calibration curve showing the predicted performance of the nomogram. (E) DCA showing the clinical benefits of
the nomogram. (F) ROC curves showing the diagnostic performance of the feature genes.
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model, showing a greater clinical advantage observed compared to the

single gene curve (Figure 4F). The AUC values for the ROC curves in

the testing sets approached 1 for the nomogram model (Figure 4E).
3.5 GGI networks, GSEA enrichment
analysis, and ANN model

We used the GeneMANIA platform to establish a Gene-Gene

Interaction Network (GGI). The analysis identified the top

20 correlated genes and the top 7 significant pathways related
Frontiers in Endocrinology 08
to the three key genes. The three key genes are linked to

the pathways involving peptidyl-tyrosine phosphorylation,

peptidyl-tyrosine modification, and regulation of peptidyl-tyrosine

phosphorylation (Figure 5A).

We used GSEA analysis to study the specific signaling pathways

involved in key genes in endometriosis. The findings revealed that

three genes were significantly enriched in cell cycle pathways.

Additionally, BST2 and MET were found to be enriched in the

proteasome, ribosome, and spliceosome pathways (Figures 5B–D).

Three hub genes were integrated to construct an artificial neural

network(ANN) in the training datasets (Figure 5E). A prediction
frontiersin.org
FIGURE 5

Gene-gene interaction networks and Enrichment pathway analysis of key genes. (A) GGI of key genes. (B–D) MET, IL4R and BTS2 GSEA analysis. (E)
Construction of artificial neural network (ANN) and model evaluation. (F) ROC curves of the ANN model.
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model was then established based on the weights of the three key

genes and the neural network. The ROC curves indicated that the

key genes exhibited AUC values higher than 0.9 in the training set,

demonstrating their significant potential in neural network

prediction (Figure 5F).
3.6 Validation of the potential
immunoregulatory properties of key genes

To investigate the differences in the immune microenvironment

between the EM group and the control group, we employed

immune infiltration analysis as well as an association analysis

between key genes and immune checkpoints and factors.
Frontiers in Endocrinology 09
3.6.1 Immune infiltration analysis
Significant differences were observed in twenty-two kinds of

immune cells between the disease and control groups (p<0.05)

(Figures 6A, B). The heatmap revealed that, among the 22 kinds of

immune cell types, BST2 demonstrated the highest positive correlation

with CD56bright natural killer cells (r = 0.87, P<0.05). Otherwise,

CD56bright natural killer cells correlated with Memory B cells(r=-0.82,

P<0.05) (Figure 6C). Conversely, MET exhibited the most significant

negative correlation with this cell type (r = -0.81, P<0.05) (Figure 6D).

3.6.2 Association between key genes and
checkpoints

Differential comparisons of immune cell scores between the EM and

control groups indicated significant differences at 18 immune
FIGURE 6

The profiles of immune cell subtype distribution pattern in training cohort. (A) The boxplots of the immune infiltration landscape in EM and control.
(B) The heatmap of 22 immune differentially infiltrated fraction. (C) Correlation heatmap of all 22 immune cells. (D) Correlation heatmap of 3 key
genes and 22 immune cells.
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checkpoints as illustrated by box plots using the ggplot2 package

(Figure 7A). Additionally, the relationships between the key genes and

the 18 differential immune checkpoints were examined (Figure 7B). The

strongest positive correlation was found between BST2 and CASP1 (r =

0.85, P < 0.05), whereas the most significant negative correlation was

identified between BST2 and PDIA3 (r = -0.85, P < 0.05). Furthermore, a

significant positive correlation was observed betweenMET andHMGB1

(r = 0.77, P < 0.05), whereas a notable negative correlation was detected

between MET and P2RX7 (r = -0.8, P < 0.05). The most robust positive

correlation was observed between IL4R and CASP1 (r = 0.89, P < 0.05),

whereas the most notable negative correlation was observed between

IL4R and HMGB1 (r = -0.76, P < 0.05).

3.6.3 Analysis of correlation between key genes
with immune factors

The examination of the relationship between key genes and

chemokines indicated that the most significant positive correlation

existed between BST2 and CCL8 (r = 0.77, P<0.05), whereas the

most substantial negative correlation was observed between BST2
Frontiers in Endocrinology 10
and XCL1 (r = -0.56, P<0.05). The strongest positive correlation

between MET and XCL1 was found (r = 0.83, P<0.05), whereas the

most significant negative correlation was found between MET and

CCL2 (r = -0.68, P<0.05). Conversely, the most significant positive

correlation was observed between IL4R and CCL2 (r = 0.84, P <

0.05), whereas the most negative correlation was observed between

IL4R and XCL1 (r = -0.50, P < 0.05) (Figure 7C).

The analysis of the relationships between the key genes and

immunosuppressive factors revealed several significant correlations.

