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Intelligent diagnosis of thyroid
nodules with AI ultrasound
assistance and cytology
classification
Xiaojuan Cai †, Ya Zhou †, Jie Ren, Jinrong Wei, Shiyu Lu,
Hanbing Gu, Weizhe Xu and Xun Zhu*

Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Soochow University,
Suzhou, China
Objective: Accurate evaluation of thyroid nodules is crucial for effective

management; however, methods such as ultrasonography and Fine Needle

Aspiration Cytology (FNAC) can be subjective and operator-dependent.

Indeterminate thyroid nodules (ITNs) complicate diagnosis, coming at the

expense of time, money, and potentially additional FNA samplings, causing

more discomfort for the patients. Recent advancements in artificial intelligence

(AI) assisted ultrasound diagnosis system have demonstrated excellent diagnostic

performance and the potential to aid in the differentiation of ITNs. This study aims

to develop an AI classifier that integrates the AI-assisted ultrasound diagnosis

system, FNAC, and demographic data to enhance the differentiation of benign

and malignant thyroid nodules, and to compare the diagnostic performance of

the models, with a focus on diagnosing ITNs.

Materials and methods: In the present research, 620 thyroid nodules were

collected from a single medical center and divided into training and testing

cohorts (Testing1). We developed five AI models using distinct classification

algorithms (Logistic Regression, Support Vector Machine, K-Nearest Neighbor,

Random Forest, and Gradient Boosting Machine) that integrate demographic

data, cytological findings, and an AI-assisted ultrasound diagnostic system for

thyroid nodule assessment. These models underwent prospective validation

(Testing2, n = 243) to identify the optimal model. A subsequent prospective

study (Testing3) involving 70 thyroid nodules further evaluated the model’s

performance, where the selected optimal model was compared against FNAC

combined with BRAF V600E mutation analysis.

Results: After validation with the Testing1 and Testing2 cohorts, the Random

Forest (RF) model demonstrated the best overall performance among the five

classifiers. The area under the curve (AUC) for the RF model to diagnose thyroid

nodules was 0.994 in the training cohort, 0.993 in the testing cohort, and 0.977 in

the prospective data. In addition, for 42 included ITNs in the prospective data, the

accuracy, sensitivity, and specificity of the RF model were 90.48%, 89.47%, and

91.30%, respectively. In the Testing 3 cohort, the RF model demonstrated

superior diagnostic performance compared to both the standalone AI

ultrasound auxiliary diagnostic system and FNAC alone. Its accuracy was

comparable to FNAC combined with BRAF V600E mutation analysis.

Conclusion: Our developed thyroid nodule AI diagnostic model shows
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favorable predictive value. It can serve as a decision support tool for non-thyroid

specialists and assist thyroid surgeons in the management of ITN.

Conclusion:Our developed thyroid nodule AI diagnostic model shows favorable

predictive value. It can serve as a decision support tool for non-thyroid specialists

and assist thyroid surgeons in the management of ITN.
KEYWORDS

thyroid nodule, artificial intelligence, ultrasonography, cytology, indeterminate
thyroid nodules
1 Introduction

Thyroid cancer incidence has surged significantly in recent

decades, with an estimated 821,173 new cases globally in 2022,

ranking seventh among malignant tumors (1). Considering that

surgery is the mainstay treatment, accurate preoperative assessment

of thyroid nodules by a specialist thyroid surgeon is crucial for

managing patients with suspicious thyroid lesions. Thyroid

surgeons in resource-limited regions, alongside non-thyroid

specialists, should have access to a dependable and cost-efficient

approach for discriminating between benign and malignant thyroid

nodules. This would aid in guiding referrals or surveillance.

In clinical practice, ultrasonography plays a pivotal role in

thyroid screening (2). Suspicious nodules identified through

ultrasonography undergo Fine Needle Aspiration Cytology

(FNAC) (3), with results classified using The Bethesda System for

Reporting Thyroid Cytopathology (TBS) (4). This system stratifies

nodules into six diagnostic categories. Despite FNAC’s moderate

diagnostic accuracy (sensitivity 86%, specificity 71% (5)), diagnostic

uncertainty persists for indeterminate thyroid nodules (ITNs),

particularly TBS-3 and TBS-4 nodules that show a risk of

malignancy (ROM) from 13 to 34%. Notably, while the 2023 TBS

update classifies TBS-5 nodules (ROM from 67 to 83%) as ITNs,

this study focuses on TBS-3 and TBS-4 nodules where clinical

management dilemmas are most pronounced. ITNs require further

molecular testing or diagnostic surgery. Although molecular testing

is less invasive than surgery, it faces limitations in cost-effectiveness

and diagnostic variability. In the U.S., Afirma GSC (sensitivity 91%,

specificity 68%) and ThyroSeq v3 (sensitivity 94%, specificity 82%)

are cost-prohibitive for routine use (6). China predominantly

employs BRAF V600E mutation analysis, which demonstrates low

sensitivity (21%) and restricted applicability to TBS-3 or TBS-5

nodules (7, 8). Both molecular testing and surgical resection impose

significant financial burdens, with molecular diagnostics remaining

inaccessible in resource-limited regions (9).

The application of artificial intelligence (AI) in thyroid nodule

has expanded exponentially (10). Machine learning algorithms,

such as logistic regression and support vector machines, have

demonstrated remarkable performance in the analysis of well-
02
defined medical data. Deep learning based on convolutional

neural networks, has enabled automated feature extraction and

pattern recognition from medical images, uncovering diagnostic

information that may be imperceptible to human analysis (11). The

AI ultrasound auxiliary diagnosis system, based on deep learning,

has been the most extensively studied and widely researched in the

field of thyroid nodule diagnosis, employing standardized

mathematical algorithms to minimize inter-observer variability

(12–14). Its diagnostic performance is comparable to, or even

superior to, that of sonographers (15–17). A meta-analysis has

suggested that ultrasound is helpful in differentiating TBS-3 nodules

(18). Additionally, some researchers have investigated the

diagnostic accuracy of the AI-assisted ultrasound diagnosis

system for ITNs, finding it comparable to that of BRAF V600E

mutation analysis (19). This provides a reference for using the

system to assist in the diagnosis of ITNs.

The overall purpose of the present study is to provide a more

cost-effective, time-saving, and accurate approach to thyroid nodule

evaluation. We developed a suitable machine learning model for

thyroid nodule classification by integrating the AI-assisted

ultrasound diagnosis system, cytology, and demographic data.

Furthermore, we aim to assess the diagnostic performance of the

models we developed, particularly their efficacy in diagnosing ITNs,

and to compare their performance with that of FNAC combined

with BRAF V600E mutation analysis.
2 Materials and methods

2.1 Patients

Our study retrospectively collected and analyzed the ultrasound

images and clinical data of patients with thyroid nodules who were

admitted to the Second Affiliated Hospital of Soochow University

between June 2022 and March 2024, as well as prospective data

from April 2024 to September 2024. Additionally, we incorporated

another prospective dataset from April 2024 to December 2024, in

which each thyroid nodule had BRAF V600E mutation analysis

result. This clinical study included only those patients with nodules
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who met all the following criteria: (1) aged 18–75 years, regardless

of gender; (2) previous FNAC for thyroid nodules; (3) nodules

confirmed through post-surgical histopathology or by two

consistent FNAC results taken six months apart. Patients were

excluded from this study if they met any of the following criteria: (1)

incomplete medical records; or (2) poor-quality images (including

missing ultrasound images or images where the nodules were too

large to fit in a single frame). Figure 1 illustrates the patient

enrollment flowchart.
2.2 AI-assisted ultrasound diagnosis system

Ultrasound imaging devices equipped with high-frequency (4–

12 MHz) linear-array probes were routinely utilized in this analysis.

All ultrasound images of the nodules were captured and archived

according to the protocol specified in the ACR Thyroid Imaging,

Reporting and Data System (TIRADS) (3). The AI-assisted

ultrasound diagnostic system employed in this study was the Ian

Thyroid Solution 100 (MedAI Technology Co. Ltd., Wuxi, China).

The ITS100 is capable of automatically detecting lesions and

predicting the malignancy rate. It employs computer vision and

convolutional neural network technologies to create an AI-assisted

diagnostic model for identifying benign versus malignant thyroid

nodules. After extracting and analyzing features from the input

ultrasound image of thyroid nodules, the ITS100 will output two

types of predicted value: one for malignancy and one for benignity.