The strongest positive correlations were found between: BST2 and

LAG3 (r=0.90, P<0.05), MET and KIR2DL3 (r=0.61, P<0.05), and IL4R

and CSFIR (r=0.84, P<0.05). The most significant negative correlations

included: BST2 and KIR2DL1 (r = -0.46, P < 0.05), MET and LAG3

(r = -0.63, P < 0.05), and IL4R and KIR2DL1 (r = -0.54, P < 0.05)

(Figure 7D).

The analysis of the relationship between key genes and

immunostimulatory factors revealed a strong positive correlation

between BST2 and CD40, TNFSF14 (r=0.70, P<0.05), MET

and IL6R, LTA (r=0.45, P<0.05), and IL4R and TNFSF14
FIGURE 7

(A) Expression levels of immune checkpoint genes in EM and control group. (B) correlation between key genes and checkpoint. (C–E) Correlation
between key and chemokine, immunosuppressive cytokine and immunostimulatory factor.
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(r=0.93, P<0.05). On the other hand, the most significant

negative correlations were between BST2 and LTA (r = -0.33,

P < 0.05), MET and CD40 (r = -0.70, P < 0.05), and IL4R and

LTA (r = -0.52, P < 0.05) (Figure 7E).
3.7 Validation of key genes in an online
database and qRT-PCR

In addition to the GEO datasets, we identified the expression of

the three hub genes in an online database, noting that the MET gene

exhibited a consistent trend in both the GEO datasets and the online

database (Figure 8A). In contrast, the gene BST2 exhibited an

opposing trend, while IL4R exhibited a minor variation.

Consequently, we assessed the expression of MET through qRT-
Frontiers in Endocrinology 11
PCR analysis and Western Blotting experiments using ectopic

endometrial tissue from the EM group and normal endometrium

from the control group (Figure 8B). Consistent with the

bioinformatics analysis results, mRNA and protein expression of

MET was significantly lower in EM tissues than in controls.
4 Discussion

Endometriosis is a chronic, inflammatory disease characterized

by the growth of endometrial tissue outside of the uterine cavity.

Immunological dysfunction has been proposed as a critical

facilitator of ectopic lesion growth following retrograde

menstruation of endometrial debris. One of the major challenges

in contemporary gynecology is understanding and preventing the
FIGURE 8

(A–C) Expression trend of three hub genes in an online dataset. (D) Protein expression MET detected by Western Blot in tissue sample. (E) Western
Blot verified the difference of MET in protein in patients' tissue between EM and control. (F) RT-qPCR verified the difference in MET gene mRNA in
patients' tissue between EM and control.
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pathophysiology of endometriosis. An enhanced understanding of

immune and inflammatory mechanisms occurring at the site of

endometriotic lesion development may provide invaluable insight

into the disease’s pathogenesis of the disease.

In this study, we analyzed bioinformatics databases to identify

the potential key genes involved in endometriosis. Initially, we

intersected 1,189 DEGs and 1,996 immune and 200 inflammation

genes, screening out 13 DEGs correlated with inflammation and

immunity. Subsequently, LASSO regression analysis, SVM-RFE

analysis, and Boruta machine learning were performed to select

five potential key genes from 13 DEGs. By comparing the

differences in the expression of these five genes in both the

training and external validation sets, we identified 3 key genes

(MET, IL4R, and BST2) that exhibited consistent trends and

significant differences between the training and validation sets.

Finally, we validated MET expression in online datasets and

endometriosis samples to confirm its role as a hub gene.

In the present study, based on IRGs, we identified a hub

gene that is closely associated with intrinsic characteristics,

such as molecular markers and therapeutic targets. Our findings

confirm the close correlations between these three genes and

immunoregulatory mechanisms, demonstrating both positive and

negative relationships with immune cells, chemokines, and immune

factors to varying degrees. Endometriosis, a disease influenced by

immune-related mechanisms, has prompted numerous studies to

identify biomarkers associated with immune function. Wang et al.

utilized lasso regression and MCP-counter to identify immune-

related biomarkers (13). In another study, He et al. intersected

differentially expressed genes (DEGs) with transcription factors

(TFs) from two databases and immune-related genes (IRGs) from

the ImmPort database. Subsequently, they constructed a protein-

protein interaction (PPI) network using Cytoscape to identify hub

genes (14). In contrast, our study intersected DEGs with immune

and inflammation-related genes, integrated machine learning

results, validated key findings using training datasets and online

databases, and investigated immunoregulatory properties. We

aimed to screen and identify key genes using a comprehensive

step-by-step screening process, enhancing the accuracy and

consistency of our research.

The MET proto-oncogene, located on chromosome 7q21–q31

(15), encodes the tyrosine kinase receptor of the hepatocyte growth

factor (HGF). It is characterized as a single-pass transmembrane

receptor comprising an extracellular domain, transmembrane

and juxtamembrane regions, and a tyrosine kinase domain

(16). In cancer, aberrant MET signaling contributes to tumor

invasion and regulates various physiological processes, including

embryogenesis, wound healing, liver regeneration, angiogenesis,

and immunomodulation (17–20). In a study by Finisguerre et al.,

Met was essential for neutrophil chemoattraction and cytotoxicity.