If the predicted value of malignancy is no less than the predicted

value of benignity, the nodule is diagnosed as malignant, as

demonstrated by a red ‘Malignant’ sign. Conversely, if the
Frontiers in Endocrinology 03
predicted value of benignity is higher, the nodule is diagnosed as

benign, marked by a green ‘Benign’ sign (Figures 2A–F). For

simplification, when the green ‘Benign’ sign appears, the

malignant probability is calculated as 100% minus the benign

probability. No calculation is required for the red ‘Malignant’ sign.
2.3 FNAC diagnosis of thyroid nodules

The FNAC of thyroid nodules followed The Expert Consensus

and Operational Guidelines for Ultrasound-Guided Fine Needle

Aspiration Biopsy of Thyroid Nodules (2018 Edition) (20). For

patients with nodules suspected to be malignant based on routine

ultrasound and neck physical examination, FNAC was conducted

subsequently. The patient was in a supine position with their neck

fully exposed. Under ultrasound guidance, the appropriate puncture

site was selected, and a 25G needle was used to perform a puncture at

the center of the targeted nodule. The needle tip was introduced and

gently moved in a to-and-fro motion 2–3 times within different

regions of the nodule. Following this, the needle was swiftly

withdrawn and the collected tissue was processed for cytological

examination. All procedures were performed by a single operator.

Although this research utilized TBS (2017 Edition) in the FNAC

reports (21), the 2023 edition of TBS (4) introduced a ‘single name’

for each of the six diagnostic categories to reduce confusion.

Therefore, we applied the classification names from the 2023

Edition to our research: Class I, Nondiagnostic; Class II, Benign;

Class III, Atypia of Undetermined Significance; Class IV, Follicular

Neoplasm; Class V, Suspicious for Malignancy; and Class VI,

Malignant. Based on the ROM and management recommendations
FIGURE 1

Flow chart showing patient enrollment.
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in TBS, we assigned the following values: TBS-1 and TBS-2 were

assigned a value of 0; TBS-3 and TBS-4 were assigned a value of 1;

TBS-5 and TBS-6 were assigned a value of 2.
2.4 BRAF V600E mutation analysis

The gene mutation detection and analysis process based on real-

time fluorescent quantitative PCR technology is as follows. The

FNA sample was thoroughly mixed with the premixed reaction

solution (a 45 µL reaction system) and 0.6 µL of Taq enzyme, and

then dispensed into centrifuge tubes containing the DNA template.

Thermal cycling was performed using the ABI Quant Studio Dx

fully automated nucleic acid amplification system (Applied

Biosystems, USA), with reaction parameters strictly set according

to the manufacturer’s recommendations. The criteria for result

interpretation were as follows: if the fluorescein amidite (FAM)

channel of the detection well exhibited a typical amplification curve

and the cycle threshold (Ct) value below 30, the sample was

confirmed to have the existence of the BRAF V600E mutation;

conversely, if no characteristic amplification peak was observed or if

the FAM-Ct value was 30 or greater, the sample was considered

negative for the BRAF V600E mutation. The entire testing process

and interpretation of results were carried out by a single
Frontiers in Endocrinology 04
experienced operator, with a quality control standard and a no-

template control included in each run.
2.5 Gold standard specification

All surgical patients were evaluated using histopathology as the

gold standard, and histopathological reports were prepared in

accordance with the World Health Organization guidelines(2017

Edition) (22). For these nodules without postoperative

histopathology, when the nodule is considered benign in the

initial FNAC, it is subjected to a rFNAC six months later after a

comprehensive evaluation. If the nodule continues to show benign

results during the follow-up, it is classified as benign. Essentially,

two consistent benign outcomes from FNAC-based examinations

conducted at a six-month interval were considered the gold

standard for identifying patients with benign lesions that did not

require surgical treatment. Conversely, if the rFNAC result

demonstrates malignancy, the patient will undergo further

surgery, with subsequent pathological results serving as the gold

standard for definitive diagnosis. Each nodule was labeled as either

benign or malignant according to the diagnostic gold standard.

Within the retrospective data, we trained different machine learning

models and internally validated their discrimination and
FIGURE 2

Typical plot of the AI-assisted ultrasound diagnosis system. (A, B) AI diagnostic plot of malignant thyroid nodule; (C) Histology of malignant thyroid
nodule; (D, E) AI diagnostic plot of benign thyroid nodule; (F) Histology of benign thyroid nodule.
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calibration. Additionally, we used prospective data to assess the