MET is induced by inflammatory stimuli in both mouse and human

neutrophils, subsequently activating the endothelium, inducing

iNOA production upon HGF stimulation, and promoting cancer

cell death (21). These findings were consistent with those of our
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analysis, suggesting that the immunological role of MET may be

linked to the onset and progression of endometriosis.

IL4R is a specific cell surface receptor with which IL-4 interacts

to exert its activities. The IL-4 receptor (IL-4R) signaling system

consists of two receptors: type 1 IL-4R and type 2 IL-4R (22, 23). IL-

4 and IL-13 share a common receptor subunit and signaling

pathway involving the Janus kinase (JAK): STAT6 pathway (24).

IL-4 and IL-13 play important roles in Th2 immune responses,

metabolism, tissue regeneration, remodeling, cancer, learning, and

memory (25). Bone marrow stromal cell antigen 2 (BST2) is

expressed in numerous cells, including hepatocytes, plasma blast

cells, early plasma cells, mature B cells, dendritic cells, pneumocytes,

monocytes, pancreatic cells, kidney cells, and vascular endothelial

cells, suggesting that it plays vital roles in the innate immune

response against viral infection and other physiological processes

(26, 27). Increased BST2 expression has been observed in multiple

human cancers, including hematological tumors and solid tumors,

especially in breast cancer, HCC, gastrointestinal cancer, and lung

cancer (28) via activating signaling pathways, such as EGFR/AKT,

NF-kB/ERK, and GRB2/DIM/caspase 3 (29–31). All three genes are

involved in signatures related to immunomodulation, but their roles

in endometriosis remain unreported, and further studies are needed

to elucidate their function in endometriosis.

We validated the three hub genes using the Turku

Endometriosis Database and tissue samples collected from

women with and without non-endometriosis. The expression of

the MET gene in both the online database and clinical tissue showed

the same downregulated trend in the EM group as in the training

and two validation sets. MET is overexpressed in a variety of

tumors, whereas we observed low expression levels of MET in the

EM group. MET may play a distinct role in immune regulation in

endometriosis. The composition of the immune microenvironment

in endometriotic lesions is associated with different disease stages,

phenotypes, and symptoms of the disease (32). The functional

properties of MET in EM may vary depending on the stages and

phenotype of the endometriosis. Endometriotic lesions develop in

complex and dynamic environments. MET was the target gene of

our study, and further studies are required to understand its role in

the pathogenesis of endometriosis.

In endometriosis, the network of immune cell populations

originating from both the innate and adaptive immune systems

creates an optimal environment for lesion formation in the ectopic

endometrium. Numerous studies have attempted to construct

immune-related gene signatures as diagnostic markers and

correlate these genes with patterns of immune cell infiltration.

Macrophages play a crucial role in the development of

endometrial lesions and contribute to ectopic cell survival (33). A

previous study found that the number of macrophages increased in

the eutopic endometrium of patients with endometriosis (34).

Additionally, macrophages polarize from M2 (anti-inflammatory

phenotype) to M1 (proinflammatory phenotype) in the eutopic

endometrium of patients with endometriosis compared to the

control group (35). Ding et al. (36) and Cui et al. (37), focused on
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screening M2 macrophage-related genes based on the theory that

immune cell dysfunction plays an important role in endometriosis

using different analysis methods. In this study, we investigated the

correlation between signature genes and infiltrating immune cells. It

has been shown that CD56bright natural killer cells, related to two

hub genes (MET and BST2), may exhibit dysfunction in EM. NK

cells are key components of the innate immune system, serving as

the initial defense against viral infections and tumor growth while

playing a critical role in maintaining normal tissue homeostasis

(38). NK cell populations exist in both the peripheral circulation

and the uterus and are primarily characterized as CD56dimCD16+

and CD56brightCD16-, respectively (39). One study indicated that

NK cells had less cytotoxicity in women with endometriosis than in

those without it (40). Decreased cytotoxic can impair the clearance

of endometrial fragments by NK cells in the peritoneal cavity,

facilitating the implantation of ectopic implants. Julia et al. found

that NK cytotoxic activity in the endometrium of women with

endometriosis was lower than in normal endometrium. However, in

cases where the endometriosis patient was infertile and/or

experienced recurrent miscarriage, NK cytotoxic activity was

elevated (41). Altered immune cells in the peritoneal cavity of

women with endometriosis can influence other endometrial cell

populations, thereby increasing their susceptibility to lesion

formation, survival, and growth. Further studies are required to

clarify the functional properties and interaction between MET and

NK cells in endometriosis, which may provide in-depth insights

into the pathophysiology of endometriosis.

The present study has several limitations. First, we validated the

downregulation of MET in endometriosis(EM). However, the

regulatory mechanisms of MET in EM need to be investigated,

particularly the correlation between MET and NK cells. This can be

achieved through both in vivo and in vitro experiments. Second, there

was a lack of clinical information regarding the patient’s fertility and

disease severity. Therefore, the mechanism by which this gene affects

the progression of endometriosis throughout the menstrual cycle needs

to be confirmed by experiments based on large sample numbers.
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