performance of these models in greater depth. This study included

retrospective data and two prospective cohorts. In the retrospective

data (n = 620), there are 111 benign nodules and 509 malignant

nodules. The benign nodules were confirmed by postoperative

pathology in 90 cases and by the second-round FNAC in 21

cases. The malignant nodules consisted of 504 papillary

carcinomas, 3 medullary carcinomas, 1 follicular carcinoma, and

1 undifferentiated carcinoma. In the first prospective cohort (n =

243), there are 47 benign nodules and 196 malignant nodules, with

benign cases confirmed by postoperative pathology (n = 35) and

second-round FNAC (n = 12). The malignancies comprised 194

papillary carcinomas and 2 follicular carcinomas. The second

prospective cohort (n = 70, all with BRAF V600E mutation

analysis) included 10 benign nodules (5 confirmed surgically, 5 by

rFNAC) and 60 papillary carcinomas.
2.6 Classification models

In addition to the key factors of FNAC diagnosis and AI-assisted

ultrasound evaluation, we incorporated age, sex, maximum diameter,

and location of nodules as the complete set of features for model

development. The location of thyroid nodules is an independent risk

factor for predicting the likelihood of thyroid cancer, with isthmic

nodules carrying the highest risk of malignancy (23). The

retrospective data was randomly split into a training cohort and a

testing cohort (Testing1) in a 7:3 ratio. Using the Training cohort, we

trained five different models using five distinct algorithms. To

evaluate their performance, we first tested these models using the

Testing1 cohort. Furthermore, to assess the stability of these models,

we used the first prospective cohort as the Testing2 cohort. Finally,

the optimal model was validated using the second prospective cohort

(Testing3), in which it was compared with FNAC combined with

BRAF V600E mutation analysis. These classification models operate

by mapping the features of a single instance and categorizing the data

into groups based on attribute values. When presented with a new

instance, the model assigns it to the category that optimally matches

its learned attributes. The architecture of classification models spans a

spectrum, from linear discriminant functions to clustering techniques

and ensemble methods, each offering distinct benefits tailored to the

specific properties of the dataset it aims to process. Finally, we

selected five widely adopted models in the medical diagnostic field

to test their discrimination and calibration. The models chosen are

introduced as follows:
Fron
1. Logistic Regression (LR) (24): LR is used for binary

classification problems by mapping the output of a linear

combination through a logistic function (sigmoid function)

to a value between 0 and 1, thereby predicting the

probability of an event.

2. Support Vector Machine (SVM) (25): SVM separates data

points of different categories by identifying the hyperplane

that maximizes the separation between them. This optimal
tiers in Endocrinology 05
hyperplane is chosen to ensure the largest margin between

the classes. For nonlinear problems, kernel functions can be

used to project the data onto a higher-dimensional manifold.

3. K-Nearest Neighbour (KNN) (26): KNN is an algorithm

that helps classify new samples by assigning them a score

based on a set of calculations done on the entire training

dataset. When a new sample is introduced, the algorithm

compares its score with the scores of all samples in the

training group. It subsequently identifies the training

sample that is closest in score, termed the ‘nearest

neighbor’. By looking at the category of this neighbor,

KNN can classify the new sample accordingly.

4. Random Forests (RF) (24): RF is a powerful ensemble

learning algorithm that enhances model performance and

robustness by constructing a collection of decision trees

and synthesizing their outputs through ensemble methods

such as majority voting or averaging.

5. Gradient Boosting Machine (GBM) (27): GBM is a highly

effective ensemble algorithm famous for its excellent

predictive accuracy, especially when dealing with complex

patterns. Similarly, it also constructs a strong model by

aggregating multiple weak learners (usually decision trees).

GBM constructs decision trees in a sequential manner, with

each subsequent tree aiming to correct the residual errors of

the preceding trees. This iterative approach allows GBM to

capture intricate relationships in the data, making it a

popular choice for a variety of prediction tasks.
2.7 Statistical analysis and AI model

Statistical analysis and the AI model were conducted using

Python 3.12.4. In addition to AI ultrasound diagnosis and FNAC,

other clinical parameters included in the AI model were age, sex,

whether the nodule is located in the isthmus of the thyroid, and the

maximum diameter of the nodule. In the case of a thyroid nodule

located at the isthmus, it is coded as 1; otherwise, it is coded as 0.

These parameters, along with the final gold standard, were included

as features in our model’s dataset. For this analysis, the retrospective

data was partitioned into 70% for training, 30% for testing. To

optimize these models, we used a grid search algorithm. This

method explores multiple dimensions by adjusting each

parameter individually to find the best results. To train and

validate the model while minimizing biases, we employed k-fold

cross-validation. In this process, the training set is divided into 10

equal parts (folds). Each fold is utilized as the validation set in turn,

with the remaining 9 folds used for training. This procedure is

repeated across 10 iterations, ensuring that each fold is employed as

the validation set once. To enhance the reliability of performance

estimates, we conducted the k-fold cross-validation process ten

times (k = 10). These AI predictive models evaluate the nature of

thyroid nodules and quantify it as a probability percentage. If the

estimated probability is 50% or higher, the AI model classifies the
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nodule as positive, which means the thyroid nodule is considered

malignant by the AI. It is deemed a true positive if the final

histopathological results confirm malignancy. Normally

distributed continuous variables were presented as mean ±

standard deviation, whereas skewed data were reported as M

(IQR). Group comparisons were conducted using the

independent samples t-test or the Wilcoxon rank-sum test,

depending on data distribution and suitability. The categorical

variables were presented as proportions, with statistical analysis

conducted using Pearson’s Chi-square test or Fisher’s exact test,

subject to the sample size and the distribution of expected

frequencies within the cells. Model discrimination was evaluated

using a confusion matrix alongside several metrics, comprising the

area under the receiver operating characteristic curve (AUC),

accuracy, sensitivity, specificity, and F1 Score. For subgroup

analyses, where small sample sizes precluded the generation of a

meaningful confusion matrix, we calculated the percentage of

correctly classified cases. In addition, we evaluated model

calibration using the Brier score (28). Since the model developed

in this study focuses more on discriminative ability, the calibration

curve was not plot. Plot the receiver operating characteristic (ROC)

curves and decision curve analysis (DCA) curves for different
Frontiers in Endocrinology 06
diagnostic methods, and compare their AUC, accuracy,

sensitivity, specificity, and Cohen’s Kappa coefficient. P < 0.05

was regarded as statistically significant.
3 Results

3.1 Baseline characteristics across different
datasets

The baseline characteristics for the study cohort are

summarized in Table 1.
3.2 Performance analysis of AI models

Among these models, the RF model demonstrated the best

discrimination in the Training cohort, with an accuracy of 96.54%,

sensitivity of 99.16%, specificity of 84.00%, F1 Score of 97.94%, and an

AUC of 0.994. It also maintained excellent performance in the

Testing1 cohort, achieving an accuracy of 97.31%, sensitivity of

99.33%, specificity of 88.89%, F1 Score of 98.35%, and an AUC of
TABLE 1 Baseline characteristics across different datasets.

Nodule features Training
cohort

Testing 1
cohort

P value Testing 2
cohort

P value Testing 3
cohort

P value

nodule count 434 186 243 70

Age
(mean ± std)

45.47 ± 11.89 46.52 ± 11.30 0.298 45.86 ± 11.49 0.681 44.37 ± 11.96 0.476

Sex (n, %) 0.087 0.003 0.896

Female 323 (74.42) 151 (81.18) 206 (84.77) 51 (72.86)

Male 111 (25.58) 35 (18.82) 37 (15.23) 19 (27.14)

Max
diameter
(mm)
M(IQR)

8.00 (7.00) 8.00 (5.00) 0.500 8.00 (5.60) 0.065 7.00 (5.97) 0.053

Location (n, %) 0.968 0.796 0.268

right or left lobes 411 (94.70) 177 (95.16) 232 (95.47) 69 (98.57)

isthmus 23 (5.30) 9 (4.84) 11 (4.53) 1 (1.43)

AI
ultrasound
diagnosis
(%) M(IQR)

91.00
(29.00)

90.50
(26.75)

0.283 89.00
(32.50)

0.921 89.50
(19.00)

0.738

Bethesda classification (n, %) 0.514 0.306 0.128

I/II 49 (11.29) 19 (10.22) 25 (10.29) 8 (11.43)

III/IV 52 (11.98) 30 (16.13) 42 (17.28) 15 (21.43)

V/VI 333 (76.73) 137 (73.66) 176 (72.43) 47 (67.14)

Gold standard (n, %) 0.615 0.572 0.653

Benign 75 (17.28) 36 (19.35) 47 (19.34) 10 (14.29)

Malignancy 359 (82.72) 150 (80.65) 196 (80.66) 60 (85.71)
fro
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0.993. Furthermore, we conducted a prospective analysis, and the

results show that the RF model is still the best model. From the

perspective of calibration, the RF model had the lowest Brier score

(Training cohort: 0.030; Testing1 cohort: 0.035) among all models, in

other words, the RF model had the best calibration among all models.

In terms of longitudinal results, the RF model demonstrated good

learning performance on the Training cohort, with no signs of

overfitting, allowing it to maintain excellent performance in the

prospective study. The GBM model, another ensemble learning

model, showed balanced and favorable discrimination in both the

Training and Testing1 cohorts, though slightly inferior to the RF

model. In contrast, the KNN model and the SVM model

demonstrated moderate discrimination. The LR model’s sensitivity,

specificity, and F1 Score were lower than those of the other models. It

is worth noting that the SVMmodel has the highest AUC (0.981) and

the lowest Brier score (0.040) in the Testing2 cohort, but its accuracy,

sensitivity, specificity, and F1 Score are clearly inferior to those of the

RF model. Details can be found in Table 2 and Figures 3A–C.
3.3 Performance analysis of the RF model

To further explore the performance of the RF model, we assessed

its diagnostic capability for ITNs.When applied to these diagnostically

challenging nodules, the developed RF model achieved an accuracy of

90.48%. This satisfactory result suggests that the RF model has robust

discriminative capability for ITNs. Detailed information is presented
Frontiers in Endocrinology 07
in Table 3 and Figures 4A–C. To validate the diagnostic efficacy and

clinical practicality of the RF model, we conducted a comparative

analysis with FNAC combined with BRAF V600E mutation analysis.

The RF model demonstrated specificity of 100.00%, sensitivity of

98.33%, and a Kappa value of 0.944. Although the specificity of the RF

model was 20% lower than that of the combined method, this

difference was not statistically significant (P = 0.480). Similarly, the

Kappa value was 0.071 lower than the combined method, with no

statistical significance (P = 0.141). Complete data are shown in Table 4

and Figure 5A. Notably, the RF model exhibited superior diagnostic

performance compared to the AI ultrasound auxiliary diagnostic

system. Meanwhile, the diagnostic efficacy of FNAC alone was

significantly compromised by the presence of ITNs. Figure 5B

displays the DCA curves of different diagnostic methods. Since both

FNAC and FNAC combined with BRAF V600E mutation analysis are

binary categorical data (0 and 1), their curves appear as horizontal

lines parallel to the x-axis. This precluded direct comparison between

the RF model and FNAC combined with BRAF V600E mutation

analysis. Nevertheless, the RF model demonstrated significantly better

performance compared to both the standalone AI ultrasound auxiliary

diagnostic system and FNAC alone.
3.4 Interpretability analysis of the RF model

To better understand the mechanism by which the RF model

differentiates benign thyroid nodules from malignant ones, the RF
TABLE 2 Performance analysis of AI models in different cohorts.

Model Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%) AUC Brier Score

Training Cohort

LR 91.24 95.82 69.33 94.77 0.959 0.061

SVM 93.09 97.49 72.00 95.89 0.965 0.050

KNN 93.50 97.21 76.00 96.14 0.974 0.050

RF 96.54 99.16 84.00 97.94 0.994 0.030

GBM 95.62 98.61 81.33 97.39 0.987 0.037

Testing1 Cohort

LR 93.01 98.00 72.22 95.77 0.985 0.046

SVM 94.62 98.67 77.78 96.73 0.991 0.038

KNN 95.70 98.67 83.33 97.37 0.974 0.039

RF 97.31 99.33 88.89 98.35 0.993 0.035

GBM 95.16 97.33 86.11 97.01 0.989 0.040

Testing2 Cohort

LR 95.47 98.98 80.85 97.24 0.965 0.042

SVM 94.65 97.96 80.85 96.73 0.981 0.040

KNN 95.06 97.45 85.11 96.95 0.951 0.046

RF 96.71 98.47 89.36 97.97 0.977 0.041

GBM 94.24 96.43 85.11 96.43 0.959 0.045
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model is visually interpreted using Shapley Additive Explanation

(SHAP) methods. Figure 6 presented a comprehensive and detailed

swarm plot, demonstrating the key variables in the RF model and

providing a clear visualization of their relationships. The horizontal

axis represents the SHAP values, while the vertical axis sorts the

features according to their cumulative impact, illustrating how each

feature contributes to the model’s predictions. Each dot reflects a

specific instance, where the feature and instance determine the dot’s

position along the x-axis. FNAC and AI ultrasound diagnosis are

the two most important factors in diagnosis.

In terms of feature importance, FNAC and AI ultrasound

diagnosis ranked highest, followed by age, max diameter, sex, and

location. FNAC and AI ultrasound diagnosis are the two most

important factors in diagnosis, both contributing positively to the

diagnostic outcome. Younger and smaller nodule size also showed

positive SHAP values, indicating an association with higher

malignancy risk. Conversely, older and larger nodule size were

associated with lower predicted probabilities of malignancy. This

may be explained by the clinical observation that elderly patients

with benign thyroid nodules often undergo surgery due to

compressive symptoms from larger lesions. Furthermore, male

and isthmus-located nodules exhibited positive contributions to

the diagnosis, while SHAP values for female and nodules located in

the bilateral lobes were close to zero, suggesting limited impact.

These results align well with clinical practice and previously

reported findings.
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4 Discussion

Accurate evaluation of the benign or malignant nature of

thyroid nodules is crucial for the clinical diagnosis and

therapeutic intervention of thyroid cancer. While most thyroid

nodules can be clearly diagnosed through ultrasound and FNAC,

there remains a minority that cannot be definitively diagnosed and

often requires further diagnostic procedure, such as genetic testing

or diagnostic hemithyroidectomies. However, this incurs

substantial time and financial costs, as well as the potential need

for additional FNAC, which may lead to increased discomfort for

the patients. A reliable and non-invasive tool to predict nodule

malignancy would significantly assist non-thyroid specialist in

evaluating nodules for appropriate referrals, while also aiding

thyroid surgery specialist in preoperative assessment of nodule

malignancy to minimize unnecessary medical intervention.

In the present research, we developed five AI models to evaluate

the malignancy risk of thyroid nodules using the AI-assisted

ultrasound diagnostic system, FNAC, and demographic data, and

selected the best performing model. Overall, the RF model

demonstrated superior performance, prompting further analysis

and interpretation. Random Forest is an advanced ensemble

learning algorithm that aggregates the outputs of numerous

individual decision trees, reducing bias and variance. It randomly

selects a subset of features at each node split, decreasing model

correlation and minimizing the risk of overfitting. This method

effectively handles high-dimensional data and identifies feature

importance, optimizing performance. Additionally, Random Forest

is robust to outliers and noise, maintaining good performance under

complex data distributions. Its ensemble nature also provides built-in

cross-validation during training, enhancing generalization.

The RF model that we developed accurately predicted 181 out of

186 nodules in the Testing1 cohort. Among the 5 errors, 1 was false

negative predictions. The thyroid incidentaloma was classified as

ACR TI-RADS 5, and the size of the nodule was 4.3 × 4.5 × 7.9 mm.

The ultrasound also indicated lymphadenopathy in the VI level of

the neck, with the enlarged lymph nodes showing no hilar

echogenicity, along with features of Hashimoto’s thyroiditis.
TABLE 3 Performance of the RF Model for ITNs.

Performance
metric

Training
cohort

Testing1
cohort

Testing2
cohort

Accuracy (%) 90.38 86.67 90.48

Sensitivity (%) 92.00 100.00 89.47

Specificity (%) 88.89 80.95 91.30

F1 Score 0.902 0.818 0.895

AUC 0.978 0.931 0.950
FIGURE 3

ROC analysis of the performance of five classifier algorithms. (A) Training cohort; (B) Testing1 cohort; (C) Testing2 cohort.
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FNAC was performed, which illustrated lymphocytic thyroiditis.

Three months later, a follow-up ultrasound demonstrated an

increase in the size of the nodule, prompting a repeat FNAC,

which revealed papillary thyroid carcinoma associated with

lymphocytic thyroiditis. The patient underwent surgical

intervention, and the histopathology confirmed papillary thyroid

carcinoma with chronic lymphocytic thyroiditis. The first FNAC

diagnosis reviewed again demonstrates that scattered follicular

epithelial cells are present in the background of inflammatory

cells. The reason for the misdiagnosis may be that the lesion was

not accurately sampled. Of the four false positive predictions, three

TBS-4 nodules were misclassified as malignant, with histopathology

showing non-invasive follicular thyroid neoplasm with papillary-

like nuclear features (NIFTP), adenoma, nodular goiter, and one

atypical hyperplastic lesion of the thyroid nodule. In the Testing2

cohort (n = 243), the RF model accurately predicted 235 out of 243

nodules. The 8 misclassified nodules included 5 false positives and 3

false negatives. Among the five false positive cases, three nodules

initially diagnosed as suspicious for malignancy by FNAC were

ultimately confirmed through histopathological examination to be

atypical hyperplastic lesions of the thyroid. Notably, FNAC

diagnoses categorized as suspicious for malignancy or definitive

malignancy significantly influence the predictive outcomes of the

RF model. The remaining two false positive cases, which had FNAC

diagnoses suggestive of oncocytic neoplasms, were similarly

identified as atypical hyperplastic lesions upon histopathological
Frontiers in Endocrinology 09
evaluation. There were three false negative cases with histopathological

confirmation: one demonstrating follicular carcinoma, one papillary

carcinoma confirmed by immunohistochemical assessment, and one

papillary thyroid carcinoma associated with Hashimoto’s thyroiditis.

Due to the small sample size of the ITNs subgroup, there are

indeed fluctuations in model performance metrics observed in both

the Testing1 and Testing2 cohorts with ITNs. However, the RF

model demonstrated satisfactory clinical utility across both datasets,

showing effective potential to avoid diagnostic surgeries. In the

Testing1 cohort with ITNs (n = 30), the RF model accurately

identified all malignant nodules (n = 9), while there were a total

of 21 benign nodules. Had the RF model been applied to this cohort,

17 out of 21 diagnostic hemithyroidectomies (80.95%) performed

on cases diagnosed as benign according to surgical histology could

have been averted. Excluding ITNs, the classifiers correctly

predicted almost 100% of the cases. In the Testing2 cohort with

ITNs (n = 42), there were 11 malignant nodules and 23 benign

nodules. Among the 23 benign nodules, the RF model correctly

identified 21, preventing further operation. Among the Testing 1

and Testing 2 cohorts with ITNs, analysis of 27 TBS-3 nodules

revealed 3 false-positive cases, achieving a correct classification rate

of 88.89% (24/27). In comparison, evaluation of 45 TBS-4 nodules

identified 5 false-positive instances, demonstrating a diagnostic

accuracy of 91.11% (41/45) for correct classification. In the

Training, Testing 1, and Test 2 cohorts of this study, TBS-5

nodules exhibited a remarkably high malignancy rate of 95.28%
TABLE 4 Comparison of diagnostic performance across different methods (n = 70).

Methods Malignancy (n, %) Benign (n, %) Sensitivity (%) Specificity (%) Accuracy (%) AUC Kappa value

Gold Standard 60 (85.71) 10 (14.29) – – – – –

RF 62 (88.57) 8 (11.43) 100.00 80.00 97.14 1.000 0.873

AI 63 (90.00) 7 (10.00) 98.33 60.00 92.86 0.792 0.667*

FNAC 47 (67.14) 23 (32.86) 78.33* 100.00 81.43* 0.892 0.508*

FNAC+BRAF 59 (84.29) 11 (15.71) 98.33 100.00 98.57 0.992 0.944
*P value < 0.05, The RF model was individually compared with AI, FNAC, and FNAC+BRAF.
FIGURE 4

ROC analysis of the RF Model performance for ITNs. (A) Training cohort; (B) Testing1 cohort; (C) Testing2 cohort.
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(303/318), which explains why ITNs in this study excluded TBS-

5 nodules.

The RF model demonstrates excellent predictive capability,

effectively guiding non-thyroid specialists in the preliminary

assessment of nodules and assisting thyroid surgeons in

predicting the malignancy of ITNs. Among the ITNs, limited

cost-effectiveness evidence and accessibility challenges have

constrained mutation analysis applications in resource-limited

settings, where 70% are benign upon final pathology, potentially

leading to unnecessary surgeries (29). The developed classifier

provides effective and straightforward differentiation between

benign and malignant nodules, which carries significant clinical

implications. Unfortunately, this study has several limitations. First,

the predominantly postoperative composition of the study cohort

introduces selection bias, as this population fails to adequately

represent the broader spectrum of thyroid nodule patients,

consequently skewing the benignto-malignant ratio. Regarding

this issue, a recent study introduced the 2e diagnostic criteria for

diagnosing thyroid nodules (30). This criterion follows a two-level
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hierarchy: in addition to the conventional pathological result

(FNAC or postoperative pathological examinations), another level

of hierarchy is the decision of an arbitration group consisting of 3

senior ultrasound specialists. Adopting the 2e diagnostic criteria

enables the inclusion of a substantial number of benign thyroid

nodules in the study cohort, rather than limiting participation to

patients with confirmed pathologies, thereby effectively minimizing

selection bias. Second, the AI-assisted ultrasound diagnosis is based

on retrospective image data. The ITS100 can also perform dynamic

AI diagnostics, demonstrating similar diagnostic efficacy (15).

Future studies should focus more on dynamic AI diagnostics,

making the AI diagnostic system more accessible in regions with

limited medical resources for thyroid nodule diagnosis.
5 Conclusion

In the present study, we have developed a pilot AI model

capable of precisely predicting malignancy of thyroid nodules by

integrating the AI-assisted ultrasound diagnosis system, cytology,

and demographic information. With further development and

refinement for clinical applications, this AI model holds

significant promise as a computer-aided decision support tool for

non-thyroid specialists and can also assist thyroid surgeons in

determining the next steps in the management of ITNs.
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